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Abstract

In this paper, we study the problem of active
learning for cost-sensitive multiclass classifi-
cation. We propose selective sampling algo-
rithms, which process the data in a stream-
ing fashion, querying only a subset of the la-
bels. For these algorithms, we analyze the
regret and label complexity when the labels
are generated according to a generalized lin-
ear model. We establish that the gains of ac-
tive learning over passive learning can range
from none to exponentially large, based on a
natural notion of margin. We also present a
safety guarantee to guard against model mis-
match. Numerical simulations show that our
algorithms indeed obtain a low regret with a
small number of queries.

1. Introduction

The problem of active learning has received a lot
of attention in the context of binary classification,
both from a theoretical and an applied perspec-
tive. On the theoretical side, a series of works have
studied a variety of efficient and inefficient methods
with a small query complexity; an incomplete bibli-
ography includes (Cohn et al., 1994; Dasgupta et al.,
2007; Beygelzimer et al., 2009; 2010; Hanneke, 2011;
Cesa-Bianchi et al., 2009; Dekel et al., 2010). In com-
parison, there has been relatively little theoretical
work on the more general scenario of multiclass classi-
fication. Bulk of the work on multiclass active learn-
ing has been developed in computer vision, with a
focus on scalable algorithms and empirical perfor-
mance (see e.g. Yan et al., 2003; Jain & Kapoor, 2009;
Joshi et al., 2012). Compelling applications also arise
in other domains such as text and webpage catego-
rization, computational biology (Luo et al., 2005) and
more generally under the umbrella of structured out-
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put prediction problems (Roth & Small, 2006). How-
ever, little is known about the label complexity and
error of these approaches. An interesting aspect of
multiclass classification is that the desired criterion is
often specified by a general cost matrix C. In such
scenarios, we would like to further understand how
the cost matrix influences our active querying strat-
egy, and how its structure helps or hurts the loss and
label complexity of active learning.

In this paper, we study cost-sensitive multiclass
classification with a focus on efficient algorithms,
as well as guarantees on the error and the la-
bel complexity. We build on the selective sam-
pling framework for online active learning, pi-
oneered in the binary setting by Cesa-Bianchi,
Gentile and co-authors (Cesa-Bianchi et al., 2009;
Orabona & Cesa-Bianchi, 2011; Dekel et al., 2010). In
particular, we consider a generalized linear model
(GLM) setting for multiclass classification. This is re-
lated to, but different from the multilabel setting of
Gentile and Orabona (2012) where each label could
occur independently, given a data point x. Our first
contribution is to establish a connection between con-
ditional probability estimation and cost-sensitive loss
minimization. We also show how to obtain consistent
conditional probability estimates (for the label to be
i, given x). We further construct query rules that uti-
lize these probability estimates in order to select which
data points to query the labels for.

Our results bound the regret to the Bayes predictor
(under the cost matrix) of our algorithm, as well as the
label complexity for our query rules. These guarantees
hold for a completely general (possibly adversarial) se-
quence of data vectors xt, as long as our GLM assump-
tion holds. We also pose a generalization of the Tsy-
bakov margin condition (Tsybakov, 2004) from binary
classification and establish fast rates for active multi-
class learning under this condition. Our results show
that the gains of active learning over passive are as
good as exponential in the most favorable case where
a hard margin is present between the conditional prob-
abilities of the best and the second best class for each
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data point. To our knowledge, these are the first such
theoretical results for multiclass active learning.

Since our approach is based on online convex opti-
mization, it lends itself to efficient algorithms. We
also provide an easy technique to ensure that our algo-
rithm would never do worse than random subsampling
even under model mismatch, while performing much
better in favorable scenarios. Finally, we complement
our theoretical analysis with experimental evaluation
in numerical simulations, where our methods do yield
label complexity gains, and continue to be robust to
model mismatch to a certain degree.

The remainder of this paper is organized as follows. In
the next section, we describe our setup and assump-
tions. Section 3 presents our algorithm along with
various query criteria. We describe our main results
and their important consequences in Section 4, with
simulation results in Section 5. Proofs of our results
are deferred to the supplement.

2. Setup and assumptions

We start by describing the generative model we assume
for multiclass classification problems along with some
assumptions about the model.

2.1. Generalized linear models for
cost-sensitive classification

We assume that we have a total of K classes, and
the labels are generated based on a generalized linear
model. Specifically, we assume that we have a weight
matrix W ∗ ∈ R

K×d with one weight vector per class.
We further assume that W ∗ ∈ W ⊆ R

K×d, for some
convex set W, with W ∗

K = 0 wlog to avoid an over-
complete representation. Given a covariate x ∈ R

d,
we associate a label vector y ∈ R

K with an entry of
1 for the correct class and zeros elsewhere. Denoting
the canonical basis vectors by {ei ∈ R

K}, we assume
that the labels are generated according to the GLM

P(y = ei |W ∗, x) = 〈∇Φ(W ∗x), ei〉 , (1)

where Φ(·) : R
K 7→ R is a convex function. In words,

Φ is a function that takes a vector in R
K and maps it

to a probability vector via its gradient. To get some in-
tuition about this definition, consider the special case
where P(y |W ∗, x) is the canonical exponential family
with sufficient statistics y. In this case, the function
Φ corresponds to the log-partition function of the ex-
ponential family which is always convex (Lauritzen,
1996). As particular special cases, our family includes
the multiclass logit model, as well as a linear noise
model. We need some additional assumptions regard-
ing the function Φ.

Assumption 1. The function Φ(·) is γℓ-strongly con-
vex, that is for all u, v ∈ S ⊆ R

K , we have

Φ(u) ≥ Φ(v) + 〈∇Φ(v), (u− v)〉+ γℓ
2
‖u− v‖22. (2)

In applications of the assumption, the set S will be
picked so that the assumption is satisfied (with high
probability) for all the vectors of form Wx with W ∈
W and x ∈ R

d (x drawn from underlying population).
We also require an analogous upper bound.

Assumption 2. The function Φ(·) is γu-smooth, that
is for all vectors u, v ∈ S ⊆ R

K , we have

Φ(u) ≤ Φ(v) + 〈∇Φ(v), (u− v)〉+ γu
2
‖u− v‖22. (3)

We also make one assumption regarding the set of pre-
dictors W and the data x.

Assumption 3. ∀x ∈ X , we have ‖x‖2 ≤ R and
∀W ∈ W, we have ‖W i‖2 ≤ ω for all i = 1, 2, . . . ,K.1

In particular, the assumption implies that our pre-
dictions 〈Wi, x〉 are bounded by Rω for each i =
1, 2, . . . ,K. Based on the above model, our methods
will be defined in terms of the loss function

ℓ(Wx, y) = Φ(Wx)− yTWx. (4)
The motivation behind using this definition is that this
loss function is calibrated for our noise model, meaning
that for each x

argmin
W

E[ℓ(Wx, y) | x] =W ∗,

using our generative model (1). Assumptions 1 and 2
further imply that the loss is smooth and strongly con-
vex as a function of the prediction vectorWx. We now
describe a couple of concrete examples of our model to
illustrate our assumptions.

2.2. Some motivating examples

Here we focus on examples of the probabilistic
model (1) and the corresponding assumptions on the
function Φ. We start with a multiclass logistic noise
model and then describe a linear model.

Example 1 (Multiclass logistic regression). The mul-
ticlass logistic model corresponds to choosing the func-
tion Φ(Wx) = log(

∑K
i=1 exp(x

TW i)). This gives rise
to the conditional probability model

P(Y = i |W,x) = exp(xTW i)
∑K
j=1 exp(x

TW j)
,

which is the well-known multinomial logit model. It is
easily checked that the loss function (4) for this setting
is the multiclass logistic loss log(1+

∑
i6=y exp(x

TW i−
xTW y)). For this setting, we assume that Assump-
tion 3 is satisfied with ω = R = 1. With these bounds,
it can be checked that the function Φ satisfies Assump-
tions 1 and 2 with constants 1/(eK2) and 1, resp. 2

1W i ∈ R
d is the ith row of W .

2Strong convexity can be improved by rescaling the loss
to instead use exp(xTW i/σ) for some σ > 0.
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Figure 1. Examples of structured cost matrices (see text)

Example 2 (Multiclass linear regression). Unlike the
multiclass logistic case, there is no standard definition
for a multiclass linear model. We consider

P(Y = i|W,x) = xTW i − (

K∑

j=1

xTW j − 1)/K.

The induced probabilities are non-negative assuming
xTW i − xTW j ≤ 1/K for all i 6= j, and they al-
ways add up to 1. This is also the natural gen-
eralization of the linear model for binary classifica-
tion (Cesa-Bianchi et al., 2009). The induced func-
tion Φ for this case is

K∑

i=1

(xTW i)2/2−
( K∑

j=1

xTW j − 1
)2
/(2K).

It is easily checked that Assumptions 1 and 2 are sat-
isfied with constants 1− 1/K and 1 respectively.

2.3. Cost-sensitive multiclass classification

In the problem of cost-sensitive multiclass classifica-
tion, we are given a cost matrix C ∈ R

K×K with non-
negative entries and zeros on the diagonal. These as-
sumptions are without loss of generality. Here C(i, j)
is the cost of predicting j when the true label is i.
The simplest example of a cost matrix is the one cor-
responding to the 0/1 loss for multiclass classification:

C(i, j) =

{
0 if i = j
1 otherwise

. (5)

However, the more general setting allows us to penalize
mistakes involving different class pairs differently. For
instance, one could imagine a block-structured matrix
with zeros on the diagonal blocks (Fig. 1(a)). This cor-
responds to groups of similar classes, with no penalty
for mistakes within a group and a high penalty for mis-
takes across groups. Another example is a tree struc-
tured cost matrix, where the classes are organized into
a tree hierarchy (e.g. in hierarchical classification) and
the cost of a mistake is the tree-distance between the
two classes (Fig. 1(b)).

Given such a cost-matrix, the quality of a prediction
ŷ for a point x is measured by the expected cost:

E[C(Y, ŷ) | x] =
K∑

i=1

C(i, ŷ)(∇Φ(W ∗x))i.

In the sequel, we will measure the performance of our
algorithms in the regret to the best weight matrixW ∗,
as measured by this expected cost-sensitive loss.

3. Selective sampling for multiclass

classification

In this section we present our algorithms for the cost-
sensitive multiclass classification setting. We first
present an algorithm for an arbitrary choice of a query
function. We then give concrete examples of query
functions that we consider in our work.

3.1. Algorithm

Our algorithms build on a growing body of
work on selective sampling algorithms for on-
line active learning by Cesa-Bianchi, Gen-
tile and co-authors (Cesa-Bianchi et al., 2009;
Orabona & Cesa-Bianchi, 2011; Dekel et al., 2010).
In order to describe the algorithm, we need some
additional notation.

Given a weight matrix W and a data point x, it will
be convenient to define the score of a class i as

SxW (i) =

K∑

j=1

(max
a,b

C(a, b)− C(j, i))(∇Φ(Wx))j . (6)

In the simpler setting with the 0/1 multiclass loss, we
see that SxW (i) = (∇Φ(Wx))i. We start with an easy
lemma.

Lemma 1. Given a cost matrix C, suppose the
class conditional probabilities follow the probabilistic
model (1) based on a weight matrix W ∗. Then the
Bayes optimal classifier predicts as argmaxi S

x
W∗(i).

This intuition will be important in going from scores
to predictions in our algorithm. Before describing the
algorithm, we mention a couple of more important no-
tations. We use the indicator variables Zt ∈ {0, 1} to
indicate whether the label was queried at time t or not.
Given γ > 0, we define the matrix

Mt =
t−1∑

s=1

Zsxsx
T
s +

γ

γℓ
I. (7)

At time t, we denote the history of past x’s and the
queried labels as Ht. Formally,

Ht = {xs : 1 ≤ s < t and ys : Zs = 1} (8)

In Algorithm 1, we describe a generic algo-
rithmic template that takes a query function
Q : X × {X × {1, 2, . . . ,K}}t−1 7→ {0, 1} and
queries yt if Q(xt, Ht) = 1. We give examples of the
query function after presenting the general algorithm.

The update rule (9) does not use the cost matrix be-
cause our algorithm is based on consistent conditional
probability estimation under the generative model (1).
The update rule (9) estimates a weight matrix Wt

which is close to W ∗, which is then mapped to a pre-
diction as in Lemma 1.
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Algorithm 1 CS-Selectron algorithm for selective
sampling in cost-sensitive multiclass classification

Require: Query function Q, regularization parame-
ter γ > 0 and cost matrix C.
Initialize W1 = 0, M1 = γI/γℓ.
for all time steps t = 1, 2, . . . , T do
Observe instance xt ∈ X , Ht+1 = Ht ∪ {xt}.
Predict ŷt as argmaxi=1,2,...,K S

xt

W
t

(i).

if Q(xt, Ht) = 1 then
Query label yt
Update Zt = 1, Ht+1 = Ht+1 ∪ {yt} and
Mt+1 =Mt + xtx

T
t .

Update Wt according to the rule

Wt+1 = arg min
W∈W

{

t
∑

s=1

Zsℓ(Wxs, ys) + γ‖W‖2F

}

.

(9)

end if
end for

Before we move on to discuss the query functions,
we will make some remarks about the computational
properties of Algorithm 1. The algorithm might seem
computationally challenging since it requires us to
solve a loss minimization problem over all the queried
samples at each step. This is not an issue, however,
since warm-start at the previous solution is a fairly
good guess in most cases. Indeed, the most expensive
step of our algorithm is not the update rule (since it
only occurs when we query), but the computation of
the quadratic form xtM

−1
t xt at each step t, which will

be used in all our query criteria. While this computa-
tion seems unavoidable to us at this time, it seems
possible to use approximate SVD computations us-
ing ideas from randomized linear algebra (Halko et al.,
2011; Clarkson & Woodruff, 2009) which exploit the
low-rank structures common to natural datasets.

3.2. Query functions

There have been different query functions that have
been considered in previous works on selective sam-
pling in the binary classification setting and we de-
scribe their multiclass variants below. In order to de-
fine the criteria, we need define some additional nota-
tion. We define the following quantities of interest:

y∗
t = arg max

i=1,...,K
Sxt

W∗(i), y
′

t = argmax
i 6=y∗

t

Sxt

W∗(i)

ŷt = arg max
i=1,...,K

Sxt

W
t
(i), y

′′

t = argmax
i 6=ŷt

Sxt

W
t
(i). (10)

In words, y∗t and y
′

t are the optimal and second-best
classes as per the true weight matrix W ∗. ŷt and y

′′

t

are our best estimates of these classes based on our
weight matrix Wt. We now define our query rules. We

will use 11 {A} to denote the indicator of an event A.

• BBQ selection rule: This rule was introduced
in the work of Cesa-Bianchi et al. (2009):

Q(xt, Ht) = 11
{
‖xt‖2M−1

t

≥ t−κ
}
, (11)

for some κ ∈ (0, 1). This rule turns out to be
applicable in the multiclass setting as is. The in-
tuition behind this rule is that if the current data
point xt is captured well by the linear span of
the previously queried data points, then we can
make a confident prediction regarding the label
yt. The exponent κ is the parameter that governs
the trade-off between the number of queries the
algorithm makes and the regret it incurs.

• BBQǫ selection rule: This rule is a slight mod-
ification of the BBQ query criterion, and uses a
query function

Q(xt, Ht) = 11
{

ηǫ‖xt‖2M−1
t

≥ ǫ2
}

, (12)

where ηǫ > 0 is a function dependent on C and Φ
which controls the distance between Wt and W

∗,
to be specified later. ǫ is a parameter of the al-
gorithm. The intuition behind this rule is that at
the rounds where we don’t query, we will be guar-
anteed that the difference between predictions of
Wt and W

∗ on xt is at most ǫ whp.

• DGS selection rule: This query criterion is a
modification of a rule that was proposed in the
work of Dekel et al. (2010) in the context of bi-
nary classification, and takes not only the previ-
ous covariates, but also the observed labels ys into
account. The query function for this criterion in
the multiclass setting is

11
{

Sxt

W
t
(ŷt)− Sxt

W
t
(y

′′

t ) ≤ ηDGS ‖xt‖M−1
t

}

. (13)

The intuition behind this rule is that on the
rounds where we do not query the label yt, we
are guaranteed (whp) that either ŷt = y∗t , or the
regret is small.

4. Main results and their consequences

In this section we state the main results regarding the
performance and the query complexity of Algorithm 1,
and obtain some illustrative corollaries. We conclude
the section with a safety guarantee for scenarios where
our modeling assumption (1) is not valid.

4.1. Regret and label complexity

At a high level, we will demonstrate that the aver-
age regret of our algorithm vanishes with the number
of queries NT at a rate which adapts to the hard-
ness of the problem. In the worst case, the rate is
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Õ(1/
√
NT ), which is also achieved by random sub-

sampling. In the best case, our average regret van-
ishes exponentially fast in NT , while random sub-
sampling can only achieve an error of Õ(1/NT ) in
this case (Daniely et al., 2011). An extension of Tsy-
bakov’s margin condition (Tsybakov, 2004) allows for
a smooth interpolation between the two extremes,

yielding rates that are Õ(N
−(1+α)/2
T ) as α ranges from

0 (noisy) to ∞ (hard-margin).

In order to define regret, we recall our earlier defini-
tion (8) of Ht and further define Ft = σ{Ht ∪ xt}.
In words, Ft is the sigma field generated by x1, . . . , xt
along with all the labels we have seen before round t.
Our results are stated in terms of the regret:

RT =

T∑

t=1

(E[C(Yt, ŷt) | Ft]− E[C(Yt, y
∗
t ) | Ft]) (14)

Observe that the regret is incurred on each round, re-
gardless of whether we query or not. Our results will
involve the following quantity which counts the num-
ber of hard to classify points, modulated at a level ǫ
Tǫ = {1 ≤ t ≤ T : Sxt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ}. (15)
For any class i, we define the average cost as C̄i =∑
j C(j, i)/K and the column-variation in the costs as

σ2(C) = max
i=1,2,...,K

K∑

j=1

(C(j, i)− C̄i)
2. (16)

This definition captures the variation of the cost ma-
trix, making it invariant to adding a constant to each
column of the cost matrix. We also use the shorthand

ψ(C,Φ) = σ2(C)γ2u/γ
2
ℓ , (17)

which will capture our dependence on the cost matrix
and the link function Φ. With this notation, we can
now state our main results. We start with a result
for the BBQǫ query criterion. We do not give any
results for the BBQ criterion, but similar guarantees
can be obtained by combining our techniques with the
previous works of Cesa-Bianchi et al. (2009; 2011).

For ease of presentation of our results, let us define

θt =
8
√
dK

γℓ

√

log
(

1+
2R2γℓ

γ

)

log
dKt

δ
+

√

2γω2

γℓ
. (18)

In the first theorem, we use BBQǫ rule with
ηǫ = 4σ2(C)γ2uθ

2
t .

Theorem 1 (BBQǫ rule). Suppose we receive labels
generated according to the model (1) and Assump-
tions 1-3 are satisfied. Suppose we run Algorithm 1
with the BBQǫ query criterion using some ǫ > 0 and
γ = γℓ. Then, for T ≥ 3 and 0 < δ < 1/e, with
probability 1− 2δ the regret is at most

RT = Õ

(
ǫTǫ + ψ(C,Φ)

d

ǫ
log

1

δ

)
.

The number of queries made is at most

NT = Õ

(
ψ(C,Φ)

d2K

ǫ2

)

A qualitatively similar result also holds for the DGS
criterion. In this case we use ηDGS = 2σ(C)γu θt.

Theorem 2 (DGS rule). Under conditions of The-
orem 1, suppose we run Algorithm 1 with the cost-
sensitive DGS criterion. Then, for T ≥ 3 and 0 < δ <
1/e, with probability 1− 2δ the regret is at most

RT = Õ

(
inf
ǫ>0

{
ǫTǫ + ψ(C,Φ)

d

ǫ
log

1

δ

})
,

For any ǫ > 0, with probability at least 1− δ, the num-
ber of queries made is at most

NT = Õ
(
Tǫ + ψ(C,Φ)

d2K

ǫ2

)

Observe that ǫ is a parameter of the algorithm in The-
orem 1, but a free parameter in Theorem 2. A few
remarks about these results are in order.

(a) We reiterate that the above results hold for an
arbitrary sequence xt, much like earlier results
on selective sampling (Orabona & Cesa-Bianchi,
2011). In order to interpret the results, we observe
that setting Tǫ = T and optimizing over ǫ yields
a regret of Õ(1/

√
T ) and Õ(NT )—recovering the

passive learning results. However, for nicer prob-
lems with Tǫ = o(T ) for ǫ small enough, we expect
strict improvements in label complexity.

(b) We expect a similar result to hold for an up-
date rule where we just do an Online New-
ton Step (Hazan et al., 2007) instead of our
current rule (9), by combining the techniques
of Gentile & Orabona (2012) with our results.

(c) An important assumption in the implementation
of Algorithm 1 is that we know the correct link
function in order to pick the right loss function.
This is currently a limitation of our theory, but
the algorithm is stable to small perturbations.
That is, if E[Y | x] is close to ∇Φ for some func-
tion Φ in a pointwise sense, then it suffices to use
the loss function defined by Φ.

In order to discuss concrete examples of the benefits
of active learning, we now focus on the setting of i.i.d.
x’s. In binary classification problems, one assumption
that helps to capture the benefits of active learning is
the Tsybakov noise condition (Tsybakov, 2004) which
governs the fraction of data that lies close to the classi-
fication boundary. We now describe a multiclass ver-
sion of this assumption, and then provide improved
regret guarantees under this assumption.

Assumption 4 (Multiclass Tsybakov noise condi-
tion). We say that a distribution P over R

d satisfies
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the multiclass Tsybakov noise condition with parame-
ters (ǫ0, α, c) for some ǫ0 > 0 and α ≥ 0 if for all
0 ≤ ǫ ≤ ǫ0,

P

(
SXW∗(y∗(X))− SXW∗(y

′

(X)) ≤ ǫ
)
≤ c ǫα.

In words, the fraction of points where the scores of
the best and the second best classes are within ǫ is at
most c ǫα. In the special case of 0/1 loss, this yields the
following more intuitive condition. For all 0 ≤ ǫ ≤ ǫ0,

P

(
(∇Φ(W ∗X))y∗(X) − (∇Φ(W ∗X))y′ (X) ≤ ǫ

)
≤ c ǫα.

That is, we control the fraction of points x where the
probabilities of the best and the second-best class are
closer than ǫ at a level cǫα. In particular, α = 0 is
a tautology for c = 1, while α → ∞ imposes a hard
margin of size ǫ0. This is analogous to controlling the
difference |P(y = 1 | x) − 0.5| in the binary case, and
provides the natural extension of the Tsybakov noise
condition from the binary classification case. An im-
mediate consequence of the assumption is that we ob-
tain Tǫ = Õ(Tǫα) for all ǫ ≤ ǫ0, both in expectation
and with high probability (Dekel et al., 2010). Under
the assumption, we can obtain the following simplified
corollaries of our earlier results.

Corollary 1. Under conditions of Theorem 2, assume
further that the covariate sequence is drawn i.i.d. ac-
cording to a distribution that satisfies Assumption 4.
Then with probability at least 1−2δ, the average regret
of Algorithm 1 with the DGS query criterion is at most

RT
T

= Õ

((
ψ(C,Φ)

d

T

) 1+α

2+α

)
.

With probability at least 1 − δ, the number of queries

is at most NT = Õ
(
T

2
2+α

(
ψ(C,Φ) d2K

) α

2+α

)
.

A similar result also holds for the BBQǫ query rule.
From the result, we can see that as α → ∞, NT ap-
proaches O(log T ) and the average regret approaches
O(1/T ), which is the best possible scaling in T even if
we query all T labels (Daniely et al., 2011). In order
to further understand the gains of active learning in
such low noise problems, it is instructive to study the
average regret as a function of the number of queries
made. Doing so, we obtain the following corollary.

Corollary 2. Under conditions of Corollary 1, we
have the following with probability at most 1− 2δ.

(a) For the BBQǫ rule with ǫ∗ =
(
dψ(C,Φ)

T

)1/(α+2)

,

assuming ǫ∗ ≤ ǫ0, the average regret satisfies
RT
T

= Õ

((
ψ(C,Φ)

d2K

NT

) 1+α

2

)
.

(b) For the DGS rule, the average regret satisfies
RT
T

= Õ

(
d

(1+α)2

(2+α) K
α(1+α)
2(2+α)

(ψ(C,Φ)
NT

) 1+α

2

)
,

assuming ǫ∗ ≤ ǫ0.

In terms of the scaling of the average regret with re-
spect to the number of queries, both the methods

achieve a guarantee of N
−

(1+α)
2

T , which is known to
be optimal under Assumption 4 in the binary classi-
fication setting (Castro & Nowak, 2008). In particu-
lar, as α → ∞, the average regret decays exponen-
tially in NT , meaning we query only O(log T ) labels.
This behavior is similar to the selective sampling al-
gorithms for binary classification (Dekel et al., 2010;
Orabona & Cesa-Bianchi, 2011). A crucial difference
between the two parts of the corollary is that while
BBQǫ needs knowledge of the noise level in setting the
parameter ǫ, the DGS query rule adapts to it.

4.2. Conclusions for specific cost matrices

In order to better understand our results, we now spe-
cialize to the case of specific cost matrices, providing
concrete values of σ2(C).

0/1 multiclass loss: In this special case, the cost
matrix takes the form (5). It is easy to check that the
parameter σ2(C) = 1− 1/K in this case.

This immediately yields bounds on regret and query
complexity for our algorithms in the multiclass 0/1
loss scenario, as corollaries of our Theorems. In order
to better understand the scalings with respect to the
dimension d and the number of classes K, we observe
from Corollary 1 that our regret bound takes the form

RT
T

= Õ

(
ǫ1+α +

dγ2u
γ2ℓ ǫT

)
= Õ

((
dγ2u
γ2ℓT

) 1+α

2+α

)
,

where the second equality optimizes for the best ǫ.
It might seem at the first glance that our rates are
completely independent ofK. However, that is not the
case in general. The condition number of the Hessian
introduced through the ratio γu/γℓ can often depend
on K (such as in Example 1). Understanding optimal
scalings with respect to d andK remains an interesting
question for future research.

Block structured cost matrix: We consider a sim-
ple version of the block-structured cost matrix example
illustrated in Fig. 1(a). Suppose that our cost matrix
consists of r blocks, each of size K/r. The cost matrix
is zero on the diagonal blocks corresponding to the
groups, and identically 1 on the off-diagonal blocks.
In this case, it is easily checked by a direct calcula-
tion that σ2(C) = K/r(1−1/r).We see that we do not
incur any substantial costs if we have a large number
of small, homogeneous groups. In contrast, a small
number of large, homogeneous groups can force an ad-
ditional factor of O(K) in our results. This not just an
artifact of our analysis, but seems like an actual prob-
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lem case for Algorithm 1. For large groups, we still
estimate the probabilities for individual classes (to ex-
ploit the GLM assumption), but predict based on sum
of class probabilities over a large group which has an
error potentially larger by a factor of K/r.3

Tree structured cost matrix: This is the setting
illustrated in Fig. 1(b). We assume that our K classes
are arranged at the leaves of a tree. The cost of
misclassification is the tree distance between the two
classes. In this case, a direct calculation reveals that
σ2(C) = O(K). This is expected given our previous
example, since a tree can be thought of as having a
small number of large heterogeneous groups.

Overall, we see that in some cases where we can lever-
age the structure of the cost matrix, while in others we
cannot. It is our intuition that just structure on the
cost matrix is not sufficient to reduce the complexity of
the problem, without corresponding structure on the
weight matrix. When such a structure is present, we
expect our method to be able to leverage it through
the use of regularization, or using the set W.

4.3. A safety guarantee

Robustness to model mismatch is a crucial concern,
as the consequences of model mismatch can be quite
catastrophic in selective sampling. Our algorithm
learns over a biased subsample from the underlying
distribution and when our model is incorrect, the er-
ror we minimize over this biased subsample may no
longer reflect the error under the true distribution.4

Importance weighted algorithms (Beygelzimer et al.,
2009; 2010) do work with an unbiased distribution,
but the extent of label complexity savings from these
approaches in our setting—when minimizing a surro-
gate loss in a multiclass scenario—is not clear.

We now suggest a partial fix to model mismatch, by
querying an additional NT labels, whenever the algo-
rithm was going to query NT labels. The idea is to run
an independent passive learning algorithm on a purely
random subsample of size NT . Let us denote this sub-
sample by S and its size by N . This can be achieved,
for instance, by also querying the label of xt+1 when-
ever our algorithm recommends to query xt. We now
run a low-regret algorithm on S and measure its cu-
mulative prediction loss (in the surrogate loss (4)) on
this subsample. Let us denote the iterates generated in

3We suspect this is unavoidable using a GLM, unless
the weight matrix W ∗ has a structure aligned with the
cost matrix.

4This is also a problem with previous selective sampling
approaches.

this process by Ŵt. At the same time, we also measure
the prediction loss of our active learner on the subsam-
ple. Now standard arguments (such as those used in
the proof of Lemma 6 in the appendix) can be used to
guarantee that with probability at least 1− 4δ log T

0 ≤ 1

N

∑

i∈S

(Eℓ(Ŵi; (x, y))− min
W∈W

Eℓ(W ; (x, y))

≤ R1
ℓ

N
+ c

[
d

Nγℓ
log

(
R2γℓN

γ
+ 1

)
+

Rω

Nγℓ
log

1

δ

]
,

where R1
ℓ is the cumulative regret in the loss function

ℓ of the iterates Ŵi on the sample S. A similar claim
can also be made for the active learning algorithm,
replacing Ŵi by Wi and R

1
ℓ by R2

ℓ .

Based on these bounds, we now check the condition

R2
ℓ

N
≥ R1

ℓ

N
+ c

[
d

Nγℓ
log

(
R2γℓT

γ
+ 1

)
+

Rω

Nγℓ
log

1

δ

]
.

When this holds, we are guaranteed that the (average)
expected risk of our active learning iterates is larger
than that of the random subsampling approach. In
that case, we pick the solution resulting from random
subsampling. This guarantees that we never do worse
than a constant factor of random subsampling but can
still do much better when the model assumptions are
correct. We note that this is not a safeguard specific
to our method, and can be used with any sequential
active learning algorithm. Of course, having better
guarantees without our model assumptions is an active
area of research.

5. Numerical simulations

In this section, we describe results from some evalua-
tion of our algorithms on synthetic data. We evaluated
three query strategies: DGS, BBQ and Random. In all
our experiments, we generated i.i.d. x’s from a mixture
of Gaussians distribution in R

1000. We picked random
vectors as the means for each Gaussian, in a way that
ensured that the different clusters have a non-trivial
overlap in order to ensure adequate noise in the classi-
fication problem (details in the supplement). We also
setW ∗

i to the corresponding Gaussian means, and gen-
erated labels y according to our noise model (1). We
evaluated each query criterion for number of classes
K = 5 and K = 10. For each criterion, we picked
the parameters of the rule so that they query roughly
the same number of points. Note that the DGS
rule as stated is parameter-free, but we instead used
the DGS-MOD version of Orabona & Cesa-Bianchi
(2011), which allows a general multiplier on the RHS
of the rule (13). All our algorithms used the multiclass
logistic loss in the update rule (9). We used the 0/1
cost matrix in all our experiments.
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Figure 2. Plots showing the ratio of active to passive regret,
as a function of the number of queries (see text).

Figure 2 shows the results of our simulations forK = 5
and K = 10. In each case, we had a total of 10, 000
data points. We have plotted the ratio of the cumula-
tive regret from each approach to the regret attained
by passive learning on all 10, 000 samples. The re-
sults are averaged over 20 trials. In the plots, we show
the mean regret ratio and confidence intervals, at the
point on the X-axis which is the mean of the number
of queries with a particular parameter setting. We also
plot the individual points to give the reader an idea of
the spread in the number of queries as well as in the
regret ratio5. We observe that DGS rule does the best
in both the cases, beating even the passive learner with
a smaller query complexity! We speculate that this is
because training over fewer (but most informative) la-
beled samples is less prone to noise and yields better
generalization for our methods. We also note that the
strong performance of Random was somewhat surpris-
ing, even though DGS eventually outperforms it. We
believe that this is due to the fact that our simulated
data does not have a situation where there are only a
few informative points close to the boundary. That is
the kind of setting where a good active learning strat-
egy stands to gain the most over random subsampling.
Overall, we observe that our algorithms are indeed able
to attain a small regret ratio, even at a subsampling
level of 10% or 20%, which is certainly encouraging
and in line with the theoretical results.

As remarked in Section 4, model mismatch can be a
concern for our algorithms. To see the impact of this,
we did an experiment where the probability of class
i was proportional to (xTW ∗

i )
2, but we continued to

use the multiclass logistic loss. Figure 3 shows the
results of this experiment. While the relative regret
is now closer to random subsampling, we are still do-
ing no worse. This gives some reassurance about our
robustness to model perturbations, and it would be
interesting to do a detailed study in future work.

5Larger versions of these plots are in the supplement.
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Figure 3. Plot showing the ratio of active to passive regret, as a

function of the number of queries in a model mismatch scenario (see

text for details). While the regret ratio does not increase by much,

the actual regret was substantially higher than the correct model

case both for active and passive.

6. Discussion

In this paper, we present algorithms for selective sam-
pling in cost-sensitive multiclass classification. Our
algorithm and query criteria provide natural general-
izations of previous works in the binary setting. We
provide guarantees on the regret and label complex-
ity of our approach, under probabilistic assumptions
on the noise. We also introduce a notion of problem
hardness in form of the multiclass Tsybakov condition,
which provides a sufficient condition for active learn-
ing to gain over passive learning. Under this condition,
our label complexity gains can be as large as exponen-
tial, which mirrors the binary case.

There are several interesting avenues for future work,
some of which we outline here. As remarked earlier,
our algorithm admits an arbitrary convex constraint
set W, which can be allowed to add information re-
garding the problem structure, such as group norms or
low-rank structures (Harchaoui et al., 2012). It would
be interesting to study the impact of this structure,
both in theory and experiments. Another important
direction is to understand how the probabilistic as-
sumption can be relaxed further, without going to
computationally intractable algorithms. On a more
practical side, it seems natural to use approximations
to speed up the computation of the quadratic form
xTt M

−1
t xt, which seems to be the most computation-

ally expensive step for us.
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