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Abstract

We show that parametric multi-armed bandit
(MAB) problems with large state and action
spaces can be algorithmically reduced to the
supervised learning model known as “Knows
What It Knows” or KWIK learning. We
give matching impossibility results showing
that the KWIK-learnability requirement can-
not be replaced by weaker supervised learn-
ing assumptions. We provide such results in
both the standard parametric MAB setting,
as well as for a new model in which the action
space is finite but growing with time.

1. Introduction

We examine multi-armed bandit (MAB) problems in
which both the state (sometimes also called context)
and action spaces are very large, but learning is pos-
sible due to parametric or similarity structure in the
payoff function. Motivated by settings such as web
search, where the states might be all possible user
queries, and the actions are all possible documents or
advertisements to display in response, such large-scale
MAB problems have received a great deal of recent at-
tention (Li et al., 2010; Langford & Zhang, 2007; Lu
et al., 2010; Slivkins, 2011; Beygelzimer et al., 2011;
Wang et al., 2008; Auer et al., 2007; Bubeck et al.,
2008; Kleinberg et al., 2008; Amin et al., 2011a;b).

Our main contribution is a new algorithm and reduc-
tion showing a strong connection between large-scale
MAB problems and the Knows What It Knows or
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KWIK model of supervised learning (Li et al., 2011; Li
& Littman, 2010; Sayedi et al., 2010; Strehl & Littman,
2007; Walsh et al., 2009). KWIK learning is an online
model of learning a class of functions that is strictly
more demanding than standard no-regret online learn-
ing, in that the learning algorithm must either make
an accurate prediction on each trial or output “don’t
know”. The performance of a KWIK algorithm is mea-
sured by the number of such don’t-know trials.

Our first results show that the large-scale MAB prob-
lem given by a parametric class of payoff functions can
be efficiently reduced to the supervised KWIK learn-
ing of the same class. Armed with existing algorithms
for KWIK learning, e.g. for noisy linear regression
(Strehl & Littman, 2007; Walsh et al., 2009), we obtain
new algorithms for large-scale MAB problems. We also
give a matching intractability result showing that the
demand for KWIK learnability is necessary, in that
it cannot be replaced with standard online no-regret
supervised learning, or weaker models such as PAC
learning, while still implying a solution to the MAB
problem. Our reduction is thus tight with respect to
the necessity of the KWIK learning assumption.

We then consider an alternative model in which the ac-
tion space remains large, but in which only a subset is
available to the algorithm at any time, and this subset
is growing with time. This even better models settings
such as sponsored search, where the space of possible
ads is very large, but at any moment the search en-
gine can only display those ads that have actually been
placed by advertisers. We again show that such MAB
problems can be reduced to KWIK learning, provided
the arrival rate of new actions is sublinear in the num-
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ber of trials. We also give information-theoretic im-
possibility results showing that this reduction is tight,
in that weakening its assumptions no longer implies
solution to the MAB problem. We conclude with a
brief experimental illustration of this arriving-action
model.

While much of the prior work on KWIK learning has
studied the model for its own sake, our results demon-
strate that the strong demands of the KWIK model
provide benefits for large-scale MAB problems that
are provably not provided by weaker models of su-
pervised learning. We hope this might actually mo-
tivate the search for more powerful KWIK algorithms.
Our results also fall into the line of research show-
ing reductions and relationships between bandit-style
learning problems and traditional supervised learning
models (Langford & Zhang, 2007; Beygelzimer et al.,
2011; Beygelzimer & Langford, 2009).

2. Large-Scale Multi-Armed Bandits

The Setting. We consider a sequential decision
problem in which a learner, on each round t, is pre-
sented with a state xt, chosen by Nature from a large
state space X . The learner responds by choosing an
action at from a large action space A. We assume that
the learner’s (noisy) payoff is fθ(x

t,at)+ηt, where ηt is
an i.i.d. random variable with E[ηt] = 0. The function
fθ is unknown to the learner, but is chosen from a (pa-
rameterized) family of functions FΘ = {fθ : X ×A →
R+ | θ ∈ Θ} that is known to the learner. We assume
that every fθ ∈ FΘ returns values bounded in [0, 1].
In general we make no assumptions on the sequence of
states xt, stochastic or otherwise. An instance of such
a MAB problem is fully specified by (X ,A,FΘ).

We will informally use the term “large-scale MAB
problem” to indicate that both |X | and |A| are large
or infinite, and that we seek algorithms whose resource
requirements are greatly sublinear or independent of
both. This is in contrast to works in which either only
|X | was assumed to be large (Langford & Zhang, 2007;
Beygelzimer et al., 2011) (which we shall term “large-
state”; it is also commonly called contextual bandits in
the literature), or only |A| is large (Kleinberg et al.,
2008) (which we shall term “large-action”). We now
define our notion of regret, which permits arbitrary se-
quences of states.

Definition 1. An algorithm for the large-scale MAB
problem (X ,A,FΘ) is said to have no regret if, for
any fθ ∈ FΘ and any sequence x1,x2, . . .xT ∈ X , the
algorithm’s action sequence a1,a2, . . .aT ∈ A satisfies
RA(T )/T → 0 as T → ∞, where we define R(T ) ,

E
[∑T

t=1 maxat∗∈A fθ(x
t,at∗)− fθ(xt,at)

]
.

We shall be particularly interested in algorithms for
which we can provide fast rates of convergence to no
regret.

Example: Pairwise Interaction Models. We in-
troduce a running example we shall use to illustrate
our assumptions and results; other examples are dis-
cussed later. Let the state x and action a both be
(bounded norm) d-dimensional vectors of reals. Let θ
be a (bounded) d2-dimensional parameter vector, and
let fθ(x,a) =

∑
1≤i,j≤d θi,jxiaj ; we then define FΘ

to be the class of all such models fθ. In such models,
the payoffs are determined by pairwise interactions be-
tween the variables, and both the sign and magnitude
of the contribution of xiaj is determined by the param-
eter θi,j . For example, imagine an application in which
each state x represents demographic and behavioral
features of an individual web user, and each action a
encodes properties of an advertisement that could be
presented to the user. A zipcode feature in x indi-
cating the user lives in an affluent neighborhood and
a language feature in a indicating that the ad is for a
premium housecleaning service might have a large pos-
itive coefficient, while the same zipcode feature might
have a large negative coefficient with a feature in a in-
dicating that the service is not yet offered in the user’s
city.

3. Assumptions: KWIK Learnability
and Fixed-State Optimization

We next articulate the two assumptions we require on
the class FΘ in order to obtain resource-efficient no-
regret MAB algorithms. The first is KWIK learnabilty
of FΘ, a strong notion of supervised learning, intro-
duced by Li et al. in 2008 (Li et al., 2008; 2011). The
second is the ability to find an approximately optimal
action for a fixed state. Either one of these conditions
in isolation is clearly insufficient for solving the large-
scale MAB problem: KWIK learning of FΘ has no
notion of choosing actions, but instead assumes input-
output pairs 〈x,a〉, fθ(x,a) are simply given; whereas
the ability to optimize actions for fixed states is of no
obvious value in our changing-state MAB model. We
will show, however, that together these assumptions
can exactly compensate for each other’s deficiencies
and be combined to solve the large-scale MAB prob-
lem.

3.1. KWIK Learning

In the KWIK learning protocol (Li et al., 2008), we
assume we have an input space Z and an output space
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Y ⊂ R. The learning problem is specified by a function
f : Z → Y, drawn from a specified function class
F . The set Z can generally be arbitrary but, looking
ahead, our reduction from a large-scale MAB problem
(X ,A,FΘ) to a KWIK problem will set the function
class as F = FΘ and the input space as Z = X × A,
the joint state and action spaces.

The learner is presented with a sequence of observa-
tions z1, z2, . . . ∈ Z and, immediately after observing
zt, is asked to make a prediction of the value f(zt),
but is allowed to predict the value ⊥ meaning “don’t
know”.

Thus in KWIK model the learner may confess igno-
rance on any trial. Upon a report of “don’t know”,
where yt =⊥, the learner is given feedback, receiv-
ing a noisy estimate of f(zt). However, if the learner
chooses to make a prediction of f(zt), no feedback is
received 1, and this prediction must be ε-accurate, or
else the learner fails entirely. In the KWIK model the
aim is to make only a bounded number of ⊥ predic-
tions, and thus make ε-accurate predictions on almost
every trial. Specifically:

1: Nature selects f ∈ F
2: for t = 1, 2, 3, . . . do
3: Nature selects zt ∈ Z and presents to learner
4: Learner predicts yt ∈ Y ∪ {⊥}
5: if yt =⊥ then
6: Learner observes value f(zt) + ηt,
7: where ηt is a bounded 0-mean noise term
8: else if yt 6=⊥ and |yt − f(zt)| > ε then
9: FAIL and exit

10: end if
11: // Continue if yt is ε-accurate
12: end for

Definition 2. Let the error parameter be ε > 0 and
the failure parameter be δ > 0. Then F is said to be
KWIK-learnable with don’t-know bound B = B(ε, δ)
if there exists an algorithm such that for any se-
quence z1, z2, z3, . . . ∈ Z, the sequence of predictions
y1, y2, . . . ∈ Y ∪ {⊥} satisfies

∑∞
t=1 1[yt = ⊥] ≤ B,

and the probability of FAIL is at most δ. Any class F
is said to be efficiently KWIK-learnable if there exists
an algorithm that satisfies the above condition and on
every round runs in time poly(ε−1, δ−1).

Example Revisited: Pairwise Interactions. We
show that KWIK learnability holds here. Recalling
that fθ(x,a) =

∑
1≤i,j≤d θi,jxiaj , we can linearize the

model by viewing the KWIK inputs as having d2 com-
ponents zi,j = xiaj , with coefficients θi,j , and the

1This aspect of KWIK learning is crucial for our reduc-
tion.

KWIK learnability of FΘ simply reduces to KWIK
noisy linear regression, which has an efficient algo-
rithm (Li et al., 2011; Strehl & Littman, 2007; Walsh
et al., 2009).

3.2. Fixed-State Optimization

We next describe the aforementioned fixed-state op-
timization problem for FΘ. Assume we have a fixed
function fθ ∈ FΘ, a fixed state x ∈ X , and some ε > 0.
Then an algorithm shall be referred to as a fixed-state
optimization algorithm for FΘ if the algorithm makes
a series of (action) queries a1,a2, . . . ∈ A, and in re-
sponse to ai receives approximate feedback yi satisfy-
ing |yi−fθ(x,ai)| ≤ ε; and then outputs a final action
â ∈ A satisfying arg maxa∈A{fθ(x,a)} − fθ(x, â) ≤ ε.
In other words, for any fixed state x, given access only
to (approximate) input-output queries to fθ(x, ·), the
algorithm finds an (approximately) optimal action un-
der fθ and x. It is not hard to show that if we define
FΘ(X , ·) = {fθ(x, ·) : θ ∈ Θ,x ∈ X} — which de-
fines a class of large-action MAB problems induced by
the class FΘ of large-scale MAB problems, each one
corresponding to a fixed state — then the assumption
of fixed-state optimization for FΘ is in fact equiva-
lent to having a no-regret algorithm for FΘ(X , ·). In
this sense, the reduction we will provide shortly can
be viewed as showing that KWIK learnability bridges
the gap between the large-scale problem FΘ and its
induced large-action problem FΘ(X , ·).

Example Revisited: Pairwise Interactions. We
show that fixed-state optimization holds here. For any
fixed state x we wish to approximately maximize the
output of fθ(x,a) =

∑
i,j θi,jxiaj from approximate

queries. Since x is fixed, we can view the coefficient on
aj as τj =

∑
i θi,jxi. While there is no hope of distin-

guishing θ and x, there is no need to: querying on the
jth standard basis vector returns (an approximation
to) the value of τj . After doing so for each dimension
j, we can output whichever basis vector yielded the
highest payoff.

4. A Reduction of MAB to KWIK

We now give a reduction and algorithm showing that
the assumptions of both KWIK-learnability and fixed-
state optimization of FΘ suffice to obtain an effi-
cient no-regret algorithm for the MAB problem for
FΘ. The high-level idea of the algorithm is as fol-
lows. Upon receiving the state xt, we attempt to sim-
ulate the assumed fixed-state optimization algorithm
FixedStateOpt on fθ(x

t, ·). Unfortunately, we do not
have the required oracle access to fθ(x

t, ·), due to the
fact that the state changes with each action that we
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take. Therefore, we will instead make use of the as-
sumed KWIK learning algorithm as a surrogate. So
long as KWIK never outputs ⊥, the optimization sub-
routine terminates with an approximate optimizer for
fθ(x

t, ·). If KWIK returns ⊥ sometime during the sim-
ulation of FixedStateOpt, we halt that optimization
but increase the don’t-know count of KWIK, which can
only happen finitely often. The precise algorithm fol-
lows.

Algorithm 1 KWIKBandit: MAB Reduction to KWIK

+ FixedStateOpt

1: Initialize KWIK to learn unknown fθ ∈ FΘ.
2: for t = 1, 2, . . . do

3: xt
receive←−−−− MAB

4: i
set←−− 0

5: feedbackflag
set←−− FALSE

6: Init FixedStateOptt to optimize fθ(x
t, ·)

7: while i
set←−− i+ 1 do

8: ati
query←−−− FixedStateOptt

9: if FixedStateOptt terminates then

10: at
set←−− ati

11: break while
12: end if
13: zt = (xt,ati)

input−−−→ KWIK

14: ŷti
output←−−−− KWIK

15: if ŷti =⊥ then

16: at
set←−− ati

17: feedbackflag
set←−− TRUE

18: break while
19: else
20: ŷti

feedback−−−−−→ FixedStateOptt

21: end if
22: end while
23: at

action−−−−→ MAB
24: fθ(x

t,at) + ηt = yt
observe←−−−− MAB

25: if feedbackflag = TRUE then

26: yt
feedback−−−−−→ KWIK

27: end if
28: end for

Theorem 1. Assume we have a family of functions
FΘ, a KWIK-learning algorithm KWIK for FΘ, and
a fixed-state optimization algorithm FixedStateOpt.
Then the average regret of Algorithm 1, RA(T )/T ,
will be arbitrarily small for appropriately-chosen ε
and δ, and large enough T . Moreover, the running
time is polynomial in the running time of KWIK and
FixedStateOpt.

Proof. We first bound the cost of Algorithm 1. Let us
consider the result of one round of the outermost loop,
i.e. for some fixed t. First, consider the event that

KWIK does not FAIL on any trial, so we are guaranteed
that ŷti is an ε-accurate estimate of fθ(x

t,ati). In this
case the while loop can be broken in one of two ways:
(1) KWIK returns ⊥ on the pair (xt,ati). In this case,
because we have assumed a bounded range for fθ, we
can say that maxat∗

fθ(x
t,at∗) − fθ(x

t,at) ≤ 1. (2)
FixedStateOpt terminates and returns at. But this
at is ε-optimal per our definition, hence we have that
maxat∗

fθ(x
t,at∗)− fθ(xt,at) ≤ ε.

Therefore, on a trial t, we can bound maxat∗
fθ(x

t,at∗)−
fθ(x

t,at) ≤ 1[KWIK outputs ⊥ on round t] + ε.

Taking the average over t = 1, . . . , T we have

1

T

T∑
t=1

max
at∗

fθ(x
t,at∗)− fθ(xt,at) ≤

B(ε, δ)

T
+ ε (1)

where B(ε, δ) is the don’t-know bound of KWIK. In-
equality (1) holds on the event that KWIK does not
FAIL. By definition, the probability that it does FAIL

is at most δ, and in that case all we can say is that
(1/T )

∑T
t=1 maxat∗

fθ(x
t,at∗) − fθ(x

t,at) ≤ 1 There-
fore:

R(T )

T
≤ B(ε, δ)

T
+ ε+ δ. (2)

We must now show that the quantity on the right hand
side of the equation 2 vanishes with correctly chosen
ε and δ. But this is achieved trivially: for any small

γ > 0 if we select δ = ε < γ/3 and for T > 3B(ε,δ)
γ we

have that B(ε,δ)
T + ε+ δ < γ as desired.

Algorithm 1 is not exactly a no-regret MAB algorithm,
since it requires parameter choices to obtain small re-
gret. But this is easily remedied.

Corollary 1. Under the assumptions of Theorem 1,
there exists a no-regret algorithm for the MAB problem
on FΘ.

Proof sketch. This follows as a direct consequence of
Theorem 1 and a standard use of the “doubling trick”
for selecting the input parameters in an online fashion.
The simple construction runs a sequence of versions of
Algorithm 1 with decaying choices of ε, δ. A detailed
proof is provided in the Appendix.

The interesting case occurs when FΘ is effi-
ciently KWIK-learnable with a polynomial don’t-know
bound. In that case, we can obtain fast rates of conver-
gence to no-regret. For all known KWIK algorithms
B(ε, δ) is polynomial in ε−1 and poly-logarithmic in
δ−1. The following corollary is left as a straightfor-
ward exercise, following from equation (2).



Large-Scale Bandit Problems and KWIK Learning

Corollary 2. If the don’t-know bound of KWIK is
B(ε, δ) = O(ε−d logk δ−1) for some d > 0, k ≥ 0 then

we have R(T )/T = O
((

1
T

) 1
d+1 logk T

)
.

Example Revisited: Pairwise Interactions. As
we have previously argued, the assumptions of KWIK
learning and fixed-state optimization are met for the
class of pairwise interaction models, so Theorem 1
can be applied directly, yielding a no-regret algorithm.
More generally, a no-regret result can be obtained for
any FΘ that can be similarly “linearized”; this in-
cludes a rather rich class of graphical models for ban-
dit problems studied in (Amin et al., 2011a) (whose
main result can be viewed as a special case of Theo-
rem 1). Other applications of Theorem 1 include FΘ

that obey a Lipschitz condition, where we can apply
covering techniques to obtain the KWIK subroutine
(details omitted), and various function classes in the
boolean setting (Li et al., 2011).

4.1. No Weaker General Reduction

While Theorem 1 provides general conditions under
which large-scale MAB problems can be solved effi-
ciently, the assumption of KWIK learnability of FΘ is
still a strong one, with noisy linear regression being
the richest problem for which there is a known KWIK
algorithm. For this reason, it would be nice to replace
the KWIK learning assumption with a weaker learn-
ing assumption 2. However, in the following theorem,
we prove (under standard cryptographic assumptions)
that there is in fact no general reduction of the MAB
problem for FΘ to a weaker model of supervised learn-
ing. More precisely, we show that the “next strongest”
standard model of supervised learning after KWIK,
which is no-regret on arbitrary sequences of trials, does
not imply no-regret MAB. This immediately implies
that even weaker learning models (such as PAC learn-
ability) also cannot suffice for no-regret MAB.

Theorem 2. There exists a class of models FΘ such
that

• FΘ is fixed-state optimizable.

• There is an efficient algorithm A such that on an
arbitrary sequence of T trials zt, A makes a pre-
diction ŷt of yt = fθ(z

t) and receives yt as feed-

back; and the total regret err(T ) ,
∑T
t=1 |yt − ŷt|

is sublinear in T . Thus we have only no-regret
supervised learning instead of the stronger KWIK

2Note that we should not expect to replace or weaken
the assumption of fixed-state optimization, since we have
already noted that this is already implied by a no-regret
algorithm for the MAB problem.

learning.

• Under standard cryptographic assumptions, there
is no polynomial-time algorithm for the no-regret
MAB problem for FΘ, even if the state sequence is
generated randomly from the uniform distribution.

We leave this proof for the Appendix.

5. A Model for Arriving Actions

In the model examined so far, we have been assuming
that the action space A is large — exponentially large
or perhaps infinite — but also that the entire action
space is available on every trial. In many natural set-
tings, however, this property may be violated. For in-
stance, in sponsored search, while the space of all pos-
sible ads is indeed very large, at any given moment the
search engine can choose to display only those ads that
have actually been created by extant advertisers. Fur-
thermore these advertisers arrive gradually over time,
creating a growing action space. In this setting, the al-
gorithm of Theorem 1 cannot be applied, as it assumes
the ability to optimize over all of A at each step. In
this section we introduce a new model and algorithm
to capture such scenarios.

Setting. As before, the learner is presented with a
sequence of arriving states x1,x2,x3, . . . ∈ X . The
set of available actions, however, shall not be fixed in
advance but instead will grow with time. Let F be
the set of all possible actions where, formally, we shall
imagine that each f ∈ F is a function f : X → [0, 1];
f(x) represents the payoff of action f on x ∈ X 3.
Initially the action pool is F0 ⊂ F , and on each round
t a (possibly empty) set of new actions St ⊂ F arrives
and is added to the pool, hence the available action
pool on round t is F t := F t−1 ∪ St. We emphasize
that when we say a new set of actions “arrives”, we do
not mean that the learner is given the actual identity
of the corresponding functions, which it must learn
to approximate, but rather that the learner is given
(noisy) black-box input-output access to them. Let
N(t) = |F t| denote the size of the action pool at time
t. Our results will depend crucially on this growth
rate N(t), in particular on it being sublinear 4. One

3Note that now each action is represented by its own
payoff function, in contrast to the earlier model in which
actions were inputs a into the fθ(x,a). The models coin-
cide if we choose F = {fθ(·,a) : a ∈ A, θ ∈ Θ}.

4Sublinearity of N(t) seems a mild and natural assump-
tion in many settings; certainly in sponsored search we
expect user queries to vastly outnumber new advertisers.
Another example is crowdsourcing systems, where the ar-
riving actions are workers that can be assigned tasks, and
f(x) is the quality of work that worker f does on task x. If
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interpretation of this requirement, and our theorem
that exploits it, is as a form of Occam’s Razor: since
new functions arriving means more parameters for the
MAB algorithm to learn, it turns out to be necessary
and sufficient that they arrive at a strictly slower rate
than the data (trials).

We now precisely state the arriving action learning
protocol:

1: Learner given an initial action pool F0 ⊂ F
2: for t = 1, 2, 3, . . . do
3: Learner receives new actions St ⊂ F and up-

dates pool F t ← F t−1 ∪ St
4: Nature selects xt ∈ Z, presents to learner
5: Learner selects some f t ∈ F t, and receives pay-

off f t(xt) + ηt; ηt is i.i.d. with E[ηt] = 0
6: end for

We now define our notion of regret for the arriving
action protocol.

Definition 3. Let A be an algorithm for making a se-
quence of decisions f1, f2, . . . according to the arriving
action protocol. Then we say that A has no regret if on
any sequence of pairs (S1,x1), (S2,x2), . . . , (St,xT ),
RA(T )/T → 0 as T → ∞, where we re-define

RA(T ) , E
[∑T

t=1 maxft∗∈Ft f
t
∗(x

t)−
∑T
t=1 f

t(xt)
]
.

Reduction to KWIK Learning. Similar to Sec-
tion 4, we now show how to use the KWIK learnabil-
ity assumption on F to construct a no-regret algorithm
in the arriving action model. The key idea, described
in the reduction below, is to endow each action f in
the current action pool with its own KWIKf subroutine.
On every round, after observing the task xt, we shall
query KWIKf for a prediction of f(xt) for each f ∈W t.
If any subroutine KWIKf returns ⊥, we immediately
stop and play action f t ← f . This can be thought of
as an exploration step of the algorithm. If every KWIKf
returns a value, we simply choose the arg max as our
selected action.

Theorem 3. Let A denote Algorithm 2. For any ε > 0
and any choice of {xt, St},

RA(T ) ≤ N(T )B(ε, δ) + 2Tε+ δN(T )T.

where B(ε, δ) is a bound on the number of ⊥ returned
by the KWIK-Subroutine used in A.

Proof. The probability that at least one of the N(T )
KWIK algorithms will FAIL is at most δN(T ). In that

the workers also contribute tasks (as in services like stack-
overflow.com), and do so at some constant rate, it is easily

verified that N(t) =
√
t.

Algorithm 2 No-Regret Learning in the Arriving Ac-
tion Model
1: for t = 1, 2, 3, . . . do
2: Learner receives new actions St

3: Learner observes task xt

4: for f ∈ St do
5: Initialize a subroutine KWIKf for learning f
6: end for
7: for f ∈ F t do
8: Query KWIKf for prediction ŷtf
9: if ŷtf =⊥ then

10: Take action f t = f
11: Observe yt ← f t(xt)
12: Input yt into KWIKf , and break
13: end if
14: end for
15: // If no KWIK subroutine

16: // returns ⊥, simply choose best!

17: Take action f t = arg maxf∈Ft ŷ
t
f

18: end for

case, we suffer the maximum possible T regret, ac-
counting for the δN(T )T term. Otherwise, on each
round t we query every f ∈ F t for a prediction, and
either one of two things can occur: (a) KWIKf reports
⊥ in which case we can suffer regret at most 1; or (b)
each KWIKf returns a real prediction ŷtf 6=⊥ that is
ε-accurate, in which case we are guaranteed that the
regret of f t is no more than 2ε. More precisely, we can
bound the regret on round t as

max
ft∗∈Ft

f t∗(x
t)− f t(xt) (3)

≤ 1[KWIKf outputs ŷtf =⊥ for some f ] + 2ε.

Of course, the total number of times that any KWIKf
subroutine returns ⊥ is no more than B(ε, δ), hence
the total number of ⊥’s after T rounds is no more than
N(T )B(ε, δ). Summing (3) over t = 1, . . . , T gives the
desired bound and we are done.

As a consequence of the previous theorem, we achieve
a simple corollary:

Corollary 3. Assume that B(ε, δ) = O(ε−d logk δ−1)

for some d > 0, and k ≥ 0. Then RA(T )
T =

O

((
N(T )
T

)1/(d+1)

logk T

)
. This tends to 0 as long

as N(T ) is “slightly” sublinear in T ; T =

o(T/ logk(d+1)(T )).

Proof. Without loss of generality we can assume
B(ε, δ) ≤ c

ε
−d log δ−1 for all ε, δ and some constant
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c > 0. Applying Theorem 3 gives RA(T )
T ≤ N(T )

T
c
εd

+
2ε+ δN(T )

Choosing δ = 1/T and ε =
(
N(T )
T

)1/(d+1)

allows us to

conclude that RA(T )/T ≤ (c+2)
(
N(T )
T

)1/(d+1)

logk T

and hence we are done.

Impossibility Results. The following two theorems
show that our assumptions of the KWIK learnability
of F and sublinearity of N(t) are both necessary, in
the sense that relaxing either is not sufficient to im-
ply a no-regret algorithm for the arriving action MAB
problem. Unlike the corresponding result of Theo-
rem 2, those below do not rely on complexity-theoretic
assumptions, but are information-theoretic. The full
proof of Theorem 5 is provided in the Appendix.

Theorem 4. (Relaxing sublinearity of N(t) insuffi-
cient to imply no-regret on MAB) There exists a class
F that is KWIK-learnable with a don’t-know bound of
1 such that if N(t) = t, for any learning algorithm
A and any T , there is a sequence of trials in the ar-
riving action model such that RA(T )/T > c for some
constant c > 0.

Proof. Let A = N and e : N→ R+ be a fixed encoding
function satisfying e(n) ≤ γ for any n, and let d be a
corresponding decoding function satisfying (d◦e)(n) =
n.

Consider F = {fn | n ∈ N}, where fn(n) = 1 and
fn(n′) = e(n) for all other n′. The class N is KWIK-
learnable with at most a single ⊥ in the noise-free case.
Observing fn(n′) for an unknown fn and arbitrary
n′ ∈ N immediately reveals the identity of fn. Either
fn(n′) = 1, in which case n = n′, or else n = d(fn(n′)).

Let A and F be as just described. There exists an
absolute constant c > 0 such that for any T ≥ 4, there
exists a sequence {nt, St} satisfying N(T ) = T , and
RA(T )/T > c for any A.

Let σ be a random permutation of {1, ..., T}, and S1 be
the ordered set {fσ(1), fσ(2), ..., fσ(T )}. In other words,
the actions f1, ..., fT are shuffled, and immediately pre-
sented to the algorithm on the first round. St = ∅ for
t > 1. Let nt be drawn uniformly at random from
{1, ..., T} on each round t.

Immediately, we have that E
[∑T

t=1 maxf∈Ft f(nt)
]

=

T since F t = {1, ..., T} for all t.

Now consider the actions {f̂t} selected by an arbitrary

algorithm A. Define F̂ (τ) = {f̂t ∈ F | t < τ}, the
actions that have been selected by A before time τ .

Let U(τ) = {n ∈ N | fn ∈ F̂ (τ)} be the states n, such
the corresponding best action fn has been used in the
past, before round τ . Also let F̄(τ) = {1, ..., T}\F̂(τ).

Let Rτ be the reward earned by the algorithm at time
τ . If nτ ∈ U(τ), then the algorithm has played action
fnτ in the past, and knows its identity. Therefore, it
may achieve Rτ = 1. Since nτ is drawn uniformly at

random from {1, ..., T}, P (nτ ∈ U(τ) | U(τ)) = |U(τ)|
T .

Otherwise, in order to achieve Rτ = 1, any algo-
rithm must select f̂τ from amongst F̄ (τ). But since
the actions are presented as a random permutation,
and no action in F̄ (τ) has been selected on a previ-

ous round, any such assignment satisfies P (f̂τ = fnτ |
nτ 6∈ U(τ)) = 1

T−|U(τ)| .

Therefore for any algorithm we have:

P (Rτ = 1 | U(τ))

≤ P (nτ ∈ U(τ) | U(τ)) + P (nτ 6∈ U(τ), f̂τ = fnτ | U(τ))

≤ |U(τ)|
T

+

(
1− |U(τ)|

T

)(
1

T − |U(τ)|

)
Note that the right hand side of the last expression is

a convex combination of 1 and
(

1
T−|U(τ)|

)
≤ 1, and is

therefore increasing as |U(τ)|
T increases. Since |U(τ)| <

τ with probability 1, we have:

P (Rτ = 1) ≤ τ

T
+
(

1− τ

T

)( 1

T − τ

)
(4)

Let Z(T ) =
∑T
τ=1 I(Rτ = 1), count the number of

rounds on which Rτ = 1. This gives us:

E[Z(T )] =

T∑
τ=1

P (Rτ = 1)

≤ T

2
+

T/2∑
τ=1

P (Rτ = 1)

≤ T

2
+
T

2

[
T

2T
+

(
1− T

2T

)(
1

T − T/2

)]
Where the last inequality follows from the fact that
equation 4 is increasing in τ .

Thus E[Z(T )] ≤ 3T
4 + 1

2 . On rounds where Rτ 6= 1,
Rτ is at most γ, giving:

RA(T )/T ≥ 1−
[

3

4
+

1

2T
+
γ

4

]
Taking T ≥ 4, gives us:

RA(T )/T ≥ 1
8 −

γ
4 . Since γ is arbitrary we have the

desired result.
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Figure 1. Simulations of Algorithm 2 at three timescales; see text for details.

Theorem 5. (Relaxing KWIK to supervised no-regret
insufficient to imply no-regret on MAB) There exists a
class F that is supervised no-regret learnable such that
if N(t) =

√
t, for any learning algorithm A and any

T , there is a sequence of trials in the arriving action
model such that RA(T )/T > c for some constant c > 0.

6. Experiments

We now give a brief experimental illustration of our
models and results. For the sake of brevity we exam-
ine only our algorithm in the arriving action model
just discussed. We consider a setting in which both
states x and the actions or functions f are described by
unit-norm, 10-dimensional real vectors, and the value
taking f in state x is simply the inner product f ·x. For
this class of functions we thus implemented the KWIK
linear regression algorithm (Walsh et al., 2009), which
is given a fixed accuracy target or threshold of ε = 0.1,
and which is simulated with Gaussian noise added to
payoffs with σ = 0.1. New actions/functions arrived
stochastically, with the probability of a new f being
added on trial t being 0.1/

√
t; thus in expectation we

have sublinear N(t) = O(
√
t). Both the x and the

f are selected uniformly at random. On top of the
KWIK subroutine, we implemented Algorithm 2.

In Figure 1 we show snapshots of simulations of
this algorithm at three different timescales — af-
ter 1000, 5000, and 25,000 trials respectively. The
snapshots are indeed from three independent simula-
tions in order to illustrate the variety of behaviors in-
duced by the exogenous stochastic arrivals of new ac-
tions/functions, but also to show typical performance
for each timescale.

In each subplot, we plot three quantities. The blue
curve show the average reward per step so far for the
omniscient offline optimal that is given each weight
f as it arrives, and thus always chooses the optimal
available action on every trial. This curve is the best

possible performance, and is the target of the learning
algorithm. The red curve shows the average reward
per step so far for Algorithm 2. The black curve shows
the fraction of exploitation steps for the algorithm so
far (the last line of Algorithm 2, where we are guar-
anteed to choose an approximately optimal action).
The vertical lines indicate trials in which a new ac-
tion/function was added.

First considering T = 1000 (left panel, in which a to-
tal of 6 actions are added), we see that very early (as
soon as the second action arrives, and thus there is a
choice over which the offline omniscient can optimize)
the algorithm badly underperforms, and is never ex-
ploiting — new actions are arriving at rate at which
the learning algorithm cannot keep up. At around
200 trials, the algorithm has learned all available ac-
tions well enough to start to exploit, and there is an
attendant rise in performance; however, each time a
new action arrives, both exploitation and performance
drop temporarily as new learning must ensue.

At the T = 5000 timescale (middle panel, 14 actions
added), exploitation rates are consistently higher (ap-
proaching 0.6 or 60% of the trials), and performance
is beginning to converge to the optimal. New action
arrivals still cause temporary dips, but overall upward
progress is setting in.

At T = 25, 000 (right panel, 27 actions added), the
algorithm is exploiting over 80% of the time, and per-
formance has converged to optimal up to the ε = 0.1
accuracy set for the KWIK subroutine. If ε tends to 0
as T increases, as in the formal analysis, we eventually
converge to 0 regret.
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