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Abstract

In this supplementary material, we present proof details.

1 Notation and Conventions

We use the following notation and conventions throughout the supplement. For a real n× n matrix M , we
use the unadorned norm ‖M‖ to denote its spectral norm. The notation ‖M‖F refers to the Frobenius norm,
‖M‖1 is

∑
i,j |M(i, j)| and ‖M‖∞ is maxij |M(i, j)|.

We will also study operators on the space of matrices. To distinguish them from the matrices studied
in this work, we will simply call these objects “operators”, and will denote them using a calligraphic font,
e.g. P. The norm ‖P‖ of an operator is defined as

‖P‖ = sup
M :‖M‖F =1

‖PM‖F ,

where the supremum is over matrices M .

For a fixed, real n× n matrix M , we define the matrix linear subspace T (M) as follows:

T (M) := {YM +MX : X,Y ∈ Rn×n} .

In words, this subspace is the set of matrices spanned by matrices each row of which is in the row space of
M , and matrices each column of which is in the column space of M .

For any given subspace of matrices S ⊆ Rn×n, we let PS denote the orthogonal projection onto S with
respect to the the inner product 〈X,Y 〉 =

∑n
i,j=1X(i, j)Y (i, j) = trXtY . This means that for any matrix

M ,
PSM = argminX∈S ‖M −X‖F .

For a matrix M , we let Γ(M) denote the set of matrices supported on a subset of the support of M .
Note that for any matrix X,

(PΓ(X)M)(i, j) =

{
M(i, j) X(i, j) 6= 0

0 otherwise
.

It is a well known fact that PT (X) is given as follows:

PT (X)M = PC(X)M +MPR(X) − PC(X)MPR(X) ,
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where PC(X) is projection (of a vector) onto the column space of X, and PR(X) is projection onto the row
space of X.

For a subspace S ⊆ Rn×n we let S⊥ denote the orthogonal subspace with respect to 〈·, ·〉:

S⊥ = {X ∈ Rn×n : 〈X,Y 〉 = 0 ∀Y ∈ S} .

Slightly abusing notation, we will use the set complement operator (·)c to formally define Γ(M)c to be Γ(M)⊥

(by this we are stressing that the space Γ(M)⊥ is given as Γ(M ′) where M ′ is any matrix such that M and
M ′ have complementary supports). Note that PT (X)⊥M = M − PT (X)M = (I − PC(X))M(I − PR(X)) .

For a matrix M , sgnM is defined as the matrix satisfying:

(sgnM)(i, j) =


1 M(i, j) > 0

−1 M(i, j) < 0

0 otherwise

.

2 Proof of Theorem 1

The proof is based on [1]. We prove it for κ = 1. The adjustment for κ > 1 is done using a padding argument,
presented at the end of the proof.

Additional notation:

1. We let V[ ⊆ V denote the set of of elements i such that n〈i〉 ≤ `[. (We remind the reader that
n〈i〉 = |V〈i〉|.)

2. We remind the reader that the projection P] is defined as follows:

(P]M)(i, j) =

{
M(i, j) max{n〈i〉, n〈j〉} ≥ `]
0 otherwise

.

3. The projection P[ is defined as follows:

(P[M)(i, j) =

{
M(i, j) max{n〈i〉, n〈j〉} ≤ `[
0 otherwise

.

In words, P[ projects onto the set of matrices supported on V[ × V[. Note that by the theorem
assumption, P] + P[ = Id (equivalently, P] projects onto the set of matrices supported on (V × V ) \
(V[ × V[)).

4. Define the set

D =
{

∆ ∈ Rn×n|∆ij ≤ 0,∀i ∼ j, (i, j) /∈ V[ × V[; 0 ≤ ∆ij ,∀i 6∼ j, (i, j) /∈ V[ × V[
}
,

which contains all feasible deviation from K̂.

5. For simplicity we write T := T (K̂) and Γ := Γ(B̂),Γc := Γ(B̂)c = Γ⊥.

We will make use of the following:

1. sgn(B̂) = B̂.

2. Id = PΓ + PΓc = PΓ(A) + PΓ(A)c .

3. P],P[,PΓ,PΓc ,PΓ(A), and PΓ(A)c commute with each other.
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2.1 Approximate Dual Certificate Condition

Proposition 1. (K̂, B̂) is the unique optimal solution to (CP) if there exists a matrix Q ∈ Rn×n and a
positive number ε satisfying:

1. ‖Q‖ < 1

2. ‖PT (Q)‖∞ ≤
ε
2 min {c1, c2}

3. ∀∆ ∈ D:

(a)
〈
UU> +Q,PΓ(A)PΓP]∆

〉
= (1 + ε)c1

∥∥PΓ(A)PΓP]∆
∥∥

1

(b)
〈
UU> +Q,PΓ(A)cPΓP]∆

〉
= (1 + ε)c2

∥∥PΓ(A)cPΓP]∆
∥∥

1

4. ∀∆ ∈ D:

(a)
〈
UU> +Q,PΓ(A)PΓcP]∆

〉
≥ −(1− ε)c1

∥∥PΓ(A)PΓcP]∆
∥∥

1

(b)
〈
UU> +Q,PΓ(A)cPΓcP]∆

〉
≥ −(1− ε)c2

∥∥PΓ(A)cPΓcP]∆
∥∥

1

5. PΓP[(UU> +Q) = c1P[B̂

6.
∥∥PΓcP[(UU> +Q)

∥∥
∞ ≤ c2

Proof. Consider any feasible solution to (CP1) (K̂ + ∆, B̂ − ∆); we know ∆ ∈ D due to the inequality

constraints in (CP1). We will show that this solution will have strictly higher objective value than
〈
K̂, B̂

〉
if ∆ 6= 0.

For this ∆, let G∆ be a matrix in T⊥ ∩ Range(P[) satisfying ‖G‖ = 1 and 〈G∆,∆〉 = ‖PT⊥P[∆‖∗ ;
such a matrix always exists because RangeP[ ⊆ T⊥. Suppose ‖Q‖ = b. Clearly, PT⊥Q+ (1− b)G ∈ T⊥ and,
due to desideratum 1, we have ‖PT⊥Q+ (1− b)G∆‖ ≤ ‖Q‖ + (1 − b) ‖G∆‖ = b + (1 − b) = 1. Therefore,
UU> + PT⊥Q + (1 − b)G∆ is a subgradient of f(K) = ‖K‖∗ at K = K̂. On the other hand, define the

matrix F∆ = −PΓcsgn(∆). We have F∆ ∈ Γc and ‖F∆‖∞ ≤ 1. Therefore, PΓ(A)(B̂ + F∆) is a subgradient

of g1(B) =
∥∥PΓ(A)B

∥∥
1

at B = B̂, and PΓ(A)c(B̂ + F∆) is a subgradient of g2(B) =
∥∥PΓ(A)cB

∥∥
1

at B = B̂.
Using these three subgradients, the difference in the objective value can be bounded as follows:

d(∆)

,
∥∥∥K̂ + ∆

∥∥∥
∗

+ c1

∥∥∥PΓ(A)(B̂ −∆)
∥∥∥

1
+ c2

∥∥∥PΓ(A)c(B̂ −∆)
∥∥∥

1
−
∥∥∥K̂∥∥∥

∗
− c1

∥∥∥PΓ(A)B̂
∥∥∥

1
− c2

∥∥∥PΓ(A)cB̂
∥∥∥

1

≥
〈
UU> + PT⊥Q+ (1− b)G∆,∆

〉
+ c1

〈
PΓ(A)(B̂ + F∆),−∆

〉
+ c2

〈
PΓ(A)c(B̂ + F∆),−∆

〉
= (1− b) ‖PT⊥P[∆‖∗ +

〈
UU> + PT⊥Q,∆

〉
+ c1

〈
PΓ(A)B̂,−∆

〉
+ c2

〈
PΓ(A)cB̂,−∆

〉
+c1

〈
PΓ(A)F∆,−∆

〉
+ c2

〈
PΓ(A)cF∆,−∆

〉
= (1− b) ‖PT⊥P[∆‖∗ +

〈
UU> + PT⊥Q,∆

〉
+ c1

〈
P[PΓ(A)B̂,−∆

〉
+ c2

〈
P[PΓ(A)cB̂,−∆

〉
+c1

〈
P]PΓ(A)B̂,−∆

〉
+ c2

〈
P]PΓ(A)cB̂,−∆

〉
+ c1

〈
PΓ(A)F∆,−∆

〉
+ c2

〈
PΓ(A)cF∆,−∆

〉
.

The last six terms of the last RHS satisfy:

1. c1

〈
P[PΓ(A)B̂,−∆

〉
+ c2

〈
P[PΓ(A)cB̂,−∆

〉
= c1

〈
P[B̂,−∆

〉
, because P[B̂ ∈ Γ(A).
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2.
〈
P]PΓ(A)B̂,−∆

〉
≥ −

∥∥P]PΓ(A)PΓ∆
∥∥

1
and

〈
P]PΓ(A)cB̂,∆

〉
≥ −

∥∥P]PΓ(A)cPΓ∆
∥∥

1
, because B̂ ∈ Γ

and
∥∥∥B̂∥∥∥

∞
≤ 1.

3.
〈
PΓ(A)F∆,−∆

〉
=
∥∥PΓ(A)PΓc∆

∥∥
1

and
〈
PΓ(A)cF∆,−∆

〉
=
∥∥PΓ(A)cPΓc∆

∥∥
1
, due to the definition of F .

It follows that

d(∆) ≥ (1− b) ‖PT⊥P[∆‖∗ +
〈
UU> + PT⊥Q,∆

〉
+ c1

〈
P[B̂,−∆

〉
− c1

∥∥P]PΓ(A)PΓ∆
∥∥

1

−c2
∥∥P]PΓ(A)cPΓ∆

∥∥
1

+ c1
∥∥PΓ(A)PΓc∆

∥∥
1

+ c2
∥∥PΓ(A)cPΓc∆

∥∥
1
. (2.1)

Consider the second term in the last RHS, which equals
〈
UU> + PT⊥Q,∆

〉
=
〈
UU> +Q,P]∆

〉
+
〈
UU> +Q,P[∆

〉
−

〈PTQ,∆〉. We bound these three separately.

First term:〈
UU> +Q,P]∆

〉
=

〈
UU> +Q,

(
PΓ(A)PΓP] + PΓ(A)cPΓP] + PΓ(A)PΓcP] + PΓ(A)cPΓcP]

)
∆
〉

≥ (1 + ε)c1
∥∥PΓ(A)PΓP]∆

∥∥
1

+ (1 + ε)c2
∥∥PΓ(A)cPΓP]∆

∥∥
1
− (1− ε)c1

∥∥PΓ(A)PΓcP]∆
∥∥

1

−(1− ε)c2
∥∥PΓ(A)cPΓcP]∆

∥∥
1

(Using properties 3 and 4)

Second term: 〈
UU> +Q,P[∆

〉
=

〈
PΓP[(UU> +Q),∆

〉
+
〈
PΓcP[(UU> +Q),∆

〉
≥ c1

〈
P[B̂,∆

〉
− c2 ‖PΓcP[∆‖1 (using properties 5 and 6)

= c1

〈
P[B̂,∆

〉
− c2

∥∥PΓ(A)cPΓcP[∆
∥∥

1
(because PΓ(A)cPΓcP[ = PΓcP[)

Third term: Due to the block diagonal structure of the elements of T , we have PT = P]PT

〈−PTQ,∆〉
= −〈PTQ,P]∆〉
≥ −‖PTQ‖∞ ‖P]∆‖1
≥ − ε

2
min {c1, c2} ‖P]∆‖1 .

Combining the above three bounds with Eq. (2.1), we obtain

d(∆)

≥ (1− b) ‖PT⊥P[∆‖∗ + εc1
∥∥P]PΓ(A)PΓ∆

∥∥
1

+ εc2
∥∥P]PΓ(A)cPΓ∆

∥∥
1

+ εc1
∥∥PΓ(A)PΓcP]∆

∥∥
1

+εc2
∥∥PΓ(A)cPΓcP]∆

∥∥
1

+ c1
∥∥PΓ(A)PΓcP[∆

∥∥
1
− ε

2
min {c1, c2} ‖P]∆‖1

= (1− b) ‖PT⊥P[∆‖∗ + εc1
∥∥P]PΓ(A)∆

∥∥
1

+ εc2
∥∥P]PΓ(A)c∆

∥∥
1
− ε

2
min {c1, c2} ‖P]∆‖1

(note that PΓ(A)PΓcP[∆=0)

≥ (1− b) ‖P[∆‖∗ +
ε

2
min {c1, c2} ‖P]∆‖1 ,

which is strictly greater than zero for ∆ 6= 0.
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2.2 Constructing Q.

We construct a matrix Q with the properties required by Proposition 1. Suppose we take ε = 2 log2 n
`]

√
n

t(1−t)

and use the weights c1 and c2 given in Theorem 1. We specify P]Q and P[Q separately.

P]Q is given by P]Q = P]Q1 + P]Q2 + P]Q3, where for (i, j) /∈ V[ × V[,

P]Q1(i, j) =


− 1
nc(i)

i ∼ j, (i, j) ∈ Γ
1

nc(i)
· 1−pij

pij
i ∼ j, (i, j) ∈ Γc

0 i 6∼ j

P]Q2(i, j) =


−(1 + ε)c2 i ∼ j, (i, j) ∈ Γ

(1 + ε)c2
1−pij
pij

i ∼ j, (i, j) ∈ Γc

0 i 6∼ j

P]Q3(i, j) =


(1 + ε)c1 i 6∼ j, (i, j) ∈ Γ

−(1 + ε)c1
qij

1−qij i 6∼ j, (i, j) ∈ Γc

0 i ∼, j

Note that these matrices have zero-mean entries.

P[Q as follows. For (i, j) ∈ V[ × V[,

P[Q =


c1 i ∼ j, (i, j) ∈ Γ(A)

−c2 i ∼ j, (i, j) ∈ Γ(A)c

c1 i 6∼ j, (i, j) ∈ Γ(A)

c2W (i, j) i 6∼ j, (i, j) ∈ Γ(A)c

,

where

W (i, j) =

{
+1 with probability t−q

2t(1−q)
−1 with remaining probability

.

2.3 Validating Q

Under the choice of t in Theorem 1, we have 1
4p ≤ t ≤ p and 1

4 (1− q) ≤ 1− t ≤ 1− q. Also under the second

assumption of the theorem and p − q ≤ p(1 − q), we have p(1 − q) & n log4 n
`2]

≥ log4 n
`]

. We will make use of

these facts frequently in the proof.

It is easy to check that ε := 2 log2 n
`]

√
n

t(1−t) <
1
2 under the assumption of Theorem 1.

Property 1):

Note that ‖Q‖ ≤ ‖P]Q∼‖ + ‖P]Q6∼‖ + ‖P[Q∼‖ + ‖P[Q6∼‖. We show that all four terms are upper-
bounded by 1

4 .

(a) P[Q∼ is a block diagonal matrix with each block having size at most `[. Moreover, P[Q∼ is the
sum of a deterministic matrix Q∼,d with all non-zero entries equal to b1√

n logn
p−t√
t(1−t)

and a random matrix

Q∼,r whose entries are i.i.d., bounded almost surely by max{c1, c2} and have zero mean with variance
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b21
n logn ·

p(1−p)
t(1−t) . Therefore, we have ‖Q∼‖ ≤ ‖Q∼,r‖+ ‖Q∼,d‖, where w.h.p.

‖P[Q∼,d‖ ≤ `[
b1√
n log n

p− t√
t(1− t)

,

‖P[Q∼,r‖ ≤ 6 max

{√
`[ log n

b1√
n log n

√
p(1− p)
t(1− t)

+ max{c1, c2} log2 n

}
;

here in the second inequality we use Lemma 5. We conclude that ‖P[Q∼‖ is bounded by 1
4 as long as

`[ ≤
√
t(1−t)n logn

8b1(p−t) and max{c1, c2} ≤ 1
48 log2 n

, which holds under the assumption of Theorem 1.

(b) P[Q6∼ is a random matrix supported on V[×V[, whose entries are i.i.d., zero mean, bounded almost

surely by max{c1, c2}, and have variance
b21

n logn ·
t2+q−2tq

(1−t)t . It follows from Lemma 5 that

‖P[Q6∼‖ ≤ 6 max

{
√
n[ ·

b1√
n log n

√
t2 + q − 2tq

(1− t)t
,max{c1, c2} log2 n

}
≤ 1

4

because n[ ≤ n and max{c1, c2} ≤ 1
48 log2 n

, which holds under the assumption of the theorem.

(c) Note that P]Q∼ = P]Q1 + P]Q2. By construction these two matrices are both block-diagonal,

have i.i.d zero-mean entries which are bounded almost surely by B∼ := max
{

1
`]p
, 2c2
p

}
and have variance

bounded by σ2
∼ := max

{
1−p
p`2]

, 4(1−p)
p c22

}
. Lemma 5 gives ‖P]Q∼‖ ≤ 6 max

{√
`] · σ∼, B∼ log2 n

}
≤ 1

4 under

the assumption of Theorem 1.

(d) Note that P]Q6∼ = P]Q3 is a random matrix with i.i.d. zero-mean entries which are bounded
almost surely by B 6∼ := 2c1

1−q and have variance bounded by σ2
6∼ := 4q

1−q c
2
1. Lemma 5 gives ‖P]Q6∼‖ ≤

6 max
{√

n · σ6∼, B6∼ log2 n
}
≤ 1

4 .

Property 2):

Due to the structure of T , we have

‖PTQ‖∞ = ‖PTP]Q‖∞ =
∥∥UU>(P]Q) + (P]Q)UU> + UU>(P]Q)UU>

∥∥
∞

≤ 3
∥∥UU>P]Q∥∥∞ ≤ 3

3∑
m=1

∥∥UU>P]Qm∥∥∞ .

Now observe that (UU>P]Qm)(i, j) =
∑
l∈Vc(i)

1
nc(i)
P]Qm(l, j) is the sum of i.i.d. zero-mean random vari-

ables with bounded magnitude and variance. Using Lemma 7, we obtain that for i ∈ V],

∣∣(UU>P]Q1)(i, j)
∣∣ .

1

nc(i)

(√
1− p
p`2]

·
√
nc(i) log n+

log n

`]p

)

≤ 1

`]

√
log n

p`]
≤ log n

242`]

√
t

p
.

where in the last inequality we use t ≥ p
4 & logn

`]
. For i ∈ V[, clearly (UU>P]Q1)(i, j) = 0. By union bound

we conclude that
∥∥UU>P]Q1

∥∥
∞ ≤

logn
242`]

√
t
p . Similarly, we can bound

∥∥UU>P]Q2

∥∥
∞ and

∥∥UU>P]Q3

∥∥
∞

with the same quantity (cf. [1]).
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On the other hand, under the definition of c1, c2 and ε, we have

c1ε = b1

√
1− t
tn log n

· 2 log2 n

`]

√
n

t(1− t)
= b1

√
p log n

t
√
t
· log n

24`]

√
t

p
≥ log n

24`]

√
t

p

and similarly c2ε ≥ logn
24`]

√
t
p . It follows that ‖PTQ‖∞ ≤ 9 · 1

24εmin {c1, c2}, proving property 2).

Properties 3a) and 3b)

For 3a), by construction of Q we have〈
UU> +Q,PΓ(A)PΓP]∆

〉
=

〈
PΓ(A)PΓP]Q3,PΓ(A)PΓP]∆

〉
= (1 + ε)c1

∑
(i,j)∈Γ∩Γ(A)

P]∆(i, j)

= (1 + ε)c1
∥∥PΓ(A)PΓP]∆

∥∥
1

(because ∆ ∈ D)

Property 3b) can be verified similarly.

Properties 4a) and 4b):

For 4a), we have〈
UU> +Q,PΓ(A)PΓcP]∆

〉
=

〈
PΓ(A)PΓcP]

(
UU> + P]Q1 + P]Q2

)
,PΓ(A)PΓcP]∆

〉
=

∑
(i,j)∈Γc∩Γ(A)

(
1

nc(i)
+

1

nc(i)

1− pij
pij

+ (1 + ε)c2
1− pij
pij

)
P]∆(i, j)

≥ −
(

1

p`]
+ (1 + ε)c2

1− p
p

)∥∥PΓ(A)PΓcP]∆
∥∥

1
,

(here we use ∆ ∈ D, pij ≥ p, and nc(i) ≥ `]for i ∈ V]).

Consider the two terms in the parenthesis in the last RHS. For the first term, we have

1

p`]
=

2 log2 n

`]

√
n

t(1− t)
·

√
t(1− t)

4p2n log4 n
≤ 2 log2 n

`]

√
n

t(1− t)
· b1
√

1− t
tn log n

= εc1.

For the second term, we have the following

p− t ≥ p− q
4

≥ b3
4

log2 n
√
p(1− q)n
`]

=
b3
4
·
√
t(1− q)√
p(1− t)

· p(1− t) · 2 log2 n
√
n

`]
√
t(1− t)

≥ 8 · p(1− t) · 2 log2 n
√
n

`]
√
t(1− t)

= 8p(1− t)ε,

which implies (1 + ε)c2
1−p
p ≤ (1− 2ε)c1. We conclude that〈

UU> +Q,PΓ(A)PΓcP]∆
〉
≥ − (εc1 + (1− 2ε)c1)

∥∥PΓ(A)PΓcP]∆
∥∥

1
,

proving property 4a).

For 4b), we have〈
UU> +Q,PΓ(A)cPΓcP]∆

〉
=

〈
PΓ(A)cPΓcP]Q3,PΓ(A)cPΓcP]∆

〉
=

∑
(i,j)∈Γ(A)c∩Γc∩RangeP]

−(1 + ε)
c1qij

1− qij
P]∆(i, j)

≥ −(1 + ε)
c1q

1− q
∥∥PΓ(A)cPΓcP]∆

∥∥
1
. (here we use qij ≤ q)

7



Consider the factor before the norm in the last RHS. Similarly as before, we have

t− q ≥ p− q
4

≥ b3
4

log2 n
√
p(1− q)n
`]

≥ 2 · t(1− q) · 2 log2 n
√
n

`]
√
t(1− t)

= 2t(1− q)ε.

This implies (1 + ε)c1
q

1−q ≤ (1− ε)c2. We conclude that〈
UU> +Q,PΓ(A)cPΓcP]∆

〉
≥ −(1− ε)c2

∥∥PΓ(A)cPΓcP]∆
∥∥

1
,

proving property 4b).

Properties 5) and 6): It is obvious that these two properties hold by construction of Q.

Note that properties 3)-6) hold deterministically.

2.4 The κ > 1 case

Let n′ = κ2n and assume n′ is an integer. Let A′ ∈ Rn′×n′ be such a matrix that

A′ =

[
A 0
0 I

]
.

Consider the following padded program

(CP1’) min
K′,B′∈Rn′×n′

‖K ′‖∗ + c1
∥∥PΓ(A′)B

′∥∥
1

+ c2
∥∥PΓ(A′)cB

′∥∥
1

s.t. K ′ +B′ = A′

0 ≤ K ′ij ≤ 1,∀(i, j).

Applying Theorem 1 with κ = 1 (which we have proved) to A′ and the padded program (CP1’), we conclude
that the unique optimal solution (K̂ ′, B̂′ = A′ − K̂ ′) to (CP1’) has the form

K̂ ′ =

[
P]K∗ 0

0 0

]
.

We claim that K̂ = P]K∗ is the unique optimal solution to (CP1).

Proof by contradiction: suppose an optimal solution to (CP1) is K̂ = K0 6= P]K∗. By optimality we
have

‖K0‖∗+c1
∥∥PΓ(A)(A−K0)

∥∥
1
+c2

∥∥PΓ(A)c(A−K0)
∥∥

1
≤ ‖P]K∗‖∗+c1

∥∥PΓ(A)(A− P]K∗)
∥∥

1
+c2

∥∥PΓ(A)c(A− P]K∗
∥∥

1
.

Define K ′0 =

[
K0 0
0 0

]
∈ Rn′×n′ . It follows that

‖K ′0‖∗ + c1
∥∥PΓ(A′)(A

′ −K ′0)
∥∥

1
+ c2

∥∥PΓ(A′)c(A′ −K ′0)
∥∥

1

= ‖K0‖∗ + c1
∥∥PΓ(A)(A−K0)

∥∥
1

+ c1(n′ − n) + c2
∥∥PΓ(A)c(A−K0)

∥∥
1

≤ ‖P]K∗‖∗ + c1
∥∥PΓ(A)(A− P]K∗)

∥∥
1

+ c1(n′ − n) + c2
∥∥PΓ(A)c(A− P]K∗)

∥∥
1

=
∥∥∥K̂ ′∥∥∥

∗
+ c1

∥∥∥PΓ(A′)(A
′ − K̂ ′)

∥∥∥
1

+ c2

∥∥∥PΓ(A′)c(A′ − K̂ ′)
∥∥∥

1
,

contradicting the fact that (K̂ ′, B̂′ = A′ − K̂ ′) is the unique optimal to (CP1’).
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3 Proof of Theorem 3

Fix κ ≥ 1 and t in the allowed range, let (K,B) be an optimal solution to (CP1) , and assume K is a partial
clustering induced by U1, . . . , Ur for some integer r, and also assume σmin(K) = mini∈[r] |Ui| satisfies (3).
Let M = σmin(K).

We need a few helpful facts. First, note that any value of t in the allowed range [ 1
4p + 3

4q,
3
4p + 1

4q]
satisfies q + 1

4 (p− q) ≤ t ≤ p− 1
4 (p− q). Also note that from the definition of t, c1, c2,

q +
1

4
(p− q) ≤ c2

c1 + c2
= t ≤ p− 1

4
(p− q) . (3.1)

We say that a pair of sets Y ⊆ V,Z ⊆ V is cluster separated if there is no pair (y, z) ∈ Y ×Z satisfying
y ∼ z.

Assumption 2. There exists a constant C ′ > 0 such that for all pairs of cluster-separated sets Y,Z of size

at least m := C′ logn
(p−q)2 each,

|d̂Y,Z − q| <
1

4
(p− q) , (3.2)

where d̂Y,Z := |(Y×Z)∩Ω|
|Y |·|Z| .

This is proven by a Hoeffding tail bound and a union bound to hold with probability at least 1− n−4.
To see why, fix the sizes mY ,mZ of |Y |, |Z|, assume mY ≤ mZ w.l.o.g. For each such choice, there are at
most exp{C(mY + mZ) log n} ≤ exp{2CmZ log n} possibilities for the choice of sets Y,Z, for some C > 0.
For each such choice, the probability that (3.2) does not hold is

exp{−C ′′mYmZ(p− q)2} (3.3)

using Hoeffding inequality, for some C ′′ > 0. Hence, as long as mY ≥ m as defined above, for properly
chosen C ′, using union bound (over all possibilities of mY ,mZ and of Y,Z) we obtain (3.2) uniformly.

If we assume also , say, that
M ≥ 3m , (3.4)

(which can be done by setting C1 ≥ 3C ′) the implication of the assumption is that it cannot be the case that
some Ui contains a subset U ′i of size in the range [m, |Ui| −m] such that U ′i = Vg ∩Ui for some g. Indeed, if
such a set existed, then we would find a strictly better solution to (CP1), call it (K ′, B′), which is defined so
that K ′ is obtained from K by splitting the block corresponding to Ui into two blocks, one corresponding to
U ′i and the other to Ui \U ′i . The difference ∆ between the cost of (K,B) and (K ′, B′) is (renaming Y := U ′i
and Z := U \ U ′i) ∆ = c1|(Y × Z) ∩ Ω| − c2|(Y × Z) ∩ Ωc| = (c1 + c2)d̂Y,Z |Y | |Z| − c2|Y | |Z|. But the sign

of ∆ is exactly the sign of d̂Y,Z − c2
c1+c2

which is strictly negative by (3.2) and (3.1). (We also used the fact
that the trace norm part of the utility function is equal for both solutions: ‖K ′‖∗ = ‖K‖∗).

The conclusion is that for each i, the sets (Ui ∩ V1), . . . , (Ui ∩ Vk) must all be of size at most m, except
maybe for at most one set of size at least |Ui| −m. If we now also assume that

M > km = (kC ′ log n)/(p− q)2 , (3.5)

then we conclude that not all these sets can be of size at most m. Hence exactly one of these sets must have
size at least |Ui| −m. From this we conclude that there is a function φ : [r] 7→ [k] such that for all i ∈ [r],

|Ui ∩ Vφ(i)| ≥ |Ui| −m .

We now claim that this function is an injection. We will need the following assumption:
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Assumption 3. For any 4 pairwise disjoint subsets (Y, Y ′, Z, Z ′) such that (Y ∪ Y ′) ⊆ Vi for some i,
(Z ∪ Z ′) ⊆ [n] \ Vi, max{|Z|, |Z ′|} ≤ m, min{|Y |, |Y ′|} ≥M −m:

|Y | · |Y ′| d̂Y,Y ′ − |Y | · |Z| d̂Y,Z − |Y ′| · |Z ′| d̂Y ′,Z′ >
c2

c1 + c2
(|Y | · |Y ′| − |Y | · |Z| − |Y ′| · |Z ′|) (3.6)

The assumption holds with probability at least 1− n−4 by using Hoeffding inequality, union bounding
over all possible sets Y, Y ′, Z, Z ′ as above. Indeed, notice that for fixed mY ,mY ′ ,mZ ,mZ′ (with, say,
mY ≥ mY ′), and for each tuple Y, Y ′, Z, Z ′ such that |Y | = mY , |Y ′| = mY ′ , |Z| = mZ , |Z ′| = mZ′ , the
probability that (3.6) is violated is at most

exp{−C(p− q)2(mYmY ′ +mYmZ +mY ′mZ′)} (3.7)

for some C > 0. Using (3.4), this is at most

exp{−C ′′(p− q)2(mYmY ′)} , (3.8)

for some global C ′′ > 0. Now notice that the number of possibilities to choose such a 4 tuple of sets is
bounded above by exp{C ′′′mY log n}, for some global C ′′′ > 0. Assuming

M ≥ Ĉ log n

(p− q)2
(3.9)

for some Ĉ, and applying a union bound over all possible combinations Y, Y ′, Z, Z ′ of sizes mY ,mY ′ ,mZ ,mZ′

respectively, of which there are at most exp{C◦mY log n} for some C◦ > 0, we conclude that (3.6) is violated
for some combination with probability at most

exp{−C ′′(p− q)2mYmY ′/2} (3.10)

which is at most exp{−20 log n} if

M ≥ Ĉ ′ log n

(p− q)2
. (3.11)

for some Ĉ ′ > 0. Apply a union bound now over the possible combinations of the tuple (mY ,mY ′ ,mZ ,mZ′)
, of which there are at most exp{4 log n} to conclude that (3.6) holds uniformly for all possibilities of
Y, Y ′, Z, Z ′ with probability at least 1− n−4.

Now assume by contradiction that φ is not an injection, so φ(i) = φ(i′) =: j for some distinct i, i′ ∈ [r].
Set Y = Ui∩Vj , Y ′ = Ui′ ∩Vj , Z = Ui \Y, Z ′ = Ui′ \Y ′. Note that max{|Z|, |Z ′|} ≤ m and min{|Y |, |Y ′|} ≥
M−m. Consider the solution (K ′, B′) whereK ′ is obtained fromK by replacing the two blocks corresponding
to Ui, Ui′ with four blocks: Y, Y ′, Z, Z ′. Inequality (3.6) guarantees that the cost of (K ′, B′) is strictly lower
than that of (K,B), contradicting optimality of the latter. (Note that ‖K‖∗ = ‖K ′‖∗.)

We can now also conclude that r ≤ k. Fix i ∈ [r]. We show that not too many elements of Vφ(i) can be
contained in V \ {U1 ∪ · · · ∪ Ur}. We need the following assumption.

Assumption 4. For all pairwise disjoint sets Y,X,Z ⊆ V such that |Y | ≥M −m, |X| ≥ m, (Y ∪X) ⊆ Vj
for some j ∈ [k], |Z| ≤ m, Z ∩ Vj = ∅:

|X| · |Y |d̂X,Y +

(
|X|
2

)
d̂x,x − |Y | · |Z|d̂Y,Z >

c2
c1 + c2

(|X| · |Y |+
(
|X|
2

)
− |Y | · |Z|) +

|X|
c1 + c2

. (3.12)
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The assumption holds with probability at least 1 − n−4. To see why, first notice that |X|/(c1 + c2) ≤
1
8 (p− q)|X| · |Y | by (3), as long as C2 is large enough. This implies that the RHS of (3.12) is upper bounded
by (

p− 1

8
(p− q)

)
|X| · |Y |+ c2

c1 + c
(

(
|X|
2

)
− |Y | · |Z|) (3.13)

Proving that the LHS of (3.12) (denoted f(X,Y, Z)) is larger than (3.13) (denoted g(X,Y, Z)) uniformly
w.h.p. can now be easily done as follows. By fixing mY = |Y |,mX = |X|, the number of combinations for
Y,X,Z is at most exp{C(mY +mX) log n} for some global C > 0. On the other hand, the probability that
f(X,Y, Z) ≤ g(X,Y, Z) for any such option is at most

exp{−C ′′(p− q)2mYmX} (3.14)

for some C ′ > 0. Hence, by union bounding, the probability that some tuple Y,X,Z of sizes mY ,mX ,mZ

respectively satisfies f(X,Y, Z) ≤ g(X,Y, Z) is at most

exp{−C ′′(p− q)2mY /2} , (3.15)

which is at most exp{−10 log n} assuming

M ≥ C̄(log n)/(p− q)2 , (3.16)

for some C̄ > 0. Another union bound over the possible choices of mY ,mX ,mZ proves that (3.12) holds
uniformly with probability at least 1− n−4.

Now for some i ∈ [r] set X := Vφ(i) ∩ (V \ {U1 ∪ · · · ∪ Ur}) and assume by contradiction that |X| > m.
Set Y := Vφ(i)∩Ui and Z = Ui \Vφ(i). Define the solution (K ′, B′) where K ′ is obtained from K by replacing
the block corresponding to Ui in K with two blocks: Vφ(i) and Ui \ Vφ(i). Assumption 4 tells us that the

cost of (K ′, B′) is strictly lower than that of (K,B). Note that the expression |X|
c1+c2

in the RHS of (3.12)
accounts for the trace norm difference ‖K ′‖∗ − ‖K‖∗ = |X|.

We are prepared to perform the final “cleanup” step. At this point we know that for each i ∈ [r], the
set Ti = Ui ∩ Vφ(i) satisfies

|Ti| ≥ |Ui| −m
|Ti| ≥ |Vj | − rm .

(The second inequality is implied by the fact that at most m elements of Vφ(i) may be contained in Ui′ for
i′ 6= i, and another at most m elements in V \ (U1 ∪ · · · ∪ Ur). We are now going to conclude from this that
Ui = Vφ(i) for all i. To that end, let (K ′, B′) be the feasible solution to (CP1) defined so that K ′ is a partial
clustering induced by Vφ(1), . . . , Vφ(r). We would like to argue that if K 6= K ′ then the cost of (K ′, B′) is
strictly smaller than that of (K,B). Fix the value of the collection

Y := ((r, φ(1), . . . , φ(r),(
mij := |Vφ(i) ∩ Uj |)

)
i,j∈[r],i6=j ,(

m′i := |Vφ(i) ∩ (V \ (U1 ∪ · · · ∪ Ur))
)
i∈[r]

)

Let β(Y) denote the number of i 6= j such that mij > 0 plus the number of i ∈ [r] such that mi > 0. We
can assume β(Y) > 0, otherwise Ui = Vφ(i) for all i ∈ [r] as required. The number of possibilities for K
and K ′ giving rise to Y is exp{C(

∑
i6=jmij +

∑
imi) log n} for some C > 0. (Note that K ′ depends on

r, φ(1), . . . , φ(r) only, while K depends on all elements of Y). For each such possibility, the probability that
the cost of (K,B) is lower than that of (K ′, B′) is at most

exp{−C ′′(p− q)2M(
∑
ij

mij +
∑
i

mi)} (3.17)
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using Hoeffding inequalities, for some C ′′ > 0. (Note that special care needs to be made to account for the
difference ‖K‖∗ − ‖K ′‖∗ =

∑r
i=1mi - this is similar to what we did above .) As long as

M ≥ Ĉ†k(log n)/(p− q)2 (3.18)

for some Ĉ† > 0, we conclude that the cost of (K ′, B′) is at least that of (K,B) for some K giving rise to
Y with probability at most exp{−10(k log n)β(Y)}. The number of combinations of Y for a fixed value of
β(Y) is at most exp{5(k+ β(Y) log n}. By union bounding, we conclude that for fixed β(Y), the probability
that some (K,B) has cost at most that of (K ′, B′) is at most exp{−10(k log n)β(Y)}. Finally union bound
over all possibilities for β(Y), of which there are at most n2.

Taking C1, C2 large enough to satisfy the requirements above concludes the proof.

4 Proof of Theorem 9

The proof of Theorem 3 in the previous section made repeated use of Hoeffding tail inequalities, for bounding
the size of the intersection of the noise support Ω with various submatrices. This is tight for p, q which are
bounded away from 0 and 1. However, if p = ρp′, q = ρq′, the noise probabilities p′, q′ are fixed and ρ tends
to 0, a sharper bound is obtained using Bernstein tail bound (see Appendix A.2, Lemma 6). Using Bernstein
inequality instead of Chernoff inequality, the expression (p − q)2 in (3.3), (3.5), (3.7), (3.8), (3.9), (3.10),
(3.11), (3.14), (3.15), (3.16), (3.17) can be replaced with ρ. This clearly gives the required result.

5 Proof of Lemma 5

Proof. We remind the user that g = b3
b4

log2 n, the multiplicative size of the interval `[, `]. Consider the set of

intervals (n/gk0, n/k0), (n/g2k0, n/gk0), . . . , (n/gk0+1k0, n/g
k0k0). By the pigeonhole principle, one of these

intervals must not intersect the set of cluster sizes. Assume this interval is (n/gi0+1k0, n/g
i0k0), for some

0 ≤ i0 ≤ k0. Let α = n/gi+1k0. By setting C3(p, q) small enough and C4(p, q) large enough, one easily
checks that the requirements of Corollary 4 hold with this value of α and s = n/k0. This concludes the
proof.
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A Technical Lemmas

A.1 The spectral norm of random matrices

It is well-known that the spectral norm λ1(A) of a zero-mean random matrix A is bounded above w.h.p. by
C
√
n, where C is a constant that might depend on the variance and magnitude of the entries of A. Here we

state and (re-)prove an upper bound of λ1(A) with an explicit estimate of the constant C, which is needed
in the proof of the main theorem.

Lemma 5. Let Aij, 1 ≤ i, j ≤ n be independent random variables, each of which has mean 0 and variance
at most σ2 and is bounded in absolute value by B. Then with probability at least 1− 2n−2

λ1(A) ≤ 6 max
{
σ
√
n log n,B log2 n

}
Proof. Let ei be the i-th standard basis in Rn. Let Zij = Aijeie

>
j . Then Zij ’s are zero-mean random

matrices independent of each other, and A =
∑
i,j Zij . We have ‖Zij‖ ≤ B almost surely. We also have

‖
∑
i,j E(ZijZ

>
ij )‖ = ‖

∑
i eie

>
i

∑
j E(A2

ij)‖ ≤ nσ2. Similarly ‖
∑
i,j E(Z>ijZij)‖ ≤ nσ2. Applying the Non-

commutative Bernstein Inequality (Theorem 1.6 in [2]) with t = 6 max
{
σ
√
n log n,B log2 n

}
yields the

desired bound.

A.2 Standard Bernstein Inequality for Sum of Independent Variables

Lemma 6 (Bernstein inequality). Let Y1, . . . , YN be independent random variables, each of which has vari-
ance bounded by σ2 and is bounded in absolute value by B a.s.. Then we have that

Pr

[∣∣∣∣∣
N∑
i=1

Yi − E

[
N∑
i=1

Yi

]∣∣∣∣∣ > t

]
≤ 2 exp

{
t2/2

Nσ2 +Bt/3

}
.

The following well known consequence of the above lemma will also be of use.

Lemma 7. Let Y1, . . . , YN be independent random variables, each of which has variance bounded by σ2 and
is bounded in absolute value by B a.s. Then we have∣∣∣∣∣

N∑
i=1

Yi − E

[
N∑
i=1

Yi

]∣∣∣∣∣ ≤ C0 max
{
σ
√
N log n,B log n

}
with probability at least 1−C1n

−C2 where the positive constants C0, C1, C2 are independent of σ, B, N and
n.
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