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1 Sparse EM for a known number of clusters

Given the model presented in Section 3 of the paper, it is possible to derive
an EM-algorithm for a known number of clusters K in the controller space.
The complete penalized log-likelihood of the model corresponding to the MAP
estimate given the prior on B can be written as:

L(Y1:m, X1:m, C | B) =∑m
i=1

(
log p(ci = k) +

∑T
t=1 log p(Y | X, ci = k, βk)

)
+
∑
k log p(βk),

where B is just a vector containing all βk, k ∈ 1..K. The previous expression
decomposes into two different terms. The first term corresponds to the likeli-
hood of the trajectory given its assignment to one of the K clusters. The model
assumes that the different points of the trajectory are independent of each other.
This is clearly a simplification since we are estimating gradients and, therefore,
error accumulates over time. However, this simplification allows us to eval-
uate the demonstrated trajectories directly over the potential created by the
parameters βk of each cluster and eliminates the need to simulate trajectories
for the different clusters. The second term is the sparse term that encodes the
penalty and does not directly depend on the correspondences. As in the DPMM
algorithm, we used a Laplacian prior that results in Lasso estimates.

According to the previous observations, the previous model is very similar
to the standard Gaussian mixture. Thus, the EM algorithm proceeds itera-
tively over two steps. First, the E-Step computes the expectation of the hidden
variables ci given the measurements and the current parameters. Given the
parameters βk, the E-step is not affected by the prior p(βk) and is simply pro-
portional to the likelihood of each trajectory given the component parameters
. The M-step, on the other hand, minimizes the sum of the square errors with
a L1 norm and weighted by the expectation of the correspondences E(ci) com-
puted in the E-Step. Given the equivalence between the probabilistic model
and the convex formulation we perform the maximization step using a general
convex optimization solver.

1



2 Expression for
∫
β f(·|β)p(β | σ

2)

This appendix provides the expression for q0 =
∫
β
G0(β)f(·|β) dβ when the like-

lihood model is a Multivariate Normal and the prior is a Laplacian distribution.
After resolving the integral over β we get the following expression

q0 =

(
λ

2σ

)p
1

T
√

2πσ2
exp

(
−Y

TY

2σ2

)
I

I =

p̂∏
i=1

(T1i + T2i)

p∏
i=p̂+1

− 2

bi

T1i = exp

(
(bi − ei)2

2di

)√
π

2di
erfc

(
−(bi − ei)√

2di

)
T2i = exp

(
(bi + ei)

2

2di

)√
π

2di
erfc

(
−(bi + ei)√

2di

)
where p̂ is the rank of matrix A = 1

σ2X
TX and di are the eigenvalues of matrix

A. The integral requires to decompose matrix A = SDS−1 to compute the

vector ET = Y T

σ2 XS and the vector BT = (−λσ , · · · ,
−λ
σ )R, where matrix R is

defined as each element of R is equal to the absolute value of each element of S.
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3 Derivation of q0

In the DPMM q0 is defined as

q0 =

∫
β

G0(β)f(Y |β) dβ (1)

in our case

G0(β) = p(β|λ) =

p∏
j=1

λ

2
√
σ2
exp

(
−λ|βj |√

σ2

)
(2)

f(Y |β) = N(Y |Xβ, σ2IT×T ) =
1

T
√

2πσ2
exp

(
−1

2

(Y −Xβ)T (Y −Xβ)

σ2

)
(3)

where Y is a zero mean row vector Y = (y1, · · · , yT )T , X is a data matrix,
X ∈ RT×p , β = (β1, · · · , βp)T , while λ and σ are positive hyperparameters.
Manipulating the numerator of the exponent

(Y −Xβ)T (Y −Xβ) = Y TY + βTXTXβ − 2Y TXβ (4)

replacing (2),(3) and (4) in (1) results

q0 =

∫
β

 p∏
j=1

λ

2
√
σ2
exp

(
−λ|βj |√

σ2

) 1
T
√

2πσ2
exp

(
−Y

TY + βTXTXβ − 2Y TXβ

2σ2

)
dβ

(5)

q0 =

(
λ

2σ

)p
1

T
√

2πσ2
exp

(
−Y

TY

2σ2

)∫ ∞
−∞

exp

−λ
σ

p∑
j=1

|βj |

 exp

(
−β

TXTXβ

2σ2
+
Y TXβ

σ2

)
dβ

(6)
At this point we introduce some definitions in order to simplify notation.

A =
1

σ2
XTX (7)

JT =
Y T

σ2
X. (8)

Substituting (7) and (8) in (6) we get

I =

∫ ∞
−∞

exp

−1

2
βTAβ + JTβ +

−λ
σ

p∑
j=1

|βj |

 dβ. (9)

The term βTAβ can be expressed as
∑p
i=1

∑p
j=1Aij βiβj where we realize that

coupled terms make the integral difficult. In order to decoupled these terms
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and express the integral as a product of unidimensional integrals need to use
the following change of variable.

Because matrix A is by construction (7) a symmetric square matrix with real
coefficients, the spectral theorem ensures that eingenvalues of A are positive
reals and that it exists an orthogonal matrix S such that A can be decomposed
in the form A = SDS−1 = SDST with D = S−1AS a diagonal matrix whose
diagonal elements are the eigenvalues of A denoted as di. Using this property,
we can apply the following change of variable

β = Sz

βj =

p∑
k=1

Sjkzk

|βj | =

p∑
k=1

|Sjk||zk|

dβ1dβ2 · · · dβp = |S|dz1dz2 · · · dzp, (10)

where the Jacobian of the transformation is just the matrix S. Since S is
an orthogonal matrix, the Jacobian determinant is |S| = 1 and dβ1 · · · dβp =
dz1 · · · dzp. Now we can rewrite de equation (9) as

I =

∫ ∞
−∞

exp

−1

2
zTS−1ASz + JTSz +

−λ
σ

p∑
j=1

p∑
k=1

|Sjk||zk|

 dz1 · · · dz2

(11)

I =

∫ ∞
−∞

exp

−1

2
zTDz + JTSz +

−λ
σ

p∑
j=1

p∑
k=1

|Sjk||zk|

 dz1 · · · dz2. (12)

At this point we can simplify furher more the notation by defining

ET = JTS (13)

CT = (−λ/σ, · · · ,−λ/σ)

Rjk = |Sjk|
z̃ = (|z1|, |z2|, · · · , |zp|)T

−λ
σ

p∑
j=1

p∑
k=1

|Sjk||zk| = CTRz̃

BT = CTR.

With this simplificatin equation( 12) looks

I =

∫ ∞
−∞

exp

(
−1

2
zTDz + ET z + BT z̃

)
dz1 · · · dz2. (14)
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Because D is diagonal the exponent without using matrix notation is

(−1

2
d1z

2
1 + e1z1 + b1|z1|) + · · ·+ (−1

2
dpz

2
p + epzp + bp|zp|). (15)

Now the integration variables are decoupled and the integral (15) can be
expressed as a product of integrals

I =

p∏
i=1

∫ ∞
−∞

exp (−1

2
diz

2
i + eizi + bi|zi|) dzi. (16)

Because the matrix A is semi-definite positive and its eigenvalues di are
greater or equal to zero we can say the in general there will be p̂ eigenvalues
greater than zero with p̂ = rank(A) and p− p̂ eigenvalues equal to zero, so we
can rewrite

I =

p̂∏
i=1

∫ ∞
−∞

exp (−1

2
diz

2
i +eizi+bi|zi|)dzi

p∏
i=p̂+1

∫ ∞
−∞

exp (eizi+bi|zi|)dzi (17)

I =

p̂∏
i=1

I1i︸ ︷︷ ︸
di>0

p∏
i=p̂+1

I2i︸ ︷︷ ︸
di=0

. (18)

We have to solve two type of integrals, we will start with those corresponding
to eigenvalues di > 0.

I1i =

∫ ∞
−∞

exp (−1

2
diz

2
i + ei + bi|zi|)dzi (19)

=

∫ 0

−∞
exp (−1

2
diz

2
i + (ei − bi)zi)dzi +

∫ ∞
0

exp (−1

2
diz

2
i + (ei + bi)zi)dzi

=

∫ ∞
0

exp (−1

2
diz

2
i + (bi − ei)zi)dzi +

∫ ∞
0

exp (−1

2
diz

2
i + (bi + ei)zi)dzi

= T1i + T2i,

where we have made use of |zi| = zi ∀zi ≥ 0 while |zi| = −zi ∀zi < 0. Besides,

we have change the integral
∫ 0

−∞ in
∫∞
0

with the simple variable change zi = −zi
so the problem is just to solve an integral of the next type with K1 and K2

arbitrary constants ∫ ∞
0

exp (−1

2
K1z

2 +K2z) dz. (20)

To solve the integral we are going to complete the square of the exponent
and make a new change of variable

5



−1

2
K1z

2 +K2z = −1

2
K1

(
z − K2

K1

)2

+
K2

2

2K1

z − K2

K1
= t

dz = dt

z =∞ → t =∞

z = 0 → t = −K2

K1
. (21)

Now (20) is

exp

(
K2

2

2K1

)∫ ∞
−K2
K1

exp(−1

2
K1t

2) dt (22)

With another change of variable it is possible to reduce the integral term in
(22) to the complementary error function

erfc(x) =
2√
π

∫ ∞
x

e−z
2

dz. (23)

The proposed change of variable is

t =

√
2

K1
z

dt =

√
2

K1
dz

t =∞ → z =∞

t = −K2

K1
→ z = −K2

K1

√
K1

2
= − K2√

2K1

. (24)

Substituting (23) and multiplying for
√
π
2

2√
π

we get

exp

(
K2

2

2K1

)√
2

K1

√
π

2

 2√
π

∫ ∞
−K2√
2K1

e−z
2

dz

 = (25)

exp

(
K2

2

2K1

)√
π

2K1
erfc

(
−K2√

2K1

)
. (26)

We can solve now I1i = T1i + T21 by coefficient identification K1 = di for
T1i and T2i while K2 = bi − ei for T1i andK2 = bi + ei for T2i.

To solve I2i, the integral corresponding to eigenvalues di = 0 we simply write

I2i =

∫ ∞
−∞

exp (eizi + bi|zi|)dzi

=

∫ 0

−∞
exp((ei − bi)zi)dzi +

∫ ∞
0

exp((ei + bi)zi)dzi (27)

=

∫ ∞
0

exp((bi − ei)zi)dzi +

∫ ∞
0

exp((bi + ei)zi)dzi.
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Both are of the type ∫ ∞
0

eKz dz =
1

K
eKz

∣∣∣∞
0

(28)

The integral converges only if the constant K is negative and in this case
the result is −1/K. In our case we have to ensure that bi − ei and bi + ei
are always negative for i = p̂ + 1, · · · , p. In the equation set (13) we see that
BT = CTR with R a matrix of positive values because each element is the
absolute value of S and that CT = (−λ/σ, · · · ,−λ/σ) being λ and σ positive
hyperparameters. Therefore, we conclude that bi < 0 i = 1, 2, · · · , p, whereas
the components ei comes from ET = JTS. In this case it holds that JTS =
0 i = p̂+1, · · · , p because the vector JT is orthogonal to eigenvectors associated
to null eigenvalues. As a result bi− ei = bi+ ei = bi i = p̂+ 1, · · · , p and finally
I2i = −2/bi.

As a summary

q0 =

(
λ

2σ

)p
1

T
√

2πσ2
exp

(
−Y

TY

2σ2

)
I (29)

I =

p̂∏
i=1

I1i

p∏
i=p̂+1

I2i (30)

I1i = T1i + T2i (31)

T1i = exp

(
(bi − ei)2

2di

)√
π

2di
erfc

(
−(bi − ei)√

2di

)
(32)

T2i = exp

(
(bi + ei)

2

2di

)√
π

2di
erfc

(
−(bi + ei)√

2di

)
(33)

I2i = − 2

bi
(34)
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