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Abstract

Thompson Sampling is one of the old-
est heuristics for multi-armed bandit prob-
lems. It is a randomized algorithm based
on Bayesian ideas, and has recently gener-
ated significant interest after several stud-
ies demonstrated it to have better empirical
performance compared to the state-of-the-
art methods. However, many questions re-
garding its theoretical performance remained
open. In this paper, we design and an-
alyze a generalization of Thompson Sam-
pling algorithm for the stochastic contextual
multi-armed bandit problem with linear pay-
off functions, when the contexts are provided
by an adaptive adversary. This is among the
most important and widely studied version of
the contextual bandits problem. We prove a

high probability regret bound of Õ(d
2

ε

√
T 1+ε)

in time T for any 0 < ε < 1, where d is
the dimension of each context vector and ε
is a parameter used by the algorithm. Our
results provide the first theoretical guaran-
tees for the contextual version of Thompson
Sampling, and are close to the lower bound
of Ω(d

√
T ) for this problem. This essentially

solves a COLT open problem of Chapelle and
Li [COLT 2012].
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1. Introduction

Multi-armed bandit (MAB) problems model the ex-
ploration/exploitation trade-off inherent in many se-
quential decision problems. There are many versions
of multi-armed bandit problems; a particularly useful
version is the contextual multi-armed bandit problem.
In this problem, in each of T rounds, a learner is pre-
sented with the choice of taking one out of N actions,
referred to as N arms. Before making the choice of
which arm to play, the learner sees d-dimensional fea-
ture vectors bi, referred to as “context”, associated
with each arm i. The learner uses these feature vec-
tors along with the feature vectors and rewards of the
arms played by her in the past to make the choice of
the arm to play in the current round. Over time, the
learner’s aim is to gather enough information about
how the feature vectors and rewards relate to each
other, so that she can predict, with some certainty,
which arm is likely to give the best reward by look-
ing at the feature vectors. The learner competes with
a class of predictors, in which each predictor takes in
the feature vectors and predicts which arm will give
the best reward. If the learner can guarantee to do
nearly as well as the predictions of the best predictor
in hindsight (i.e., have low regret), then the learner is
said to successfully compete with that class.

In the contextual bandits setting with linear payoff
functions, the learner competes with the class of all
“linear” predictors on the feature vectors. That is,
a predictor is defined by a d-dimensional parameter
µ ∈ Rd, and the predictor ranks the arms according to
bTi µ. We consider stochastic contextual bandit prob-
lem under linear realizability assumption, that is, we
assume that there is an unknown underlying parame-
ter µ ∈ Rd such that the expected reward for each arm
i, given context bi, is bTi µ. Under this realizability as-
sumption, the linear predictor corresponding to µ is in
fact the best predictor and the learner’s aim is to learn
this underlying parameter. This realizability assump-
tion is standard in the existing literature on contextual
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multi-armed bandits, e.g. (Auer, 2002; Filippi et al.,
2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011).

Thompson Sampling (TS) is one of the earliest heuris-
tics for multi-armed bandit problems. The first version
of this Bayesian heuristic is around 80 years old, dating
to Thompson (1933). Since then, it has been rediscov-
ered numerous times independently in the context of
reinforcement learning, e.g., in Wyatt (1997); Ortega
& Braun (2010); Strens (2000). It is a member of the
family of randomized probability matching algorithms.
The basic idea is to assume a simple prior distribution
on the underlying parameters of the reward distribu-
tion of every arm, and at every time step, play an arm
according to its posterior probability of being the best
arm. The general structure of TS for the contextual
bandits problem involves the following elements:

1. a set Θ of parameters µ̃;

2. a prior distribution P (µ̃) on these parameters;

3. past observations D consisting of (context b, re-
ward r) for the past time steps;

4. a likelihood function P (r|b, µ̃), which gives the
probability of reward given a context b and a pa-
rameter µ̃;

5. a posterior distribution P (µ̃|D) ∝ P (D|µ̃)P (µ̃),
where P (D|µ̃) is the likelihood function.

In each round, TS plays an arm according to its pos-
terior probability of having the best parameter. A
simple way to achieve this is to produce a sample of
parameter for each arm, using the posterior distribu-
tions, and play the arm that produces the best sam-
ple. In this paper, we design and analyze a natural
generalization of Thompson Sampling (TS) for con-
textual bandits; this generalization fits the above gen-
eral structure, and uses Gaussian prior and Gaussian
likelihood function. We emphasize that although TS
is a Bayesian approach, the description of the algo-
rithm and our analysis apply to the prior-free stochas-
tic MAB model, and our regret bounds will hold ir-
respective of whether or not the actual reward distri-
bution matches the Gaussian likelihood function used
to derive this Bayesian heuristic. Thus, our bounds
for TS algorithm are directly comparable to the UCB
family of algorithms which form a frequentist approach
to the same problem. One could interpret the priors
used by TS as a way of capturing the current knowl-
edge about the arms.

Recently, TS has attracted considerable attention.
Several studies (e.g., Granmo (2010); Scott (2010);
Graepel et al. (2010); Chapelle & Li (2011); May &
Leslie (2011); Kaufmann et al. (2012)) have empiri-
cally demonstrated the efficacy of TS: Scott (2010)
provides a detailed discussion of probability match-

ing techniques in many general settings along with fa-
vorable empirical comparisons with other techniques.
Chapelle & Li (2011) demonstrate that for the basic
stochastic MAB problem, empirically TS achieves re-
gret comparable to the lower bound of Lai & Robbins
(1985); and in applications like display advertising and
news article recommendation modeled by the contex-
tual bandits problem, it is competitive to or better
than the other methods such as UCB. In their exper-
iments, TS is also more robust to delayed or batched
feedback than the other methods. TS has been used
in an industrial-scale application for CTR prediction
of search ads on search engines (Graepel et al., 2010).
Kaufmann et al. (2012) do a thorough comparison of
TS with the best known versions of UCB and show
that TS has the lowest regret in the long run.

However, the theoretical understanding of TS is lim-
ited. Granmo (2010) and May et al. (2011) pro-
vided weak guarantees, namely, a bound of o(T ) on
the expected regret in time T . For the the ba-
sic (i.e. without contexts) version of the stochastic
MAB problem, some significant progress was made by
Agrawal & Goyal (2012), Kaufmann et al. (2012) and,
more recently, by Agrawal & Goyal (2013), who pro-
vided optimal regret bounds on the expected regret.
But, many questions regarding theoretical analysis of
TS remained open, including high probability regret
bounds, and regret bounds for the more general con-
textual bandits setting. In particular, the contextual
MAB problem does not seem easily amenable to the
techniques used so far for analyzing TS for the basic
MAB problem. In Section 3.1, we describe some of
these challenges. Some of these questions and difficul-
ties were also formally raised as a COLT 2012 open
problem (Chapelle & Li, 2012).

In this paper, we use novel martingale-based analy-
sis techniques to demonstrate that TS (i.e., our Gaus-
sian prior based generalization of TS for contextual
bandits) achieves high probability, near-optimal re-
gret bounds for stochastic contextual bandits with lin-
ear payoff functions. To our knowledge, ours are the
first non-trivial regret bounds for TS for the contex-
tual bandits problem. Additionally, our results are the
first high probability regret bounds for TS, even in the
case of basic MAB problem. This essentially solves the
COLT 2012 open problem by(Chapelle & Li, 2012) for
contextual bandits with linear payoffs.

Our version of Thompson Sampling algorithm for the
contextual MAB problem, described formally in Sec-
tion 2.2, uses Gaussian prior and Gaussian likelihood
functions. Our techniques can be extended to the use
of other prior distributions, satisfying certain condi-
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tions, as discussed in Section 4.

2. Problem setting and algorithm
description

2.1. Problem setting

There are N arms. At time t = 1, 2, . . ., a context
vector bi(t) ∈ Rd, is revealed for every arm i. These
context vectors are chosen by an adversary in an adap-
tive manner after observing the arms played and their
rewards up to time t− 1, i.e. history Ht−1,

Ht−1 = {a(τ), ra(τ)(τ), bi(τ), i = 1, . . . , N, τ =
1, . . . , t− 1},

where a(τ) denotes the arm played at time τ . Given
bi(t), the reward for arm i at time t is generated from
an (unknown) distribution with mean bi(t)

Tµ, where
µ ∈ Rd is a fixed but unknown parameter.

E
[
ri(t) {bi(t)}Ni=1,Ht−1

]
= E [ri(t) bi(t)] = bi(t)

Tµ.

An algorithm for the contextual bandit problem needs
to choose, at every time t, an arm a(t) to play, using
history Ht−1 and current contexts bi(t), i = 1, . . . , N .
Let a∗(t) denote the optimal arm at time t, i.e. a∗(t) =
arg maxi bi(t)

Tµ. And let ∆i(t) be the difference be-
tween the mean rewards of the optimal arm and of
arm i at time t, i.e.,

∆i(t) = ba∗(t)(t)
Tµ− bi(t)Tµ.

Then, the regret at time t is defined as

regret(t) = ∆a(t)(t).

The objective is to minimize the total regret R(T ) =∑T
t=1 regret(t) in time T . The time horizon T is finite

but possibly unknown.

We assume that ηi,t = ri(t) − bi(t)Tµ is conditionally
R-sub-Gaussian for a constant R ≥ 0, i.e.,

∀λ ∈ R,E[eληi,t |{bi(t)}Ni=1,Ht−1] ≤ exp
(
λ2R2

2

)
.

This assumption is satisfied whenever ri(t) ∈
[bi(t)

Tµ−R, bi(t)Tµ+R] (see Remark 1 in Appendix
A.1 of Filippi et al. (2010)). We will also assume
that ||bi(t)|| ≤ 1, ||µ|| ≤ 1, and ∆i(t) ≤ 1 for all i, t
(the norms, unless otherwise indicated, are `2-norms).
These assumptions are required to make the regret
bounds scale-free, and are standard in the literature
on this problem. If ||µ|| ≤ c, ||bi(t)|| ≤ c,∆i(t) ≤ c
instead, then our regret bounds would increase by a
factor of c.

Remark 1. An alternative definition of regret that
appears in the literature is

regret(t) = ra∗(t)(t)− ra(t)(t).

We can obtain the same regret bounds for this alter-
native definition of regret. The details are provided in
the supplementary material in Appendix A.5.

2.2. Thompson Sampling algorithm

We use Gaussian likelihood function and Gaussian
prior to design our version of Thompson Sampling al-
gorithm. More precisely, suppose that the likelihood
of reward ri(t) at time t, given context bi(t) and pa-
rameter µ, were given by the pdf of Gaussian distri-

bution N (bi(t)
Tµ, v2). Here, v = R

√
24
ε d ln( 1

δ ), with

ε ∈ (0, 1) which parametrizes our algorithm. Let

B(t) = Id +
∑t−1
τ=1 ba(τ)(τ)ba(τ)(τ)T

µ̂(t) = B(t)−1
(∑t−1

τ=1 ba(τ)(τ)ra(τ)(τ)
)
.

Then, if the prior for µ at time t is given by
N (µ̂(t), v2B(t)−1), it is easy to compute the poste-
rior distribution at time t+ 1,

Pr(µ̃|ri(t)) ∝ Pr(ri(t)|µ̃) Pr(µ̃)

as N (µ̂(t+ 1), v2B(t+ 1)
−1

) (details of this computa-
tion are in Appendix A.1). In our Thompson Sampling
algorithm, at every time step t, we will simply generate
a sample µ̃(t) from the distribution N (µ̂(t), v2B(t)

−1
),

and play the arm i that maximizes bi(t)
T µ̃(t).

We emphasize that the Gaussian priors and the Gaus-
sian likelihood model for rewards are only used above
to design the Thompson Sampling algorithm for con-
textual bandits. Our analysis of the algorithm allows
these models to be completely unrelated to the actual
reward distribution. The assumptions on the actual
reward distribution are only those mentioned in Sec-
tion 2.1, i.e., the R-sub-Gaussian assumption.

Algorithm 1 Thompson Sampling for Contextual
bandits

Set B = Id, µ̂ = 0d, f = 0d.
for all t = 1, 2, . . . , do

Sample µ̃(t) from distribution N (µ̂, v2B−1).
Play arm a(t) := arg maxi bi(t)

T µ̃(t), and observe
reward rt.
Update B = B + ba(t)(t)ba(t)(t)

T , f = f +
ba(t)(t)rt, µ̂ = B−1f .

end for

Every step t of Algorithm 1 consists of gener-
ating a d-dimensional sample µ̃(t) from a multi-
variate Gaussian distribution, and solving the problem
arg maxi bi(t)

T µ̃(t). Therefore, even if the number of
arms N is large (or infinite), the above algorithm is
efficient as long as the problem arg maxi bi(t)

T µ̃(t) is



Thompson Sampling for Contextual Bandits with Linear Payoffs

efficiently solvable. This is the case, for example, when
the set of arms at time t is given by a d-dimensional
convex set (every vector in the convex set is a context
vector, and thus corresponds to an arm).

2.3. Our Results

Theorem 1. For the stochastic contextual ban-
dit problem with linear payoff functions, with prob-
ability 1 − δ, the total regret in time T for
Thompson Sampling (Algorithm 1) is bounded by

O
(
d2

ε

√
T 1+ε

(
ln(Td) ln 1

δ

))
, for any 0 < ε < 1, 0 <

δ < 1. Here, ε is a parameter used by the Thompson
Sampling algorithm.

Remark 2. The parameter ε can be chosen to be any
constant in (0, 1). If T is known, one could choose
ε = 1

lnT , to get Õ(d2
√
T ) regret bound.

Remark 3. Our regret bound in Theorem 1 does not
depend on N , and is applicable to the case of infi-
nite arms, with only notational changes required in the
analysis.

In the main body of this paper, we will discuss the
proof of the above result. Below, we state two ad-
ditional results; their proofs require small changes to
the proof of Theorem 1 and are provided in the sup-
plementary material.

The first result is for the setting where each of the N
arms is associated with a different d-dimensional pa-
rameter µi ∈ Rd, so that the mean reward for arm i
at time t is bi(t)

Tµi. This setting is a direct gener-
alization of the basic MAB problem to d-dimensions.
Thompson Sampling for this setting will maintain a
separate posterior distribution for each arm i which
would be updated only at the time instances when i is
played. And, at every time step t, instead of a single
sample µ̃(t), N independent samples will have to be
generated: µ̃i(t) for each arm i. We prove the follow-
ing regret bound for this setting.

Theorem 2. For the setting with N different pa-
rameters, with probability 1 − δ, the total regret
in time T for Thompson Sampling is bounded by

O

(
d
√

NT 1+ε lnN
ε

(
lnT ln 1

δ

))
, for any 0 < ε < 1,

0 < δ < 1.

The details of the algorithm for N -parameter setting
and the proof of Theorem 2 appear in the supplemen-
tary material in Appendix C.

Note that unlike Theorem 1, the regret bound in The-
orem 2 has a dependence on N , which is expected
because Theorem 2 deals with a setting where there
are N different parameters to learn. However, the

bound in Theorem 2 has a better dependence on d.
This improvement results from the independence of
θi(t) = bi(t)

T µ̃i(t) in the algorithm for this setting.
On the other hand in Algorithm 1, used for the single
parameter setting of Theorem 1, a single µ̃(t) is gen-
erated, and so θi(t) = bi(t)

T µ̃(t) are not independent.

This motivates us to consider a modification of Al-
gorithm 1 for the single parameter setting, in which
the θi(t)’s are independently generated, each with
marginal distribution bi(t)

T µ̃(t). The arm with the
highest value of θi(t) is played at time t. Although, this
modified algorithm could be inefficient compared to
Algorithm 1 if N is large (say exponential) compared
to d, the better dependence on d in regret bounds could
be useful if d is large.

Theorem 3. For the modified algorithm in single pa-
rameter setting, with probability 1− δ, the total regret

in time T is bounded by O

(
d
√

T 1+ε lnN
ε

(
lnT ln 1

δ

))
,

for any 0 < ε < 1, 0 < δ < 1.

The details of the modified algorithm and the proof
of the above theorem appears in the supplementary
material in Appendix B.

2.4. Related Work

The contextual bandit problem with linear payoffs is
a widely studied problem in statistics and machine
learning often under different names as mentioned by
Chu et al. (2011): bandit problems with co-variates
(Woodroofe, 1979; Sarkar, 1991), associative reinforce-
ment learning (Kaelbling, 1994), associative bandit
problems (Auer, 2002; Strehl et al., 2006), bandit prob-
lems with expert advice (Auer et al., 2002), and linear
bandits (Dani et al., 2008; Abbasi-Yadkori et al., 2011;
Bubeck et al., 2012). The name contextual bandits was
coined in Langford & Zhang (2007).

A lower bound of Ω(d
√
T ) for this problem was given

by Dani et al. (2008), when the number of arms is al-
lowed to be infinite. In particular, they prove their
lower bound using an example where the set of arms
correspond to all vectors in the intersection of a d-
dimensional sphere and a cube. They also provide
an upper bound of Õ(d

√
T ), although their setting is

slightly restrictive in the sense that the context vector
for every arm is fixed in advanced and is not allowed to
change with time. Abbasi-Yadkori et al. (2011) ana-
lyze a UCB-style algorithm and provide a regret upper
bound of O(d log (T )

√
T+
√
dT log (T/δ)). Apart from

the dependence on ε, our bounds are essentially away
by a factor of d from these bounds.

For finite N , Chu et al. (2011) show a lower bound
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of Ω(
√
Td) for d2 ≤ T . Auer (2002) and Chu

et al. (2011) analyze SupLinUCB, a complicated al-
gorithm using UCB as a subroutine, for this prob-
lem. Chu et al. (2011) achieve a regret bound of

O(
√
Td ln3(NT ln(T )/δ)) with probability at least 1−

δ (Auer (2002) proves similar results). This regret
bound is not applicable to the case of infinite arms,
and assumes that context vectors are generated by an
oblivious adversary. Also, this regret bound would give
O(d2

√
T ) regret if N is exponential in d. The state-

of-the-art bounds for linear bandits problem in case
of finite N are given by Bubeck et al. (2012). They
provide an algorithm based on exponential weights,
with regret of order

√
dT logN for any finite set of N

actions. However, the exponential weights based algo-
rithms are not efficient if N is large (sampling com-
plexity of O(N) in every step). Also, their setting
is slightly different from ours. The set of arms and
the associated bi vectors are non-adaptive and fixed in
advance. And, they consider a non-stochastic (adver-
sarial) bandit setting where the reward at time t for
arm i is bTi µt with µt chosen by an adversary.

Very recent work Russo & Roy (2013) provides near-
optimal bounds on Bayesian regret in many general
settings. This result is incomparable to ours because
of the different notion of regret used.

While the regret bounds provided in this paper do not
match or better the best available regret bounds for
the extensively studied problem of linear contextual
bandits, our results demonstrate that the natural and
efficient heuristic of Thompson Sampling can achieve
theoretical bounds that are close to the best bounds.
The main contribution of this paper is to provide new
tools for analysis of Thompson Sampling algorithm for
contextual bandits, which despite being popular and
empirically attractive, has eluded theoretical analysis.
We believe the techniques used in this paper will pro-
vide useful insights into the workings of this Bayesian
algorithm, and may be useful for further improvements
and extensions.

3. Regret Analysis: Proof of Theorem 1

3.1. Challenges and proof outline

The contextual version of the multi-armed bandit
problem presents new challenges for the analysis of TS
algorithm, and the techniques used so far for analyz-
ing the basic multi-armed bandit problem by Agrawal
& Goyal (2012); Kaufmann et al. (2012) do not seem
directly applicable. Let us describe some of these dif-
ficulties and our novel ideas to resolve them.

In the basic MAB problem there are N arms, with
mean reward µi ∈ R for arm i, and the regret for
playing a suboptimal arm i is µa∗−µi, where a∗ is the
arm with the highest mean. Let us compare this to a 1-
dimensional contextual MAB problem, where arm i is
associated with a parameter µi ∈ R, but in addition, at
every time t, it is associated with a context bi(t) ∈ R,
so that mean reward is bi(t)µi. The best arm a∗(t) at
time t is the arm with the highest mean at time t, and
the regret for playing arm i is ba∗(t)(t)µa∗(t) − bi(t)µi.

In general, the basis of regret analysis for stochastic
MAB is to prove that the variances of empirical esti-
mates for all arms decrease fast enough, so that the re-
gret incurred until the variances become small enough,
is small. In the basic MAB, the variance of the em-
pirical mean is inversely proportional to the number
of plays ki(t) of arm i at time t. Thus, every time the
suboptimal arm i is played, we know that even though
a regret of µi∗−µi ≤ 1 is incurred, there is also an im-
provement of exactly 1 in the number of plays of that
arm, and hence, corresponding decrease in the vari-
ance. The techniques for analyzing basic MAB rely on
this observation to precisely quantify the exploration-
exploitation tradeoff. On the other hand, the variance
of the empirical mean for the contextual case is given
by inverse of Bi(t) =

∑t
τ=1:a(τ)=i bi(τ)2. When a sub-

optimal arm i is played, if bi(t) is small, the regret
ba∗(t)(t)µa∗(t)− bi(t)µi could be much higher than the
improvement bi(t)

2 in Bi(t).

In our proof, we overcome this difficulty by dividing
the arms into two groups at any time: saturated and
unsaturated arms, based on whether the standard
deviation of the estimates for an arm is smaller or
larger compared to the standard deviation for the
optimal arm. The optimal arm is included in the
group of unsaturated arms. We show that for the
unsaturated arms, the regret on playing the arm can
be bounded by a factor of the standard deviation,
which improves every time the arm is played. This
allows us to bound the total regret due to unsaturated
arms. For the saturated arms, standard deviation is
small, or in other words, the estimates of the means
constructed so far are quite accurate in the direction
of the current contexts of these arms, so that the
algorithm is able to distinguish between them and
the optimal arm. We utilize this observation to show
that the probability of playing such arms at any step
is bounded by a function of the probability of playing
the unsaturated arms.

Below is a more technical outline of the proof of
Theorem 1. At any time step t, we divide the arms
into two groups:
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• saturated arms defined as those with g(T )st,i <
`(T )st,a∗(t),

• unsaturated arms defined as those with g(T )st,i ≥
`(T )st,a∗(t),

where st,i =
√
bi(t)TB(t)−1bi(t) and g(T ), `(T )

(g(T ) > `(T )) are constants (functions of T, d, δ) de-
fined later. Note that st,i is the standard deviation of
the estimate bi(t)

T µ̂(t) and vst,i is the standard devi-
ation of the random variable bi(t)

T µ̃(t).

We use concentration bounds for µ̃(t) and µ̂(t) to
bound the regret at any time t by g(T )(st,a∗(t)+st,a(t)).
Now, if an unsaturated arm is played at time t, then
using the definition of unsaturated arms, the regret is

at most 2g(T )2

`(T ) st,a(t). This is useful because of the in-

equality
∑
t st,a(t) = O(

√
Td lnT ) (derived along the

lines of Auer (2002)), which allows us to bound the
total regret due to unsaturated arms.

For saturated arms, we prove that the probability of
playing a saturated arm at any time t is within p of the
probability of playing an unsaturated arm, where p =

1
4e
√
πT ε

. More precisely, we define Ft−1 as the union

of history Ht−1 and the contexts bi(t), i = 1, . . . , N at
time t, and prove that for “most” (in a high probability
sense) Ft−1,

Pr (a(t) is a saturated arm Ft−1) ≤
1
p · Pr (a(t) is an unsaturated arm Ft−1) + 1

pT 2 ,

We use these observations to establish that (Xt; t ≥ 0),
where

Xt ' regret(t)− g(T )
p I(a(t) is unsaturated)st,a∗(t) −

2g(T )2

`(T ) st,a(t) −
2g(T )
pT 2 ,

is a super-martingale difference process adapted to fil-
tration Ft. Then, using the Azuma-Hoeffding inequal-
ity for super-martingales, along with the inequality∑
t st,a(t) = O(

√
Td lnT ), we will obtain the desired

high probability regret bound.

3.2. Formal proof

For quick reference, the notations introduced below
also appear in a table of notations at the beginning of
the supplementary material.

Definition 1. For all i, define θi(t) = bi(t)
T µ̃(t),

and st,i =
√
bi(t)TB(t)−1bi(t). By definition of µ̃(t),

marginal distribution of each θi(t) is Gaussian with
mean bi(t)

T µ̂(t) and standard deviation vst,i. Also,
st,i is the standard deviation of estimate bi(t)

T µ̂(t).

Definition 2. Recall that ∆i(t) = ba∗(t)(t)
Tµ −

bi(t)
Tµ, the difference between the mean reward of op-

timal arm and arm i at time t. .

Definition 3. Define `(T ) = R
√
d ln(T 3) ln( 1

δ ) + 1,

v = R
√

24
ε d ln( 1

δ ), and g(T ) =
√

4d ln(Td) v + `(T ).

Definition 4. Define Eµ(t) and Eθ(t) as the events
that bi(t)

T µ̂(t) and θi(t) are concentrated around their
respective means. More precisely, define Eµ(t) as the
event that

∀i : |bi(t)T µ̂(t)− bi(t)Tµ| ≤ `(T ) st,i.

Define Eθ(t) as the event that

∀i : |θi(t)− bi(t)T µ̂(t)| ≤
√

4d ln(Td) vst,i.

Definition 5. An arm i is called saturated at time
t if g(T ) st,i < `(T ) st,a∗(t), and unsaturated oth-
erwise. Let C(t) denote the set of saturated arms at
time t. Note that the optimal arm is always unsatu-
rated at time t, i.e., a∗(t) /∈ C(t). An arm may keep
shifting from saturated to unsaturated and vice-versa
over time.

Definition 6. Define filtration Ft−1 as the union of
history until time t−1, and the contexts at time t, i.e.,
Ft−1 = {Ht−1, bi(t), i = 1, . . . , N}.

By definition, F1 ⊆ F2 · · · ⊆ FT−1. Observe that the
following quantities are determined by the history Ht−1
and the contexts bi(t) at time t, and hence are included
in Ft−1,

• µ̂(t), B(t),

• st,i, for all i,

• the identity of the optimal arm a∗(t) and the set
of saturated arms C(t),

• whether Eµ(t) is true or not,

• the distribution N (µ̂(t), B(t)−1) of µ̃(t),
and hence the joint distribution of θi(t) =
bi(t)

T µ̃(t), i = 1, . . . , N .

Lemma 1. For all t, 0 < δ < 1, Pr(Eµ(t)) ≥ 1− δ
T 2 .

And, for all possible filtrations Ft−1, Pr(Eθ(t)|Ft−1) ≥
1− 1

T 2 .

Proof. The complete proof of this lemma appears in
Appendix A.3. The probability bound for Eµ(t) will
be proven using a concentration inequality given by
Abbasi-Yadkori et al. (2011), stated as Lemma 7 in
Appendix A.2. The R-sub-Gaussian assumption on
rewards will be utilized here. The probability bound
for Eθ(t) will be proven using a concentration inequal-
ity for Gaussian random variables from Abramowitz
& Stegun (1964) stated as Lemma 5 in Appendix A.2
.

The next lemma lower bounds the probability that
θa∗(t)(t) = ba∗(t)(t)

T µ̃(t) for the optimal arm at
time t will exceed its mean reward ba∗(t)(t)

Tµ plus
`(T )st,a∗(t).
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Lemma 2. For any filtration Ft−1 such that Eµ(t) is
true,

Pr
(
θa∗(t)(t) > ba∗(t)(t)

Tµ+ `(T )st,a∗(t) Ft−1
)
≥

1
4e
√
πT ε

.

Proof. The proof uses anti-concentration of Gaussian
random variable θa∗(t)(t) = ba∗(t)(t)

T µ̃(t), which has
mean ba∗(t)(t)

T µ̂(t) and standard deviation vst,a∗(t),
provided by Lemma 5 in Appendix A.2, and the con-
centration of ba∗(t)(t)

T µ̂(t) around ba∗(t)(t)
Tµ pro-

vided by the event Eµ(t). The details of the proof
are in Appendix A.4.

The following lemma bounds the probability of playing
saturated arms in terms of the probability of playing
unsaturated arms.

Lemma 3. Given any filtration Ft−1 such that Eµ(t)
is true,

Pr (a(t) ∈ C(t) Ft−1) ≤
1
p Pr (a(t) /∈ C(t) Ft−1) + 1

pT 2 ,

where p = 1
4e
√
πT ε

.

Proof. The algorithm chooses the arm with the high-
est value of θi(t) = bi(t)

T µ̃(t) to be played at time t.
Therefore, if θa∗(t)(t) is greater than θj(t) for all satu-
rated arms, i.e., θa∗(t)(t) > θj(t),∀j ∈ C(t), then one
of the unsaturated arms (which include the optimal
arm and other suboptimal unsaturated arms) must be
played. Therefore,

Pr (a(t) /∈ C(t) Ft−1)

≥ Pr
(
θa∗(t)(t) > θj(t),∀j ∈ C(t) Ft−1

)
. (1)

By definition, for all saturated arms, i.e. for all
j ∈ C(t), g(T )st,j < `(T )st,a∗(t). Also, if both the

events Eµ(t) and Eθ(t) are true then, by the def-
initions of these events, for all j ∈ C(t), θj(t) ≤
bj(t)

Tµ + g(T )st,j . Therefore, given an Ft−1 such
that Eµ(t) is true, either Eθ(t) is false, or else for all
j ∈ C(t),

θj(t) ≤ bj(t)Tµ+ g(T )st,j ≤ ba∗(t)(t)Tµ+ `(T )st,a∗(t).

Hence, for any Ft−1 such that Eµ(t) is true,

Pr
(
θa∗(t)(t) > θj(t),∀j ∈ C(t) Ft−1

)
≥ Pr

(
θa∗(t)(t) > ba∗(t)(t)

Tµ+ `(T )st,a∗(t) Ft−1
)

−Pr
(
Eθ(t) Ft−1

)
≥ p− 1

T 2
.

The last inequality uses Lemma 2 and Lemma 1. Sub-
stituting in Equation (1), this gives,

Pr (a(t) /∈ C(t) Ft−1) + 1
T 2 ≥ p,

which implies

Pr (a(t) ∈ C(t) Ft−1)

Pr (a(t) /∈ C(t) Ft−1) + 1
T 2

≤ 1

p
.

Definition 7. Recall that regret(t) was defined as,
regret(t) = ∆a(t)(t) = ba∗(t)(t)

Tµ − ba(t)(t)Tµ. Define
regret′(t) = regret(t) · I(Eµ(t)).

Next, we establish a super-martingale process that will
form the basis of our proof of the high-probability re-
gret bound.

Definition 8. Let

Xt = regret′(t)− g(T )
p I(a(t) /∈ C(t))st,a∗(t)

− 2g(T )2

`(T ) st,a(t) −
2g(T )
pT 2 ,

Yt =
∑t
w=1Xw,

where p = 1
4e
√
πT ε

.

Lemma 4. (Yt; t = 0, . . . , T ) is a super-martingale
process with respect to filtration Ft.

Proof. See Definition 9 in Appendix A.2 for the defi-
nition of super-martingales. We need to prove that for
all t ∈ [1, T ], and any Ft−1, E[Yt−Yt−1|Ft−1] ≤ 0, i.e.

E [regret′(t) Ft−1] ≤
g(T )
p Pr (a(t) /∈ C(t) Ft−1) st,a∗(t) +
2g(T )2

`(T ) E
[
st,a(t) Ft−1

]
+ 2g(T )

pT 2 .

If Ft−1 is such that Eµ(t) is not true, then regret′(t) =
regret(t) ·I(Eµ(t)) = 0, and the above inequality holds
trivially. So, we consider Ft−1 such that Eµ(t) holds.

We observe that if the events Eµ(t), Eθ(t) are true,
then ∆a(t)(t) ≤ g(T )(st,a(t) + st,a∗(t)). This is because
if an arm i is played at time t, then it must be true
that θi(t) ≥ θa∗(t)(t). And, if Eθ(t) and Eµ(t) are
true, then,

bi(t)
Tµ ≥ θi(t)− g(T )st,i

≥ θa∗(t)(t)− g(T )st,i

≥ ba∗(t)(t)
Tµ− g(T )st,a∗(t) − g(T )st,i.

Therefore, given a filtration Ft−1 such that Eµ(t) is
true, either ∆a(t)(t) ≤ g(T )(st,a(t) + st,a∗(t)) or Eθ(t)
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is false. And, hence,

E [regret′(t) Ft−1]

= E
[
∆a(t)(t) Ft−1

]
≤ E

[
g(T )(st,a∗(t) + st,a(t)) Ft−1

]
+ Pr

(
Eθ(t)

)
= g(T ) E

[
st,a∗(t)I(a(t) ∈ C(t)) Ft−1

]
+g(T ) E

[
st,a∗(t)I(a(t) /∈ C(t)) Ft−1

]
+g(T ) E

[
st,a(t) Ft−1

]
+ Pr

(
Eθ(t)

)
≤ g(T )st,a∗(t) Pr (a(t) ∈ C(t) Ft−1)

+g(T )E
[(

g(T )
`(T )

)
st,a(t)I(a(t) /∈ C(t)) Ft−1

]
+g(T )E

[
st,a(t) Ft−1

]
+ 1

T 2

≤ g(T )st,a∗(t) · 1p Pr (a(t) /∈ C(t) Ft−1) + g(T ) 1
pT 2

+
(

2g(T )2

`(T )

)
E
[
st,a(t) Ft−1

]
+ 1

T 2

≤ g(T )st,a∗(t) · 1p Pr (a(t) /∈ C(t) Ft−1)

+
(

2g(T )2

`(T )

)
E
[
st,a(t) Ft−1

]
+ 2g(T )

pT 2 .

In the first inequality we used that for all i, ∆i(t) ≤ 1.
The second inequality used the definition of unsatu-

rated arms to apply st,a∗(t) ≤ g(T )
`(T ) st,a(t), and Lemma

1 to apply Pr
(
Eθ(t)

)
≤ 1

T 2 . The third inequality used

Lemma 3, and also the observation that 0 ≤ st,a∗(t) ≤
||ba∗(t)(t)|| ≤ 1.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1 We observe that the absolute
value of each of the four terms in the definition of Xt

is bounded by 2
p
g(T )2

`(T ) , therefore the super-martingale

Yt has bounded difference |Yt− Yt−1| ≤ 8
p
g(T )2

`(T ) , for all

t ≥ 1. Thus, we can apply Azuma-Hoeffding inequality
(see Lemma 6 in Appendix A.2), to obtain that with
probability 1− δ

2 ,∑T
t=1 regret′(t)

≤
∑T
t=1

(
g(T )
p I(a(t) /∈ C(t))st,a∗(t)

)
+ 2g(T )

pT

+ 2g(T )2

`(T )

∑T
t=1 st,a(t) + 8

p
g(T )2

`(T )

√
2T ln( 2

δ )

≤
∑T
t=1

(
g(T )2

`(T )
1
pI(a(t) /∈ C(t))st,a(t)

)
+ 2g(T )

pT

+ 2g(T )2

`(T )

∑T
t=1 st,a(t) + 8

p
g(T )2

`(T )

√
2T ln( 2

δ )

≤ g(T )2

`(T )
3
p

∑T
t=1 st,a(t) + 2g(T )

pT + 8
p
g(T )2

`(T )

√
2T ln( 2

δ ).

The second inequality used the observation that if an
unsaturated arm is played, i.e., a(t) /∈ C(t), then,
g(T )st,a(t) ≥ `(T )st,a∗(t).

Now, we can use
∑T
t=1 st,a(t) ≤ 5

√
dT lnT , which

can be derived along the lines of Lemma 3 of Chu
et al. (2011) using Lemma 11 of Auer (2002) (see Ap-
pendix A.5 for details). Also, recalling the definitions
of p, `(T ), and g(T ) (see the Table of notations in the
beginning of the supplementary material), and substi-
tuting in above, we get∑T

t=1 regret′(t) = O
(
d2

ε

√
T (1+ε) ln( 1

δ ) ln(Td)
)
.

Also, because Eµ(t) holds for all t with probability
at least 1 − δ

2 (see Lemma 1), regret′(t) = regret(t)

for all t with probability at least 1 − δ
2 . Hence, with

probability 1− δ,
R(T ) =

∑T
t=1 regret(t) =

∑T
t=1 regret′(t) =

O
(
d2

ε

√
T (1+ε) ln( 1

δ ) ln(Td)
)
.

The proof for the alternate definition of regret men-
tioned in Remark 1 is provided in Appendix A.5.

4. Conclusions

Detailed concluding remarks appear in supplementary
materials Sec. D.
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