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Abstract

Motivated by applications of large-scale
graph clustering, we study random-walk-
based local algorithms whose running times
depend only on the size of the output cluster,
rather than the entire graph. In particular,
we develop a method with better theoreti-
cal guarantee compared to all previous work,
both in terms of the clustering accuracy and
the conductance of the output set. We also
prove that our analysis is tight, and perfor-
m empirical evaluation to support our theory
on both synthetic and real data.

More specifically, our method outperforms
prior work when the cluster is well-connected.
In fact, the better it is well-connected insid-
e, the more significant improvement we can
obtain. Our results shed light on why in prac-
tice some random-walk-based algorithms per-
form better than its previous theory, and help
guide future research about local clustering.

1. Introduction

As a central problem in machine learning, clustering
methods have been applied to data mining, computer
vision, social network analysis. Although a huge num-
ber of results are known in this area, there is still need
to explore methods that are robust and efficient on
large data sets, and have good theoretical guarantees.
In particular, several algorithms restrict the number
of clusters, or impose constraints that make these al-
gorithms impractical for large data sets.

To solve those issues, recently, local random-walk clus-
tering algorithms (Spielman & Teng, 2004; Andersen
et al., 2006) have been introduced. The main idea be-
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hind those algorithms is to find a good cluster around
a specific node. These techniques, thanks to their scal-
ability, has had high impact in practical applications
(Leskovec et al., 2009; Gargi et al., 2011; Gleich & Se-
shadhri, 2012; Andersen et al., 2012; Leskovec et al.,
2010; Wu et al., 2012). Nevertheless, the theoretical
understanding of these techniques is still very limited.
In this paper, we make an important contribution in
this direction. First, we relate for the first time the
performance of these local algorithms with the inter-
nal connectivity of a cluster instead of analyzing only
its external connectivity. This change of perspective
is relevant for practical applications where we are not
only interested to find clusters that are loosely con-
nected with the rest of the world, but also clusters
that are well-connected internally. In particular, we
show theoretically and empirically that this internal
connectivity is a fundamental parameter for those al-
gorithms and, by leveraging it, it is possible to improve
their performances.

Formally, we study the clustering problem where the
data set is given by a similarity matrix as a graph: giv-
en an undirected1 graph G = (V,E), we want to find
a set S that minimizes the relative number of edges
going out of S with respect to the size of S (or the size
of S̄ if S is larger than S̄). To capture this concept
rigorously, we consider the cut conductance of a set S
as:

φc(S)
def
=

|E(S, S̄)|
min{vol(S), vol(S̄)}

,

where vol(S)
def
=
∑
v∈S deg(v). Finding S with the s-

mallest φc(S) is called the conductance minimization.
This measure is a well-studied measure in differen-
t disciplines (Shi & Malik, 2000; Spielman & Teng,
2004; Andersen et al., 2006; Gargi et al., 2011; Gle-
ich & Seshadhri, 2012), and has been identified as one
of the most important cut-based measures in the lit-
erature (Schaeffer, 2007). Many approximation algo-

1All our results can be generalized to weighted graphs.
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rithms have been developed for the problem, but most
of them are global ones: their running time depends
at least linearly on the size of the graph. A recen-
t trend, initiated by Spielman and Teng (2004), and
then followed by (Spielman & Teng, 2008; Andersen
et al., 2006; Andersen & Peres, 2009; Gharan & Tre-
visan, 2012), attempts to solve this conductance min-
imization problem locally, with running time only de-
pendent on the volume of the output set.

In particular, if there exists a set A ⊂ V with φc(A) ≤
Ψ, these local algorithms guarantee the existence of
some set Ag ⊆ A with at least half the volume, such
that for any “good” starting vertex v ∈ Ag, they out-
put a set S with conductance φc(S) = Õ(

√
Ψ).

Finding Well-Connectedness Clusters. All local
clustering algorithms developed so far, both theoreti-
cal ones and empirical ones, only assume that φc(A)
is small, i.e., A is poorly connected to Ā. Notice that
such set A, no matter how small φc(A) is, may be
poorly connected or even disconnected inside. This
cannot happen in reality if A is a “good” cluster, and
in practice we are often interested in finding mostly
good clusters. This motivates us to study an extra
measure on A, that is the connectedness of A, denoted
as Conn(A) and we will define it formally in Section 2.
We assume that, in addition to prior work, the cluster
A satisfies the gap assumption

Gap = Gap(A)
def
=

Conn(A)

Ψ
≥ Ω (1) ,

which says that A is better connected inside than it is
connected to Ā. This assumption is particularly rel-
evant when the edges of the graph represent pairwise
similarity scores extracted from a machine learning al-
gorithm: we would expect similar nodes to be well con-
nected within themselves while dissimilar nodes to be
loosely connected. As a result, it is not surprising that
the notion of connectedness is not new. For instance
(Kannan et al., 2004) studied a bicriteria optimization
for this objective. However, local algorithms based on
the above gap assumption is not well studied.2

Our Results. Under the gap assumption Gap ≥
Ω(1), can we guarantee any better cut conductance
than the previously shown Õ(

√
Ψ) ones? We prove

that the answer is affirmative, along with some other
desirable properties. In particular, we prove:

Theorem 1. If there exists a non-empty set A ⊂ V
such that φc(A) ≤ Ψ and Gap ≥ Ω(1), then there
exists some Ag ⊆ A with vol(Ag) ≥ 1

2vol(A) such

2One relevant paper using this assumption is
(Makarychev et al., 2012), who provided a global SDP-
based algorithm to approximate the cut conductance.

that, when choosing a starting vertex v ∈ Ag, the
PageRank-Nibble algorithm outputs a set S with

1. vol(S \A) ≤ O( 1
Gap

)vol(A),

2. vol(A \ S) ≤ O( 1
Gap

)vol(A),

3. φc(S) ≤ O(
√

Ψ/Gap), and

with running time O(vol(A)
Ψ·Gap ) ≤ O(vol(A)

Ψ ).

We interpret the above theorem as follows. The first
two properties imply that under Gap ≥ Ω(1), the vol-
ume for vol(S \ A) and vol(A \ S) are both small in
comparison to vol(A), and the larger the gap is, the
more accurate S approximates A.3 For the third prop-
erty on the cut conductance φc(S), we notice that our
guarantee O(

√
Ψ/Gap) ≤ O(

√
Ψ) outperforms all pre-

vious work on local clustering under this gap assump-
tion. In addition, Gap might be very large in reality.
For instance when A is a very-well-connected cluster
it might satisfy Conn(A) = polylog(n), and as a con-
sequence Gap may be as large as Ω̃(1/Ψ). In this case
our Theorem 1 guarantees a polylog(n) approximation
to the cut conductance.

Our proof of Theorem 1 uses almost the same PageR-
ank algorithm as (Andersen et al., 2006), but with
a very different analysis specifically designed for our
gap assumption. This algorithm is simple and clean,
and can be described in four steps: 1) compute the
(approximate) PageRank vector starting from a ver-
tex v ∈ Ag with carefully chosen parameters, 2) sort
all the vertices according to their (normalized) prob-
abilities in this vector, 3) study all sweep cuts that
are those separating high-value vertices from low-value
ones, and 4) output the sweep cut with the best cut
conductance. See Algorithm 1 for details.

We also prove that our analysis is tight.

Theorem 2. There exists a graph G = (V,E) and a
non-empty A ⊂ V with Ψ and Gap = Ω(1), such that
for all starting vertices v ∈ A, none of the sweep-cut
based algorithm on the PageRank vector can output a
set S with cut conductance better than O(

√
Ψ/Gap).

We prove this tightness result by illustrating a hard
instance, and proving upper and lower bounds on the
probabilities of reaching specific vertices (up to a very
high precision). Theorem 2 does not rule out exis-
tence of another local algorithm that can perform bet-
ter than O(

√
Ψ/Gap). However, we conjecture that

all existing (random-walk-based) local clustering al-
gorithms share the same hard instance and do not

3Very recently, (Wu et al., 2012) studied a variant of
the PageRank random walk and their first experiment —
although analyzed in a different perspective— essentially
confirmed our first two properties in Theorem 1. However,
they have not attempted to explain this in theory.
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outperform O(
√

Ψ/Gap), similar to the classical case

where they all provide only Õ(
√

Ψ) guarantee due to
Cheeger’s inequality. It is an interesting open question
to design a flow-based local algorithm to overcome this
barrier under our gap assumption.

Prior Work. Related work is discussed in depth in
the full version of this paper.

Roadmap. We provide preliminaries in Section 2,
and they are followed by the high level ideas of the
proofs for Theorem 1 in Section 3 and Section 4. We
then briefly describe how to prove our tightness result
in Theorem 5, and end this extended abstract with
empirical studies in Section 6.

2. Preliminaries

2.1. Problem Formulation

Consider an undirected graph G(V,E) with n = |V |
vertices and m = |E| edges. For any vertex u ∈ V
the degree of u is denoted by deg(u), and for any sub-
set of the vertices S ⊆ V , volume of S is denoted by

vol(S)
def
=
∑
u∈S deg(u). Given two subsets A,B ⊂ V ,

let E(A,B) be the set of edges between A and B.

For a vertex set S ⊆ V , we denote by G[S] the induced
subgraph of G on S with outgoing edges removed, by
degS(u) the degree of vertex u ∈ S in G[S], and by
volS(T ) the volume of T ⊆ S in G[S].

We respectively define the cut conductance and the set
conductance of a non-empty set S ⊆ V as follows:

φc(S)
def
=

|E(S, S̄)|
min{vol(S), vol(S̄)}

,

φs(S)
def
= min
∅⊂T⊂S

|E(T, S \ T )|
min{volS(T ), volS(S \ T )}

.

Here φc(S) is classically known as the conductance of
S, and φs(S) is classically known as the conductance
of S on the induced subgraph G[S].

We formalize our goal in this paper as a promise
problem. Specifically, we assume the existence of a
non-empty cluster of the vertices A ⊂ V satisfying
vol(A) ≤ 1

2vol(V ) as well as φs(A) ≥ Φ and φc(A) ≤ Ψ.
This set A is not known to the algorithm. The goal
is to find some set S that “reasonably” approximates
A, and at the same time be local : running in time
proportional to vol(A) rather than n or m.

Our assumption. We assume that the following gap
assumption:

Gap
def
=

Conn(A)

Ψ

def
=

Φ2/ log vol(A)

Ψ
≥ Ω(1)

(Gap Assumption)

holds throughout this paper. This assumption can be
understood as the cluster A is more well-connected
inside than it is connected to Ā.

(This assumption can be weakened by replacing the

definition of Conn(A) with Conn(A)
def
= 1

τmix(A) , where

τmix(A) is the mixing time for the relative pointwise

distance in G[A]; or less weakly Conn(A)
def
= λ(A)

log vol(A)

where λ(A) is the spectral gap, i.e., 1 minus the second
largest eigenvalue of the random walk matrix on G[A].
We discuss them in the full version of this paper.)

Input parameters. Similar to prior work on local
clustering, we assume the algorithm takes as input:

• Some “good” starting vertex v ∈ A, and an oracle
to output the set of neighbors for any given vertex.
This requirement is essential because without such
an oracle the algorithm may have to read all inputs
and cannot be sublinear in time; and without a s-
tarting vertex the sublinear-time algorithm may be
unable to even find an element in A.
We also need v to be “good”, as for instance the
vertices on the boundary of A may not be helpful
enough in finding good clusters. We call the set of
good vertices Ag ⊆ A, and a local algorithm needs
to ensure that Ag is large, i.e., vol(Ag) ≥ 1

2vol(A).4

• The value of Φ.
In practice Φ can be viewed as a parameter and can
be tuned for specific data. This is in contrast to the
value of Ψ that is the target cut conductance and
does not need to be known by the algorithm.5

• A value vol0 satisfying vol(A) ∈ [vol0, 2vol0].6

2.2. PageRank Random Walk

We use the convention of writing vectors as row vectors
in this paper. Let A be the adjacency matrix of G,
and let D be the diagonal matrix with Dii = deg(i),

then the lazy random walk matrix W
def
= 1

2 (I+D−1A).
Accordingly, the PageRank vector prs,α, is defined to
be the unique solution of the following linear equation
(cf. (Andersen et al., 2006)):

prs,α = αs+ (1− α)prs,αW ,

where α ∈ (0, 1] is the teleport probability and s is a
starting vector. Here s is usually a probability vector:

4This assumption is unavoidable in all local clustering
work. One can replace this 1

2
by any other constant at the

expense of worsening the guarantees by a constant factor.
5In prior work when Ψ is the only quantity studied, Ψ

plays both roles as a tuning parameter and as a target.
6This requirement is optional since otherwise the algo-

rithm can try out different powers of 2 and pick the smallest
one with a valid output. It blows up the running time only
by a constant factor for local algorithms, since the running
time of the last trial dominates.
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its entries are in [0, 1] and sum up to 1. For technical
reasons we may use an arbitrary (and possibly nega-
tive) vector s inside the proof. When it is clear from
the context, we drop α in the subscript for cleanness.

Given a vertex u ∈ V , let χu ∈ {0, 1}V be the indicator
vector that is 1 only at vertex u. Given non-empty sub-
set S ⊆ V we denote by πS the degree-normalized u-

niform distribution on S, that is, πS(u) = deg(u)
vol(S) when

u ∈ S and 0 otherwise. Very often we study a PageR-
ank vector when s = χv is an indicator vector, and if
so we abbreviate prχv

by prv.

One equivalent way to study prs is to imagine the fol-
lowing random procedure: first pick a non-negative in-
teger t ∈ Z≥0 with probability α(1−α)t, then perform
a lazy random walk starting at vector s with exactly t
steps, and at last define prs to be the vector describing
the probability of reaching each vertex in this random
procedure. In its mathematical formula we have (cf.
(Haveliwala, 2002; Andersen et al., 2006)):

Proposition 2.1. prs = αs+ α
∑∞
t=1(1− α)t(sW t).

This implies that prs is linear: a·prs+b·prt = pras+bt.

2.3. Approximate PageRank Vector

In the seminal work of (Andersen et al., 2006), they
defined approximate PageRank vectors and designed
an algorithm to compute them efficiently.

Definition 2.2. An ε-approximate PageRank vector
p for prs is a nonnegative PageRank vector p = prs−r
where the vector r is nonnegative and satisfies r(u) ≤
εdeg(u) for all u ∈ V .

Proposition 2.3. For any starting vector s with
‖s‖1 ≤ 1 and ε ∈ (0, 1], one can compute an ε-
approximate PageRank vector p = prs−r for some r
in time O

(
1
εα

)
, with vol(supp(p)) ≤ 2

(1−α)ε .

For completeness we provide the algorithm and its
proof in the full version. It can be verified that:

∀u ∈ V, prs(u) ≥ p(u) ≥ prs(u)− εdeg(u) . (2.1)

2.4. Sweep Cuts

Given any approximate PageRank vector p, the sweep
cut (or threshold cut) technique is the one to sort al-
l vertices according to their degree-normalized prob-

abilities p(u)
deg(u) , and then study only those cuts that

separate high-value vertices from low-value vertices.
More specifically, let v1, v2, . . . , vn be the decreasing

order over all vertices with respect to p(u)
deg(u) . Then,

define sweep sets Spj
def
= {v1, . . . , vj} for each j ∈ [n],

and sweep cuts are the corresponding cuts (Spj , S
p
j ).

Usually given a vector p, one looks for the best cut:

min
j∈[n−1]

φc(S
p
j ) .

In almost all the cases, one only needs to enumerate j
over p(vj) > 0, so the above sweep cut procedure runs
in time O

(
vol(supp(p))+|supp(p)|·log |supp(p)|

)
. This

running time is dominated by the time to compute p
(see Proposition 2.3), so it is negligible.

2.5. Lovász-Simonovits Curve

Our proof requires the technique of Lovász-Simonovits
Curve that has been more or less used in all local clus-
tering algorithms so far. This technique was originally
introduced by Lovász and Simonovits (1990; 1993) to
study the mixing rate of Markov chains. In our lan-
guage, from a probability vector p on vertices, one can
introduce a function p[x] on real number x ∈ [0, 2m].
This function p[x] is piecewise linear, and is char-
acterized by all of its end points as follows (letting

p(S)
def
=
∑
a∈S p(a)):

p[0]
def
= 0, p[vol(Spj )]

def
= p(Spj ) for each j ∈ [n] .

In other words, for any x ∈ [vol(Spj ), vol(Spj+1)],

p[x]
def
= p(Spj ) +

x− vol(Spj )

deg(vj+1)
p(vj+1) .

Note that p[x] is increasing and concave.

3. Guarantee Better Accuracy

In this section, we study PageRank random walks that
start at a vertex v ∈ A with teleport probability α. We

claim the range of interesting α is
[
Ω(Ψ), O( Φ2

logn )
]
.

This is because, at a high level, when α � Ψ the
random walk will leak too much to Ā; while when

α � Φ2

logn the random walk will not mix well inside

A. In prior work, α is chosen to be Θ(Ψ), and we will

instead choose α = Θ( Φ2

logn ) = Θ(Ψ · Gap). Intuitively,
this choice of α ensures that under the condition the
random walk mixes inside, it makes the walk leak as
little as possible to Ā. We prove the above intuition
rigorously in this section. Specifically, we first show
some properties on the exact PageRank vector in Sec-
tion 3.1, and then move to the approximate vector in
Section 3.2. This essentially proves the first two prop-
erties of Theorem 1.

3.1. Properties on the Exact Vector

We first introduce a new notation p̃rs, that is the
PageRank vector (with teleport probability α) starting
at vector s but walking on the subgraph G[A].

Next, we choose the set of “good” starting vertices Ag

to satisfy two properties: (1) the total probability of
leakage is upper bounded by 2Ψ

α , and (2) prv is close
to p̃rv for vertices in A. Note that the latter implies
that prv mixes well inside A as long as p̃rv does so.
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Lemma 3.1. There exists a set Ag ⊆ A with volume
vol(Ag) ≥ 1

2vol(A) such that, for any vertex v ∈ Ag, in
a PageRank vector with teleport probability α starting
at v, we have: ∑

u6∈A

prv(u) ≤ 2Ψ

α
. (3.1)

In addition, there exists a non-negative leakage vector
l ∈ [0, 1]V with norm ‖l‖1 ≤ 2Ψ

α satisfying

∀u ∈ A, prv(u) ≥ p̃rv(u)− p̃rl(u) . (3.2)

(Details of the proof are in the full version.)

Proof sketch. The proof for the first property (3.1) is
classical and can be found in (Andersen et al., 2006).
The idea is to study an auxiliary PageRank random
walk with teleport probability α starting at the degree-
normalized uniform distribution πA, and by simple
computation, this random walk leaks to Ā with proba-
bility no more than Ψ/α. Then, using Markov bound,
there exists Ag ⊆ A with vol(Ag) ≥ 1

2vol(A) such that
for each starting vertex v ∈ Ag, this leakage is no more
than 2Ψ

α . This implies (3.1) immediately.

The interesting part is (3.2). Note that prv can be
viewed as the probability vector from the following
random procedure: start from vertex v, then at each
step with probability α let the walk stop, and with
probability (1−α) follow the matrix W to go to one of
its neighbors (or itself) and continue. Now, we divide
this procedure into two rounds. In the first round, we
run the same PageRank random walk but whenever
the walk wants to use an outgoing edge from A to leak,
we let it stop and temporarily “hold” this probability
mass. We define l to be the non-negative vector where
l(u) denotes the amount of probability that we have
“held” at vertex u. In the second round, we continue
our random walk only from vector l. It is worth noting
that l is non-zero only at boundary vertices in A.

Similarly, we divide the PageRank random walk for
p̃rv into two rounds. In the first round we hold exact-
ly the same amount of probability l(u) at boundary
vertices u, and in the second round we start from l
but continue this random walk only within G[A]. To
bound the difference between prv and p̃rv, we note
that they share the same procedure in the first round;
while for the second round, the random procedure for
prv starts at l and walks towards V \A (so in the worst
case it may never come back to A again), while that for
p̃rv starts at l and walks only inside G[A] so induces
a probability vector p̃rl on A. This gives (3.2).

At last, to see ‖l‖1 ≤ 2Ψ
α , one just needs to verify

that l(u) is essentially the probability that the original
PageRank random walk leaks from vertex u. Then,
‖l‖1 ≤ 2Ψ

α follows from the fact that the total amount

of leakage is upper bounded by 2Ψ
α .

As mentioned earlier, we want to use (3.2) to lower
bound prv(u) for vertices u ∈ A. We achieve this by
first lower bounding p̃rv which is the PageRank ran-
dom walk on G[A]. Given a teleport probability α

that is small compared to Φ2

log vol(A) , this random walk

should mix well. We formally state it as the following
lemma, and provide its proof in the the full version.

Lemma 3.2. When α ≤ O(Ψ · Gap) we have that

∀u ∈ A, p̃rv(u) ≥ 4

5

degA(u)

vol(A)
.

Here degA(u) is the degree of u on G[A], but vol(A) is
with respect to the original graph.

3.2. Properties of the Approximate Vector

From this section on we always use α ≤ O(Ψ · Gap).
We then fix a starting vertex v ∈ Ag and study an
ε-approximate Pagerank vector for prv. We choose

ε =
1

10 · vol0
∈
[ 1

20vol(A)
,

1

10vol(A)

]
. (3.3)

For notational simplicity, we denote by p this ε-
approximation and recall from Section 2.3 that p =
prχv−r where r is a non-negative vector with 0 ≤
r(u) ≤ εdeg(u) for every u ∈ V . Recall from (2.1)
that prv(u) ≥ p(u) ≥ prv(u)− ε · deg(u) for all u ∈ V .

We now rewrite Lemma 3.1 in the language of approx-
imate PageRank vectors using Lemma 3.2:

Corollary 3.3. For any v ∈ Ag and α ≤ O(Ψ · Gap),
in an ε-approximate PageRank vector to prv denoted
by p = prχv−r, we have:∑

u6∈A

p(u) ≤ 2Ψ

α
and

∑
u 6∈A

r(u) ≤ 2Ψ

α
.

In addition, there exists a non-negative leakage vector
l ∈ [0, 1]V with norm ‖l‖1 ≤ 2Ψ

α satisfying

∀u ∈ A, p(u) ≥ 4

5

degA(u)

vol(A)
− deg(u)

10vol(A)
− p̃rl(u) .

Proof. The only inequality that requires a proof is∑
u 6∈A r(u) ≤ 2Ψ

α . In fact, if one takes a closer look
at the algorithm to compute an approximate Pager-
ank vector (see the full version), the total probability
mass that will be sent to r on vertices outside A, is
upper bounded by the probability of leakage. Howev-
er, the latter is upper bounded by 2Ψ

α when we choose
Ag.

We are now ready to state the main lemma of this
section. We show that for all reasonable sweep sets S
on this probability vector p, it satisfies that vol(S \A)
and vol(A \ S) are both at most O

(
Ψ
α vol(A)

)
.
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Lemma 3.4. In the same definition of α and p from

Corollary 3.3, let sweep set Sc
def
=
{
u ∈ V : p(u) ≥

cdeg(u)
vol(A)

}
for any constant c < 3

5 , then we have the

following guarantees on the size of Sc \A and A \Sc:
1. vol(Sc \A) ≤ 2Ψ

αc vol(A), and

2. vol(A \ Sc) ≤
(

2Ψ
α( 3

5−c)
+ 8Ψ

)
vol(A).

Proof. First we notice that p(Sc \A) ≤ p(V \A) ≤ 2Ψ
α

owing to Corollary 3.3, and for each vertex u ∈ Sc \A
it must satisfy p(u) ≥ cdeg(u)

vol(A) . Those combined imply

vol(Sc \A) ≤ 2Ψ
αc vol(A) proving the first property.

We show the second property in two steps. First, let

Ab be the set of vertices in A such that 4
5

degA(u)
vol(A) −

deg(u)
10vol(A) <

3
5

deg(u)
vol(A) . Any such vertex u ∈ Ab must have

degA(u) < 7
8 deg(u). This implies that u has to be on

the boundary of A and vol(Ab) ≤ 8Ψvol(A).

Next, for a vertex u ∈ A \ Ab we have (using Corol-

lary 3.3 again) p(u) ≥ 3
5

deg(u)
vol(A) − p̃rl(u). If we fur-

ther have u 6∈ Sc so p(u) < cdeg(u)
vol(A) , it implies that

p̃rl(u) ≥ ( 3
5 − c)deg(u)

vol(A) . As a consequence, the total

volume for such vertices (i.e., vol(A \ (Ab ∪ Sc))) can-

not exceed ‖p̃rl‖13/5−c vol(A). At last, we notice that p̃rl is

a non-negative probability vector coming from a ran-
dom walk procedure, so ‖p̃rl‖1 = ‖l‖1 ≤ 2Ψ

α . This in
sum provides that

vol(A \ Sc) ≤ vol(A \ (Ab ∪ Sc)) + vol(Ab)

≤
(

2Ψ

α( 3
5 − c)

+ 8Ψ

)
vol(A) .

Note that if one chooses α = Θ(Ψ · Gap) in the
above lemma, both those two volumes are at most
O(vol(A)/Gap) satisfying the first two properties of
Theorem 1.

4. Guarantee Better Cut Conductance

In the classical work of (Andersen et al., 2006), they
have shown that when α = Θ(Ψ), among all sweep
cuts on vector p there exists one with cut conductance
O(
√

Ψ log n). In this section, we improve this result
under our gap assumption Gap ≥ Ω(1).

Lemma 4.1. Letting α = Θ(Ψ ·Gap), among all sweep

sets Sc =
{
u ∈ V : p(u) ≥ cdeg(u)

vol(A)

}
for c ∈ [ 1

8 ,
1
4 ],

there exists one, denoted by Sc∗ , with cut conductance
φc(Sc∗) = O(

√
Ψ/Gap).

Proof sketch. To convey the idea of the proof, we only
consider the case when p = prv is the exact PageRank
vector, and the proof for the approximate case is a bit
more involved and deferred to the full version.

Suppose that all sweep sets Sc for c ∈ [ 1
8 ,

1
4 ] satisfy

|E(Sc, V \Sc)| ≥ E0 for some value E0, then it suffices
to prove E0 ≤ O

(
Ψ√
α

)
vol(A). This is because, if so,

then there exists some Sc∗ with |E(Sc∗ , V \Sc∗)| ≤ E0

and this combined with the result in Lemma 3.4 (i.e.,
vol(Sc∗) = (1±O(1/Gap))vol(A)) gives

φc(Sc∗) ≤ O
( E0

vol(Sc∗)

)
= O(Ψ/

√
α) = O(

√
Ψ/Gap) .

We introduce some classical notations before we pro-
ceed in the proof. For any vector q we denote by

q(S)
def
=
∑
u∈S q(u). Also, given a directed edge7,

e = (a, b) ∈ E we let p(e) = p(a, b)
def
= p(a)

deg(a) , and for

a set of directed edges E′ we let p(E′)
def
=
∑
e∈E′ p(e).

We also let E(A,B)
def
= {(a, b) ∈ E | a ∈ A∧ b ∈ B} be

the set of directed edges from A to B.

Now for any set S1/4 ⊆ S ⊆ S1/8, we compute that

p(S) = prv(S) = αχv(S) + (1− α)(pW )(S)

≤ α+ (1− α)(pW )(S)

=⇒ (1− α)p(S) ≤ α(1− p(S)) + (1− α)(pW )(S)

=⇒ (1− α)p(S) ≤ 2Ψ + (1− α)(pW )(S)

=⇒ p(S) < O(Ψ) + (pW )(S) . (4.1)

Here we have used the fact that when p = prv is exact,
it satisfies 1 − p(S) = p(V − S) ≤ 2Ψ/α according to
Corollary 3.3. In the next step, we use the definition
of the lazy random walk matrix W to compute that

(pW )(S)

=

( ∑
(a,b)∈E(S,S)

p(a, b) +
∑

(a,b)∈E(S,S̄)

p(a, b) + p(b, a)

2

)

=

(
1

2
p
(
E(S, S)

)
+

1

2
p
(
E(S, S) ∪ E(S, S̄) ∪ E(S̄, S)

))
≤
(

1

2
p
[∣∣E(S, S)

∣∣]+
1

2
p
[∣∣E(S, S) ∪ E(S, S̄) ∪ E(S̄, S)

∣∣])
=

(
1

2
p
[
vol(S)−

∣∣E(S, S̄)
∣∣]+

1

2
p
[
vol(S) +

∣∣E(S, S̄)
∣∣])

≤
(

1

2
p
[
vol(S)− E0

]
+

1

2
p
[
vol(S) + E0

])
. (4.2)

Here the first inequality is due to the definition of the
Lovász-Simonovits curve p[x], and the second inequal-
ity is because p[x] is concave. Next, suppose that in
addition to S1/4 ⊆ S ⊆ S1/8, we also know that S is a

sweep set, i.e., ∀a ∈ S, b 6∈ S we have p(a)
deg(a) ≥

p(b)
deg(b) .

This implies p(S) = p[vol(S)] and combining (4.1) and
(4.2) we obtain that(

p[vol(S)]− p
[
vol(S)− E0

])
≤ O(Ψ) +

(
p
[
vol(S) + E0

]
− p[vol(S)]

)
.

7G is an undirected graph, but we study undirected
edges with specific directions for analysis purpose only.
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Figure 1. Our hard instance for proving tightness. One can
pick for instance ` ≈ n0.4 and Ψ ≈ 1

n0.9 , so that n/` ≈ n0.6,
Ψn ≈ n0.1 and Ψn` ≈ n0.5.

Since we can choose S to be an arbitrary sweep set
between S1/4 and S1/8, we have that the inequality
p[x]− p[x−E0] ≤ O(Ψ) + p[x+E0]− p[x] holds for all
end points x ∈ [vol(S1/4), vol(S1/8)] on the piecewise
linear curve p[x]. This implies that the same inequality
holds for any real number x ∈ [vol(S1/4), vol(S1/8)]
as well. We are now ready to draw our conclusion
by repeatedly applying this inequality. Letting x1 :=
vol(S1/4) and x2 := vol(S1/8), we have

E0

4vol(A)
≤ p[x1]− p[x1 − E0]

≤ O(Ψ) + (p[x1 + E0]− p[x1])

≤ 2 ·O(Ψ) + (p[x1 + 2E0]− p[x1 + E0]) ≤ · · ·

≤
⌊x2 − x1

E0
+ 1
⌋
O(Ψ) + (p[x2 + E0]− p[x2])

≤
vol(S1/8 \ S1/4)

E0
O(Ψ) +

E0

8vol(A)

≤
vol(S1/8 \A) + vol(A \ S1/4)

E0
O(Ψ) +

E0

8vol(A)

≤ O(Ψ/α) · vol(A)

E0
O(Ψ) +

E0

8vol(A)
,

where the first inequality uses the definition of S1/4,
the fifth inequality uses the definition of S1/8, and
last inequality uses Lemma 3.4 again. After re-
arranging the above inequality we conclude that E0 ≤
O
(

Ψ√
α

)
vol(A) and finish the proof.

The lemma above essentially shows the third property
of Theorem 1 and finishes the proof of Theorem 1. For
completeness of the paper, we still provide the formal
proof for Theorem 1 in the full version, and summarize
our final algorithm in Algorithm 1.

5. Tightness of Our Analysis

It is a natural question to ask under our newly in-
troduced assumption Gap ≥ Ω(1): is O(

√
Ψ/Gap) the

best cut conductance we can obtain from a local al-
gorithm? We show that this is true if one sticks to a
sweep-cut algorithm using PageRank vectors.

Algorithm 1 PageRank-Nibble

Input: v,Φ and vol0 ∈ [vol(A)
2 , vol(A)].

Output: set S.

1: α← Θ( Φ2

log vol(A)) ) = Θ(Ψ · Gap).

2: p ← a 1
10·vol0

-approximate PageRank vector with
starting vertex v and teleport probability α.

3: Sort all vertices in supp(p) according to p(u)
deg(u) .

4: Consider all sweep sets S′c
def
= {u ∈ supp(p) :

p(u) ≥ c deg(u)
vol0

} for c ∈ [ 1
8 ,

1
2 ], and let S be the

one among them with the best φc(S).

More specifically, we show that our analysis in Sec-
tion 4 is tight by constructing the following hard in-
stance. Consider a (multi-)graph with two chains (see
Figure 1) of vertices, and there are multi-edges con-
necting them.8 In particular:

• the top chain (ended with vertex a and c and with
midpoint b) consists of ` + 1 vertices where ` is
even with n

` edges between each consecutive pair;
• the bottom chain (ended with vertex d and e) con-

sists of c0
Ψ` + 1 vertices with Ψn`

c0
edges between

each consecutive pair, where the constant c0 is to
be determined later; and

• vertex b and d are connected with Ψn edges.

We let the top chain to be our promised cluster A. The
total volume of A is 2n+Ψn, while the total volume of
the entire graph is 4n + 2Ψn. The mixing time for A
is τmix(A) = Θ(`2), and the cut conductance φc(A) =

Ψn
vol(A) ≈

Ψ
2 . Suppose that the gap assumption9 Gap

def
=

1
τmix(A)·φc(A) ≈

1
Ψ`2 � 1 is satisfied, i.e., Ψ`2 = o(1).

(For instance one can let ` ≈ n0.4 and Ψ ≈ 1
n0.9 to

achieve this requirement.)

We then consider a PageRank random walk that starts
at vertex v = a and with teleport probability α = γ

`2

for some arbitrarily small constant γ > 0.10 Let pra be
this PageRank vector, and we prove in the full version
the following lemma:

Lemma 5.1. For any γ ∈ (0, 4] and letting α = γ/`2,
there exists some constant c0 such that when study-
ing the PageRank vector pra starting from vertex a in

Figure 1, the following holds pra(d)
deg(d) >

pra(c)
deg(c) .

8One can transform this example into a graph without
parallel edges by splitting vertices into expanders, but that
goes out of the purpose of this section.

9We are using Theorem 1 in the language of gap as-
sumption on τmix. See Section 2.1 for details.

10Although we promised in Theorem 2 to study all s-
tarting vertices v ∈ A, in this version of the paper we only
concentrate on v = a because other choices of v are on-
ly easier and can be analyzed similarly. In addition, this
choice of α = γ

`2
is consistent with the one used Theorem 1.
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Digit 0 1 2 3 4 5 6 7 8 9
Ψ = φc(A) 0.00294 0.00304 0.08518 0.03316 0.22536 0.08580 0.01153 0.03258 0.09761 0.05139
φc(S) 0.00272 0.00067 0.03617 0.02220 0.00443 0.01351 0.00276 0.00456 0.03849 0.00448

Precision 0.993 0.995 0.839 0.993 0.988 0.933 0.946 0.985 0.941 0.994
Recall 0.988 0.988 0.995 0.773 0.732 0.896 0.997 0.805 0.819 0.705

Table 1. Clustering results on the USPS zipcode data set. We report precision |A ∩ S|/|S| and recall |A ∩ S|/|A|.

This lemma implies that, for any sweep-cut algorith-
m based on this vector pra, even if it computes pra
exactly and looks for all possible sweep cuts, then
none of them gives a better cut conductance than
O(
√

Ψ/Gap). More specifically, for any sweep set S:

• if c 6∈ S, then |E(S, V \ S)| is at least n
` be-

cause it has to contain a (multi-)edge in the top
chain. Therefore, the cut conductance φc(S) ≥
Ω( n

`vol(S) ) ≥ Ω( 1
` ) ≥ Ω(

√
Ψ/Gap); or

• if c ∈ S, then d must be also in S because it
has a higher normalized probability than c using
Lemma 5.1. In this case, |E(S, V \ S)| is at least
Ψn`
c0

because it has to contain a (multi-)edge in
the bottom chain. Therefore, the cut conductance
φc(S) ≥ Ω( Ψn`

vol(S) ) ≥ Ω(Ψ`) = Ω(
√

Ψ/Gap).

This ends the proof of Theorem 2. �

6. Empirical Evaluation

The PageRank local clustering method has been s-
tudied empirically in various previous work. For in-
stance, Gleich and Seshadhri (2012) performed exper-
iments on 15 datasets and confirmed that PageRank
outperformed many others in terms of cut conduc-
tance, including the famous Metis algorithm. More-
over, (Leskovec et al., 2009) studied PageRank a-
gainst Metis+MQI which is the Metis algorithm
plus a flow-based post-processing. Their experiments
confirmed that although Metis+MQI outperforms
PageRank in terms of cut conductance, however, the
PageRank algorithm’s outputs are more “community-
like”, and they enjoy other desirable properties.

Since our PageRank-Nibble is essentially the same
PageRank method as before with only theoretical
changes in the parameters, it certainly embraces the
same empirical behavior as those literatures above.
Therefore, in this section we perform experiments only
for the sake of demonstrating our theoretical discover-
ies in Theorem 1, without comparisons to other meth-
ods. We run our algorithm against both synthetic and
real datasets, and due to the page limit, we defer the
details of our experiment setups to the full version.

Recall that Theorem 1 has three properties. The first
two properties are accuracy guarantees that ensure the
output set S well approximates A in terms of volume;
and the third property is a cut-conductance guarantee
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Figure 2. Experimental result on the synthetic data. The
horizontal axis represents the value of β for constructing
our graph, the blue curve (left) represents the ratio φc(S)

Ψ
,

and the red curve (right) represents the clustering accuracy.
The vertical bars are 94% confidence intervals for 100 runs.

that ensures the output set S has small φc(S). We
now provide experimental results to support them.

In the first experiment, we study a synthetic random
graph of 870 vertices. Our desired cluster A is con-
structed from the Watts-Strogatz random model with
a parameter β ∈ [0, 1] to control the connectivity of
G[A]: the larger β is the larger Gap is. We there-
fore present in Figure 2 our experimental results as
two curves, both in terms of β: the cut conductance

over Ψ ratio, i.e., φc(S)
Ψ , and the clustering accuracy,

i.e., 1− |A∆S|
|V | . Our experiment confirms our result in

Theorem 1: PageRank-Nibble performs better both
in accuracy and cut conductance as Gap goes larger.

In the second experiment, we use the USPS zipcode
dataset that was also used in the work from (Wu et al.,
2012). This dataset has 9298 images of handwritten
digits between 0 to 9, and we treat them as 10 separate
binary-classification problems. We report our results
in Table 1. For each of the 10 binary-classifications,
we have a ground-truth cluster A that contains all da-
ta points associated with the given digit. We then
compare the cut conductance of our output set φc(S)
against the desired cut conductance Ψ = φc(A), and
our algorithm consistently outperforms the desired one
on all 10 clusters. (Notice that it is possible to see an
output set S to have smaller conductance than A, be-
cause A is not necessarily the sparest cut in the graph.)
In addition, one can also confirm from Table 1 that our
algorithm enjoys high precision and recall.
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