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Abstract

Low-dimensional representations are key to
the success of many video classification algo-
rithms. However, the commonly-used dimen-
sionality reduction techniques fail to account
for the fact that only part of the signal is
shared across all the videos in one class. As
a consequence, the resulting representations
contain instance-specific information, which
introduces noise in the classification process.
In this paper, we introduce Non-Linear Sta-
tionary Subspace Analysis: A method that
overcomes this issue by explicitly separat-
ing the stationary parts of the video signal
(i.e., the parts shared across all videos in
one class), from its non-stationary parts (i.e.,
specific to individual videos). We demon-
strate the effectiveness of our approach on
action recognition, dynamic texture classifi-
cation and scene recognition.

1. Introduction

Video classification is a challenging computer vision
task with many potential applications, such as action
recognition, anomaly detection, and face recognition.
A key ingredient to video classification is the design
of effective video models. A popular approach to this
problem is to learn a low-dimensional representation
of the videos for each individual class using methods
such as PCA (Ali & Shah, 2010), ICA (Long et al.,
2012), ISA (Le et al., 2011) or LPP (Tseng et al.,
2012). Classification is then performed by projecting
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Figure 1. PCA components and stationary components
extracted from the Hand Waving class of the KTH
dataset.

a query video to the low-dimensional representation of
each class, and finding which projection is most similar
to the training data.

Despite their success for video classification, an inher-
ent limitation of most dimensionality reduction meth-
ods is their assumption that, within each class, the
video signal of all the examples is drawn from a sin-
gle, potentially multi-modal, distribution. While part
of the signal is indeed common to all videos in the
class, other parts are specific to each individual video.
From a signal processing perspective, it would there-
fore seem more reasonable to model each video as the
superposition of a stationary part, shared across all
videos of the class, and a non-stationary part, only
present in this particular video. In most cases, the
non-stationary part is irrelevant for video classifica-
tion, since it only carries information about a single
video. Modeling this information, as most dimension-
ality reduction methods do, only introduces noise, and
therefore might degrade the classification performance.
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In light of this observation, in this paper, we introduce
the use of stationarity for video classification. Being
shared by all the videos, a stationary signal makes a
very good representative of the class. To illustrate
this, in Fig. 1, we compare the components recovered
with PCA and the stationary signal extracted from the
Hand Waving class of the KTH dataset. Note that this
stationary signal better captures the action than PCA.

To extract the stationary part of the data, we intro-
duce two methods: Kernel Stationary Subspace Analy-
sis (KSSA) and Non-Linear Stationary Subspace Anal-
ysis (NLSSA). These two methods are non-linear ex-
tensions to Stationary Subspace Analysis (SSA) (Hara
et al., 2012). Given a time-varying multivariate sig-
nal, SSA searches for a subspace shared across mul-
tiple portions of the signal (i.e., epochs), such that
the projections of these epochs onto the subspace are
stationary. Following a weak notion of stationarity,
SSA minimizes the KL divergence between the dis-
tributions of all pairs of projected epochs. Here, we
show that SSA can be kernelized, thus allowing us to
model a non-linear mapping between the original sig-
nal and its stationary representation via the use of
kernels. Furthermore, we introduce a modification of
this KSSA formulation that remains non-linear, while
significantly reducing computational complexity.

To summarize, our contribution is twofold: We intro-
duce the use of stationarity for video classification and
propose two novel non-linear algorithms to extract the
stationary part of an observed signal. We demonstrate
the benefits of our approach over exiting techniques on
dynamic texture recognition, scene classification, and
action recognition.

2. Related Work

Video classification has attracted a lot of interest since
it provides a solution to a wide class of problems, such
as action, or dynamic scene recognition. For many
existing approaches, constructing a compact discrimi-
native representation of videos has been an important
research focus. In particular, Principal Component
Analysis (PCA), which computes a low-dimensional
representation of the data so as to minimize its re-
construction error, has been widely used to model
videos (Ali & Shah, 2010). More recently, several vari-
ations of PCA, such as Generalized PCA (Vidal et al.,
2005), Mixtures of Probabilistic PCA (Gu et al., 2001;
Tipping et al., 1999) and Kernel PCA (Hotta, 2012;
Chan & Vasconcelos, 2007) have been proposed for
video classification. Unfortunately, PCA-based ap-
proaches suffer from the fact that the components
yielding the best reconstruction of the data might not

be the most relevant ones for classification purpose.

As an alternative to PCA, Independent Component
Analysis (ICA) has been utilized to find a subspace of
the data. ICA minimizes the mutual information of
the projections of the data along the different com-
ponents. In (Long et al., 2012), it was employed
to learn spatio-temporal filters from unlabeled video
data. Similarly, Independent Subspace Analysis (ISA),
a generalization of ICA, was used to learn invariant
spatio-temporal features from video for action classi-
fication (Le et al., 2011). As PCA-based approaches,
these methods try to model the entire data instead of
focusing on the part that is shared across all videos of
the same class, and thus relevant for classification.

Other subspace methods that more directly exploit
the structure of the training data have been used for
video classification. For instance, (Tseng et al., 2012)
employed (Adaptive) Locality Preserving Projection
(LPP) for silhouette-based human action recognition.
However, while LPP attempts to preserve the neigh-
borhood structure of the data, this structure may not
necessarily reflect the underlying classes. More di-
rectly focused on the classification problem, an ap-
proach relying on Kernel Fisher Discriminant Anal-
ysis (FDA) was proposed in (Campos et al., 2011).
While this approach better accounts for the underly-
ing classification problem, its results do not seem to
be competitive with the state-of-the-art.

Many other video classification methods that do not
make use of subspace representations have also been
proposed. For instance, Support Vector Machines
(SVMs) have become popular to perform video clas-
sification using various image features, such as His-
togram of Oriented Gradients (HOG) (Thurau &
Hlavác, 2008), or SIFT (Sivic & Zisserman, 2003).
Since SVMs do not directly take temporal information
into account, spatio-temporal features had to be de-
signed (Knopp et al., 2010; Niebles et al., 2008; Wang
et al., 2012).Probabilistic generative models have also
been proposed to represent a video as the output of a
linear dynamical system (LDS) (Doretto et al., 2003;
Chaudhry et al., 2009; Saisan et al., 2001) or of a
Bag-of-Dynamical-systems (Ravichandran et al., 2009;
Chan et al., 2010).

Here, we introduce a non-linear approach to video
modeling that focuses on extracting the information
that is stationary across all videos of the same class.
As a consequence, the resulting video representation is
particularly well-suited for classification purpose. Fur-
thermore, the notion of stationarity is intuitively well-
adapted to model the temporal nature of the video
signal and lets us make use of many image features.
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3. Background

In this section, we briefly review Stationary Subspace
Analysis (SSA) (Bünau et al., 2009) that serves as
a starting point for our approach. SSA is a blind
source separation method that aims to factorize a mul-
tivariate time series into stationary and non-stationary
sources. Its underlying assumption is that the ob-
served signal X is generated from a linear mixture
of d stationary sources Ss ∈ Rd×T and D − d non-
stationary ones Sn ∈ RD−d×T . This can be written as

X = AS =
[
As An

] [Ss

Sn

]
, (1)

where A ∈ RD×D is an invertible mixture matrix com-
posed of As and An, which span the stationary and
non-stationary subspaces, respectively. The goal of
SSA is to estimate a de-mixing transformationW from
the data X such that stationary and non-stationary
sources can be separated. The de-mixing matrix is
related to A by

B = A−1 =

[
W
Bn

]
. (2)

SSA exploits the notion of weak, or wide-sense, sta-
tionarity, which translates into considering d sources
as stationary if they have the same mean and vari-
ance over time. To this end, the data is divided into
N time blocks, or epochs. The stationary part of the
signal is then extracted by finding the projection W ,
such that the mean and covariance of the projected
signal are the same for all epochs. Within this linear
framework, this is equivalent to comparing the projec-
tions of the mean µi and covariance Σi of the origi-
nal signal of each epoch to the projections of the av-
erage mean µ̄ = (1/N)

∑N
i=1 µi and average covariance

Σ̄ = (1/N)
∑N

i=1 Σi. As a distance measure, SSA uti-
lizes the Kullback-Leibler divergence, which yields the
minimization problem

min
W

N∑
i=1

KL
(
N (Wµi,WΣiW

T )||N (Wµ̄,W Σ̄W T )
)
.

(3)
Solving this problem for W is ambiguous. There-
fore, additional orthogonality constraints of the form
W Σ̄W T = I are enforced to restrict the solution space.
In practice, the solution is obtained by searching for
a matrix B in the special orthogonal group SO(D),
and by taking W = IdB, with Id containing the first
d rows of the identity matrix. In (Bünau et al., 2009),
a steepest descent method on SO(D) was utilized to
determine B. However, the non-convexity and flat-
ness of the objective near the global solution made the
optimization process slow (Hara et al., 2012).

This was overcome in (Hara et al., 2012) by introduc-
ing an approximate analytical solution to SSA. While

this formulation has proved more robust than the origi-
nal SSA, it still assumes a linear mapping between the
original signal and its stationary part. In the next
section, we show how stationarity can be exploited
for video classification, and how Analytic SSA (Hara
et al., 2012) can be kernelized to model non-linear
mappings.

4. Proposed Approach

In this section, we introduce the use of stationarity for
video classification. We first discuss how to extract
the stationary part of a set of videos belonging to the
same class, and how to model a non-linear mapping
between such stationary signal and the original video
data. Finally, we show how to employ this process for
video classification.

4.1. Stationarity for Video Modeling

In this section, we present our approach to obtaining
a compact representation of videos. Let us recall that,
ultimately, our goal is video classification. Therefore,
we are not necessarily interested in deriving a repre-
sentation that allows for the best reconstruction of the
signal, but we rather seek to find the invariants of the
videos belonging to the same class. These invariants
can be thought of as the part of the signal that is sta-
tionary across all videos.

Let V = [V 1, · · · ,V N ] be the D × (
∑N

i=1 mi) matrix
containing the N training videos of one specific class,
where V i = [vi,1, · · · ,vi,mi ] represents one video in
that class, with vi,j ∈ RD the vector of image features
for the jth frame of video i. Following SSA, we as-
sume that V is generated by a linear combination of d
stationary sources and D − d non-stationary sources,
i.e., V = AS in Eq. 1. Taking each video in the class
as one epoch, we then search for a de-mixing matrix
W , related to A by Eq. 2, such that the projections of
the mean and covariance of each video are as similar
to each other as possible. This can be expressed in
terms of the KL divergence, as shown in Eq. 3. Here,
to avoid the limitations of SSA discussed in Section 3,
we rely on Analytic SSA (Hara et al., 2012).

More specifically, by expanding the KL divergence in
Eq. 3, W can be obtained by solving the problem

min
W

1

N

N∑
i=1

{
‖W (µi − µ̄)‖2 − logdet(WΣiW

T )
}

s.t. W Σ̄W T = I , (4)

where
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µi =
1

mi

mi∑
j=1

vi,j , Σi =
1

mi − 1

mi∑
j=1

(vi,j−µi)(vi,j−µi)
T ,

µ̄ = 1
N

∑N
i=1 µi, and Σ̄ = 1

N

∑N
i=1 Σi.

This problem is non-convex and therefore hard to
solve (Hara et al., 2012). However, its objective func-
tion can be replaced with a convex upper bound. To
this end, the logdet term is approximated with its
second order Taylor expansion f̃(W ,W ∗) near the
optimal solution W ∗. Although this optimal solu-
tion is unknown, the constraints W ∗Σ̄W ∗ = I and
W ∗ΣiW ∗ = I make the dependency on W ∗ disap-
pear. As shown in (Hara et al., 2012), this yields the
bound

f̃(W ,W ∗)≤
2

N

N∑
i=1

Tr
(
W (Σi − Σ̄)Σ̄

−1
(Σi − Σ̄)W T

)
.

Since the other term in the objective is quadratic, this
bound makes it possible to approximate the problem
in Eq. 4 as

min
W

Tr(WCW T )

s.t. W Σ̄W T = I , (5)

where

C =
1

N

N∑
i=1

[
µiµ

T
i + 2ΣiΣ̄

−1
Σi

]
− µ̄µT − 2Σ̄ . (6)

A solution to this problem can be obtained by solving
the generalized eigenvalue problem Cϕ = λΣ̄ϕ, and
taking W = [ϕ1 · · ·ϕd]

T
as the d generalized eigen-

vectors with smallest eigenvalues. Details of the full
derivation can be found in (Hara et al., 2012).

4.2. Kernel Stationary Subspace Analysis

Analytic SSA is a linear method in nature. As such, it
cannot model nonlinear mappings between the video
signal and its stationary parts. To overcome this
limitation, we introduce a kernelized version of SSA,
which, as all kernel methods, boils down to performing
SSA in a high-dimensional feature space.

Let Φ : RD → H be the function mapping a frame vi,j
to a high-dimensional feature space. We can write the
means and covariances required to encode stationarity
in H as

µΦ
i =

1

mi

mi∑
j=1

Φ(vi,j) ,

ΣΦ
i =

1

mi − 1

mi∑
j=1

(Φ(vi,j)− µΦ
i )(Φ(vi,j)− µΦ

i )T ,

as well as µ̄Φ = 1
N

∑N
i=1 µ

Φ
i and Σ̄

Φ
= 1

N

∑N
i=1 ΣΦ

i .
Following the standard approach to kernelizing an al-
gorithm, we represent the projection W as a linear

combination of the examples in H, which can be ex-
pressed as W = αΦ(V )T , with α unknown. By mak-
ing use of a kernel function k, such that k(vi,j ,vi′,j′) =
Φ(vi,j)

T Φ(vi′,j′), we can define

WµΦ
i = α

 1

mi

∑
j

k(V ,vi,j)

 , αk̃i , (7)

Wµ̄Φ = α

(
1

N

∑
i

k̃i

)
, αk̄ , (8)

WΣΦ
i W , αK̃iα

T , (9)

W Σ̄
Φ
W = α

(
1

N

∑
i

K̃i

)
αT , αK̄αT , (10)

where K̃i = 1
mi−1

∑
j(k(V ,vi,j)− k̃i)(k(V ,vi,j)− k̃i)

T .

As shown in supplementary material, we can then de-
rive a similar bound as in Analytic SSA, which now
takes the form

f̃(α,α∗) ≤
2

N

N∑
i=1

Tr
(
α(K̃i − K̄)K̄

−1
(K̃i − K̄)αT

)
.

This, in conjunction with the definitions of Eqs. 7-10,
lets us re-write the problem in Eq. 5 as

min
α

Tr
(
αCKαT

)
s.t. αK̄αT = I , (11)

with CK = 1
N

∑N
i=1 k̃ik̃

T

i + 2K̃iK̄
−1
K̃i− k̄k̄

T − 2K̄.
The solution to this problem can be obtained by solv-
ing the generalized eigenvalue problem CKϕ = λK̄ϕ.

A drawback of KSSA is that it relies on the compu-
tation of the inverse of K̄, which is a rank-deficient
matrix. Indeed, it can be shown that the individual
K̃i matrices have rank mi − 1, which implies that the
maximum rank of K̄ is

∑N
i=1mi − N . This problem

can be alleviated by replacing K̄ with K̄ + εI with
a small ε. This, however, does not address the high
computational complexity of KSSA due to the inver-
sion and multiplications of large matrices. Next, we
introduce a solution to overcome these weaknesses.

4.3. Non-Linear Stationary Subspace Analysis

To address the limitations of KSSA, we observe that

the presence of K̄
−1

in the final problem is related to

the presence of Σ̄
−1

in the solution of Analytic SSA.
We therefore propose to transform the data in such
a way that the average covariance matrix Σ̄ becomes
identity. To keep the benefits of working in a high-
dimensional feature space, we search for such a trans-
formation in H. Note that this does not truly restrict
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the solutions of our approach, since W was originally
only defined up to a linear transformation.

More specifically, we search for a transformation P

such that P Σ̄
Φ
P T = I. Equivalently, this can be

expressed as the eigenvalue problemUΣ̄
Φ
UT = Λ. As

before, U can be expressed as a linear combination of
the examples in H, i.e., U = βΦ(V )T . By exploiting
the definitions introduced in Section 4.2, we obtain the
eigenvalue problem

βK̄βT = Λ , (12)

from which we can obtain β. This yields the transfor-
mation P = Λ−1/2βΦ(V )T , which lets us project the
data as

V P = PΦ(V ) = Λ−1/2βK , (13)

where K is the kernel matrix of all the training videos.
In practice, we keep the eigenvectors of K̄ that account
for 98% of its variance.

Since the projected data is already expressed in terms
of kernels (i.e., does not depend on the mapping Φ),
we can directly apply SSA to it. By defining µP

i =
1
mi

∑
j v

P
i,j and ΣP

i = 1
mi−1

∑
j(v

P
i,j−µP

i )(vPi,j−µP
i )T ,

we can re-write the problem in Eq. 3 as

min
W

N∑
i=1

KL
(
N (WµP

i ,WΣP
i W

T )||N (0, I)
)

s.t. WW T = I , (14)

where we further assumed that µ̄Φ, and thus µ̄P , is
0, which can be achieved by a centering procedure de-
scribed in supplementary material. Following Analytic
SSA, non-linear SSA (NLSSA) can be formulated as

min
W

Tr
(
WCPW T

)
s.t. WW T = I . (15)

where CP = 1
N

∑N
i=1 µ

P
i µ

P
i
T

+ 2ΣP
i ΣP

i − 2I. This

corresponds to the eigenvalue problem CPϕ = λϕ.
Algorithm 1 shows the pseudo-code for NLSSA.

4.4. Computational Complexity

The solutions of Analytic SSA, KSSA and NLSSA are
obtained by solving (generalized) eigenvalue problems,
whose computational complexity is O(s3) for s×s ma-
trices. Computing C and Σ̄ in Eq. 6 requires O((2N+
1)D3) and O(NFD2) operations, respectively, where

F =
∑N

i=1mi. This yields O((2N + 2)D3 + NFD2)

flops for Analytic SSA. For KSSA, computing CK

and K̄ requires O((2N+1)F 3) and O(F 3) operations,
and hence O((2N + 2)F 3) flops overall. Finally for
NLSSA, computing P and CP requires O(pF 2 + F 3)

Algorithm 1 : Non-Linear Stationary Subspace Analysis

Input:
• N training videos V = [V 1, · · · ,V N ] belonging

to the same class.

• The dimensionality d of the stationary subspace.

Output:
• The stationary projection matrix W .

1: Center the data in feature space such that µ̄Φ = 0.
2: Compute the matrix K̄ from Eq. 10.
3: Compute the eigenvectors β and eigenvalues Λ of K̄.
4: Transform the data as V P = (Λ)−1/2βK.
5: Compute µP

i and ΣP
i for each video V P

i .
6: Compute the matrix CP in Eq. 15.

7: Compute W by solving the eigenvalue problem corre-

sponding to Eq. 15.

and O(2Np3), respectively, where p denotes the num-
ber of eigenvectors of K̄ retained to generate P . As a
result, the overall computational complexity of NLSSA
is O(pF 2 + F 3 + 2Np3). The difference in computa-
tional cost between KSSA and NLSSA mostly comes
from the factor (2N + 2) in KSSA.

4.5. Video Classification with KSSA and
NLSSA

We now describe how our algorithms can be used for
video classification. Let V c = [V c

1, · · · ,V
c
N ] be the

matrix of training videos for class c. For each class c,
we use either KSSA to compute the matrix αc from
Eq. 11, or NLSSA to obtain the projection W c from
Eq. 15. Since stationarity is expressed in terms of sim-
ilarities with respect to the average over the epochs of
the projected means and covariances , we use these
quantities to represent each class. For KSSA, we de-
fine mc = αck̄

c
and M c = αcK̄

c
αT

c , (16)

where k̄
c

and K̄
c

can be obtained from Eqs. 8 and 10.
For NLSSA, because of the transformation of the data
in feature space, we simply have mc = 0 and M c = I.

Given a query video of m frames Q = [q1, · · · , qm], we
perform classification by projecting Q in the subspace
of each class independently. We make use of the mean
and covariance of the projected data. With KSSA,
this yields

hc = αc

 1

m

∑
j

k(V c, qj)

 , Hc = αcK̃
c

Qαc
T ,

where K̃
c

Q is obtained similarly as K̃i in Eq. 9. For
NLSSA, the data is first centered in kernel space ac-
cording to the training µ̄Φ,c, and then transformed
as QP,c = Λ

−1/2
c βT

cK
c
Q, where Kc

Q is the kernel ma-
trix computed between the training data in class c and
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the query video. We then compute the corresponding
mean and covariance of the projected data as

hc = W c

 1

m

∑
j

qP,c
j

 , Hc = W cΣ
c
QW

T
c ,

where Σc
Q is the covariance of the transformed data.

Classification is achieved by determining which class
c gives the representation (hc,Hc) most similar to
(mc,M c). Since SSA employs the KL-divergence as
a similarity measure, it comes as a natural choice for
classification. We therefore search for the class that
yields the lowest value KL (N (hc,Hc)||N (mc,M c)).

While our final representation may not be ideal for a
classifier such as SVM, it is very well-suited for the
simple classifier that we used. Furthermore, it would
not prevent us from using other discriminative clas-
sifiers, such as the Minimax Probability Machine of
(Lanckriet et al., 2003). Note that, given W , we could
also use other representations to exploit SVMs. We be-
lieve that a full study of other possible classifiers goes
beyond the scope of this paper.

5. Experiments

We evaluate our approach on the tasks of traffic scene
classification, dynamic texture recognition and action
recognition, and compare its performance against the
state-of-the art methods in each task. To demon-
strate the importance of modeling stationarity, we also
compare our results with those obtained by replacing
NLSSA with PCA and kernel PCA in our approach.
Performance is measured as the average accuracy over
all classes. In all the experiments, we used the linear
kernel and the RBF kernel. We report the classifica-
tion accuracies obtained with N − 1 stationary com-
ponents, where N is the number of videos in the class.
According to (Hara et al., 2012), to avoid spurious
stationary signals, the number of stationary directions
should be less than the number of epochs (i.e., at most
N − 1). This gives us a systematic way of defining the
number of stationary components, which proved very
effective in practice. In our experiments we relied on
2D descriptors computed in individual frames. How-
ever, our method is not restricted to this choice. In
particular, we could easily take temporal information
into account in the features by concatenating the fea-
tures of consecutive frames, or by making use of 3D
spatio-temporal descriptors.

5.1. Synthetic Data

As a first experiment, we compare the performance
of our NLSSA and KSSA algorithms with the linear

Figure 2. Extracting stationary signal. Distance be-
tween the extracted and true stationary sources for differ-
ent epoch numbers.

ASSA method using synthetic data generated follow-
ing a protocol similar to the one in (Müller et al.,
2011): We first generated random stationary and non-
stationary sources. We then mixed these sources, but
used a non-linear mixing function based on an expo-
nential mapping instead of the linear mixing matrix
used in (Müller et al., 2011). Each epoch is thus a
non-linear mixture of stationary sources (shared by all
epochs) and non-stationary sources (specific to each
epoch). We set the dimensionality of the observed sig-
nal to D = 5, the number of stationary sources to
d = 2 and the number of samples in each epoch to
m = 5. We varied the number of epochs N from 5 to
50.

We applied ASSA, KSSA and NLSSA to extract the
stationary sources from the observed signals. To eval-
uate the quality of the results, we measured the L2
distance between the estimated stationary sources and
the ground-truth ones. Fig. 2 shows the mean, min
and max distance error over 10 splits as a function of
N . Note that the error is shown on a log-scale axis.
Our non-linear approaches with an RBF kernel yield
much lower distances between the estimated and the
true stationary sources than ASSA. Note that NLSSA
yields a slightly higher error than KSSA. However, as
will be seen in the next experiments, this entails no loss
of accuracy on the classification results. Furthermore,
NLSSA yields much faster runtimes than KSSA.

5.2. Traffic Scene Classification

As a first experiment on real data, we used the UCSD
traffic video dataset (Chan & Vasconcelos, 2005) to
classify videos based on the density of traffic. The
dataset is partitioned into 3 classes corresponding to
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Algorithm Accuracy

LDS (Sankaranarayanan et al., 2010) 87.50%± 0.87
CS-LDS (Sankaranarayanan et al., 2010) 89.06%± 2.16
KL-SVM (Chan & Vasconcelos, 2005) 95%

PCA 90.55%± 0.08
Kernel PCA 91.34%± 4.58

NLSSA - Linear Kernel 93.30%± 3.27
NLSSA - RBF Kernel 94.49%± 2.02
KSSA - RBF Kernel 94.49%± 3.25

Table 1. Traffic scene classification. Average accura-
cies of our approach and several baselines on the UCSD
dataset.

light, medium and heavy highway traffic congestion.
It contains a total of 254 video sequences: 165 se-
quences of light traffic, 45 of medium traffic, and 44
of heavy traffic. Each video contains between 42 and
52 frames of size 320 × 240, which, following com-
mon practice (Sankaranarayanan et al., 2010), are
normalized and downsized to 48 × 48 greyscale im-
ages. We compare the performance of our two algo-
rithms (KSSA and NLSSA) against the Linear Dy-
namical Systems model (LDS), compressive sensing
LDS (CS-LDS) (Sankaranarayanan et al., 2010), and
Probabilistic Kernels (KL-SVM) (Chan & Vasconce-
los, 2005), and against our PCA and kernel PCA base-
lines. Note that the baselines learn an LDS model from
raw pixel values and use the parameters of this model
for classification. Since our formulation does not re-
ally let us make use of such representation, we utilized
HOG features with 28 orientation bins as image de-
scriptors, which are still extracted from the same raw
pixel values. We employed the four train/test splits
of (Sankaranarayanan et al., 2010).

Table 1 shows that our approach outperforms the base-
lines, with the exception of KL-SVM which achieves
similar accuracy. Note that KSSA and NLSSA yield
the same performance, which shows that the small
loss of accuracy in the estimated signal noticed in
Section 5.1 leaves classification accuracy unaffected.
However, training with KSSA took 8070.2s, as op-
posed to 135.1s with NLSSA. Since here on average
N = 60, this ratio reflects the analysis in Section 4.4,
and shows the benefit of NLSSA over KSSA. Hence-
forth, we therefore only present NLSSA results.

5.3. Dynamic Texture Recognition

Dynamic textures (DT) are video sequences depicting
phenomena such as the motion of water, fire, clouds
and smoke, that are known to exhibit stationary pat-
terns. Our method therefore seems a natural choice for
DT recognition. For this task, we used the DynTex++
dataset (Ghanem & Ahuja, 2010), which has been
widely used for benchmarking DT classification meth-

Algorithm Accuracy

DL-PEGASOS (Ghanem & Ahuja, 2010) 63.7%
DFS (Xu et al., 2011) 89.9%

PCA 88.22%± 0.32
Kernel PCA 89.72%± 1.2

NLSSA - Linear Kernel 89.97%± 0.49
NLSSA - RBF Kernel 94.22%± 0.64

Table 2. Dynamic texture recognition. Average
recognition accuracies of our approach and several base-
lines on DynTex++.

ods. It is composed of 36 dynamic texture classes, each
of which contains 100 video sequences of 50 greyscale
frames of size 50× 50. We used histograms of Local
Binary Pattern (LBP) codes (Ahonen et al., 2006) as
image features. In particular, we computed a total of
128 different codes for each image based on the relative
intensities of a pixel and its 7 neighbors. Our choice
of LBP as features in this experiment was motivated
by the fact that other baselines used these features,
which have shown to perform well in texture classi-
fication due to their robustness to monotonic illumi-
nation changes. Following (Ghanem & Ahuja, 2010),
50 sequences from each class were randomly selected
as training data and the remaining sequences used for
testing. We report the mean accuracy and standard
deviation over 10 such splits.

We compare our results with our PCA and kernel PCA
baselines, as well as with the state-of-the-art methods
DL-Pegasos (Ghanem & Ahuja, 2010) and DFS (Xu
et al., 2011). The classification accuracies are shown
in Table 2. Our approach with an RBF kernel achieves
the highest accuracy, which confirms the importance
of having a non-linear mapping. Note that the results
of DL-PEGASOS (Ghanem & Ahuja, 2010) (63.7%)
were also obtained with LBP features. This clearly
shows that the superiority of our results is not due to
the choice of image features, but to the model itself.

5.4. Action Recognition

To evaluate the performance of our approach on action
recognition, we used three publicly available datasets:
KTH (Schuldt et al., 2004) , Ballet (Wang & Mori,
2009) and UCF sports (Rodriguez et al., 2008).

The KTH dataset consists of six different human ac-
tions performed by 25 subjects in four different sce-
narios: outdoor, outdoor with scale variation, outdoor
with different clothes and indoor. The dataset con-
tains 2391 sequences in total. We relied on the stan-
dard training/testing splits of (Castrodad & Sapiro,
2012), and used HOG features with 128 orientation
bins as image descriptors. Recognition accuracies are
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Algorithm Accuracy

Subspace Forest (O’Hara & Draper, 2012) 97.9%
SM (Castrodad & Sapiro, 2012) 97.9%
KFDA (Campos et al., 2011) 93.52%

PCA 62.8%
Kernel PCA 75.3%

NLSSA - Linear Kernel 99.07%
NLSSA - RBF Kernel 98.87%

Table 3. Action recognition: KTH. Recognition accu-
racies of our approach and state-of-the-art baselines.

Algorithm Accuracy

GDA (Hamm & Lee, 2008) 78.05%± 2.9
KAHM (Cevikalp & Triggs, 2010) 79.71%± 2.3
KAHM with HoG 75.4%± 2.6

PCA 49.38%± 1.6
Kernel PCA 77.11%± 2.4

NLSSA - Linear Kernel 69.51%± 2.2
NLSSA - RBF Kernel 83.12%± 2.7

Table 4. Action recognition: Ballet. Recognition ac-
curacies of our approach and state-of-the-art baselines.

reported in Table 3, where it can be seen that our ap-
proach with a linear kernel performs best. In contrast
with previous experiments, our PCA and kernel PCA
baselines perform very poorly. This demonstrates the
benefits of exploiting stationarity for this task.

The Ballet dataset (Wang & Mori, 2009) contains 44
real video sequences with significant intra-class varia-
tions in terms of spatial and temporal scales, clothing
and movements. It consists of 8 actions such as jump-
ing, turning, leg swinging and standing still performed
by 3 subjects. While some previous experiments with
the Ballet dataset (Wang & Mori, 2009) tackle the
problem of action recognition in still images, we per-
form recognition from full video sequences. For each
action, the samples were randomly split into training
and testing sets of similar sizes. We utilized HOG
features with 28 orientation bins as image representa-
tion and used epochs of 12 frames. In Table 4, we
report the average classification accuracy and stan-
dard deviation over 10 splits for the state-of-art ker-
nel version of affine hull set matching (KAHM) (Ce-
vikalp & Triggs, 2010), Grassmann discriminant anal-
ysis (GDA) (Hamm & Lee, 2008) and our approach.
Note that our approach with an RBF kernel outper-
forms the baselines. We also compared our method
against using the same HOG features with KAHM.
Note that the classification accuracy of KAHM with
HOG features decreased to 75.4%. This again shows
that improvement over the baselines really comes from
our model, and not just from the features we used.

Algorithm Accuracy

Subspace Forest (O’Hara & Draper, 2012) 91.3%
SM (Castrodad & Sapiro, 2012) 97.3%
KFDA (Campos et al., 2011) 80.00%

PCA 55.62%
Kernel PCA 61.11%

NLSSA - Linear Kernel 89.9%
NLSSA - RBF Kernel 92.32%

Table 5. Action recognition: UCF Sports. Accura-
cies of our approach and state-of-the-art baselines.

The UCF sports dataset (Rodriguez et al., 2008) con-
tains 150 real videos with non-uniform backgrounds
and moving camera/subjects. It consists of 10 cate-
gories of human actions collected from various sports,
such as kicking, lifting weights, running and skate-
boarding. The number of videos for each action varies
from 6 to 22. We used the region of interest provided
with the dataset, and, to deal with the small num-
ber of examples, duplicated each training video. We
employed HOG features with 128 orientation bins for
image representation. For testing, we followed a stan-
dard leave-one-out (LOO) protocol1. Table 5 com-
pares the recognition accuracies of our approach and
several baselines. Note that, again, our PCA and
kernel PCA baselines perform poorly, which indicates
the importance of stationarity. While Sparse Model-
ing (SM) (Castrodad & Sapiro, 2012) yields a slightly
higher accuracy than our approach, it relies on features
learnt from data. Replacing our simple HOG features
with such features might improve our accuracy and
will be a topic of our future work.

6. Conclusion and Future Work

We have proposed an approach to video classification
that relies on extracting the stationary parts of the
signal of each class from training videos. To this end,
we have introduced two methods, KSSA and NLSSA,
that allow modeling non-linear mappings between the
video data and their stationary parts. Our experi-
ments have shown the importance of exploiting sta-
tionarity for video classification, as well as the benefits
of accounting for the non-linearity of the signal. A cur-
rent limitation of our approach is its use of the notion
of weak stationarity, which can be fooled by the pres-
ence of mixtures of non-stationary signals that appear
to be stationary. In the future, we therefore intend to
study the use of more sophisticated measures of sta-
tionarity. We also plan to investigate how subspace
clustering ideas could be exploited to model each class
with more than one subspace.

1The duplicate of the test video was also left out.
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