
A. Appendix

A.1. Proof of Corollary 1

Restatement of Corollary 1:
Assume we have a family of functions FΘ, a KWIK-
learning algorithm KWIK for FΘ, and a fixed-state opti-
mization algorithm FixedStateOpt. Then there exists
a no-regret algorithm for the MAB problem on FΘ.

Proof. Let A(ε, δ) denote Algorithm 1 when parame-
terized by ε and δ. We construct a no-regret algorithm
A∗ for the MAB problem on FΘ that operates over a
series of epochs. On the start of epoch i, A∗ simply
runs a fresh instance of A(εi, δi), and does so for τi
rounds. We will describe how εi, δi, τi are chosen.

First let e(T ) denote the number of epochs that A∗

starts after T rounds. Let γi be the average regret
suffered on the ith epoch. In other words, if xi,t (ai,t)
is the tth state (action) in the ith epoch, then γi =

E
[

1
τi

∑τi
t=1 maxai,t∗ ∈A fθ(x

i,t,ai,t∗ )− fθ(xi,t,ai,t)
]
.

We therefore can express the average regret of A∗ as:

RA∗(T )/T =
1

T

e(T )∑
i=1

τiγi (1)

From Theorem 1, we know there exists a Ti and choices
for εi and δi so that γi < 2−i so long as τi ≥ Ti. Let
τ1 = T1, and τi = max{2τi−1, Ti}. These choices for
τi, εi and δi guarantee that τi−1 ≤ τi/2, and also γi <
2−i. Applying these facts respectively to Equation 1
allows us to conclude that:

RA∗(T )/T ≤ 1

T

e(T )∑
i=1

2−(e(T )−i)τe(T )γi

<
1

T

e(T )∑
t=1

2−e(T )τe(T ) ≤ e(T )2−e(T )

Theorem 1 also implies that e(T ) → ∞ as T → ∞,
and so A∗ is indeed a no regret algorithm.

A.2. Proof of Corollary 2

Restatement of Corollary 2:
If the don’t-know bound of KWIK is B(ε, δ) =
O(ε−d logk δ−1) for some d > 0, k ≥ 0 then there are
choices of ε, δ so that the average regret of Algorithm 1

is

O

((
1

T

) 1
d+1

logk T

)

Proof. Taking ε =
(

1
T

) 1
d+1 and δ = 1

T in Equation 2 in
the proof of Theorem 1 suffices to prove the corollary.

A.3. Proof of Theorem 2

We proceed to give a the proof of Theorem 2 in com-
plete rigor. We will first give a more precise construc-
tion of the class of models Fθ satisfying the conditions
of the theorem.

Restatement of Theorem 2:
There exists a class of models Fθ such that

• FΘ is fixed-state optimizable;

• There is an efficient algorithm A such that on an
arbitrary sequence of T trials zt, A makes a pre-
diction ŷt of yt = fθ(z

t) and then receives yt as

feedback, and the total regret
∑T
t=1 |yt− ŷt| is sub-

linear in T (thus we have only no-regret supervised
learning instead of the stronger KWIK);

• Under standard cryptographic assumptions, there
is no polynomial-time algorithm for the no-regret
MAB problem for FΘ.

Let Zn = {0, ..., n − 1}. Suppose that Θ parameter-
izes a family of cryptographic trapdoor functions HΘ

(which we will use to construct Fθ). Specifically, each
θ consists of a “public” and “private” part so that
θ = (θpub, θpri), and HΘ = {hθ : Zn → Zn}. The cryp-
tographic guarantee ensured by HΘ is summarized in
the following definition.

Definition 1. Let d = dlog |Zn|e. Any family of cryp-
tographic trapdoor functions HΘ must satisfy the fol-
lowing conditions:

• (Efficiently Computable) For any θ, knowing just
θpub gives an efficient (polynomial in d) algorithm
for computing hθ(a) for any a ∈ Zn.

• (Not Invertible) Let k be chosen uniformly at ran-
dom from Zn. Let A be an efficient (random-
ized) algorithm that takes θpub and hθ(k) as input
(but not θpri), and outputs an a ∈ Zn. There is
no polynomial q such that P (hθ(k) = hθ(a)) ≥
1/q(d).



Depending on the family of trapdoor functions, the sec-
ond condition usually holds under an assumption that
some problem is intractable (e.g. prime factorization).

We are now ready to describe (FΘ,A,X ). Fix n, and
let X = Zn and A = Zn ∪ {a∗}. For any hθ ∈ Hθ, let
h−1
θ denote the inverse function to hθ. Since hθ may be

many-to-one, for any y in the image of hθ, arbitrarily
define h−1

θ (y) to be any x such that hθ(x) = y.

We will define the behavior of each fθ ∈ FΘ in what
follows. First we will define a family of functions GΘ.
The behavior of each gθ will be essentially identical
to that of fθ, and for the purposes of understanding
the construction, it is useful to think of them as being
exactly identical.

The behavior of gθ on states x ∈ Zn is defined as
follows. Given x, to get the maximum payoff of 1, an
algorithm must invert hθ. In other words, gθ(x,a) = 1
only if hθ(a) = x (for a ∈ Zn, and not equal to the
“special” action a∗). For any other a ∈ Zn, gθ(x,a) =
0.

On action a∗, gθ(x,a
∗) reveals the location of h−1

θ (x).
Specifically gθ(x,a

∗) = 0.5
1+h−1

θ (x)
if x has an inverse

and gθ(x,a
∗) = 0 if x is not in the image of hθ.

It’s useful to pause here, and consider the purpose of
the construction. Assume that θpub is known. Then if
x and a (a ∈ Zn) are presented simultaneously in the
supervised learning setting, it’s easy to simply check if
hθ(x) = a, making accurate predictions. In the fixed-
state optimization setting, querying a∗ presents the
algorithm with all the information it needs to find a
maximizing action. However, in the bandit setting,
if a new x is being drawn uniformly at random and
presented to the algorithm, the algorithm is doomed
to try to invert hθ.

Now we want the identity of θpub to be revealed on
any input to the function fθ, but want the behavior of
fθ to be essentially that of gθ. In order to achieve this,
let b·c∗ be the function which truncates a number to
p = 2d + 2 bits of precision. This is sufficient preci-
sion to distinguish between the two smallest non-zero
numbers used in the construction of gθ,

1
2

1
n and 1

2
1

n−1 .
Also fix an encoding scheme that maps each θpub to
a unique number [θpub]. We do this in a manner such
that 2−2p ≤ [θpub] < 2−p−1.

We will define fθ by letting fθ(x,a) = bgθ(x,a)c∗ +
[θpub]. Intuitively, fθ mimics the behavior of gθ in its
first p bits, then encodes the identity of θpub in its
subsequent p bits. [θpub] is the smallest output of fθ,
and “acts as” zero.

The subsequent lemma establishes that the first two
conditions of Theorem 2 are satisfies by FΘ.

Lemma 1. For any fθ ∈ FΘ and any fixed x ∈ X ,
f(x, ·) can be optimized from a constant number of
queries, and poly(d) computation. Furthermore, there
exists an efficient algorithm for the supervised no-
regret problem on FΘ with err(T ) = O(log T ), requir-
ing poly(d) computation per step.

Proof. For any θ, the fixed-state optimization problem
on fθ(x, ·) is solved by simply querying the special ac-
tion a∗. If fθ(x,a

∗) < 2−p−1, then gθ(x,a
∗) = 0, and

x is not in the image of hθ. Therefore, a∗ is a maxi-
mizing action, and we are done. Otherwise, fθ(x,a

∗)
uniquely identifies the optimal action h−1(x), which
we can subsequently query.

The supervised no-regret problem is similarly trivial.
Consider the following algorithm. On the first state, it
queries an arbitrary action, extracts its p lowest order
bits, learning θpub. The algorithm can now compute
the value of fθ(x,a) on any (x,a) pair where a ∈ Zn.
If a ∈ Zn, the algorithm simply checks if hθ(a) = x. If
so, it outputs 1 + [θpub]. Otherwise, it outputs [θpub].

The only inputs on which it might make a mistake take
the form (x,a∗). If the algorithm has seen the spe-
cific pair (x,a∗), it can simply repeat the previously
seen value of fθ(x,a

∗), resulting in zero error. Other-
wise, if (x,a∗) is a new input, the algorithm outputs
[θpub], suffering b 0.5

1+h−1(x)c∗ error. Hence, after the

first round, the algorithm cannot suffer error greater
than

∑T
t=1

0.5
t = O(log T ).

Finally, we argue that that an efficient no-regret al-
gorithm for the large-scale bandit problem defined by
(FΘ,A,X ) can be used as a black box to invert any
hθ ∈ Hθ.

Lemma 2. Under standard cryptographic assump-
tions, there is no polynomial q and efficient algorithm
BANDIT for the large-scale bandit problem on FΘ that
guarantees

∑T
t=1 maxat∗

fθ(xt,a
t
∗) − fθ(xt,a

t) < .5T
with probability greater than 1/2 when T ≤ q(d).

Proof. Suppose that there were such a q, and algo-
rithm BANDIT.

We can design an algorithm that takes θpub and hθ(k
∗)

as input, for some unknown k∗ chosen uniformly at
random, and outputs an a ∈ Zn such that P (hθ(k) =
hθ(a)) ≥ 1

2q(d) .

Consider simulating BANDIT for T rounds. On each
round t, the state provided to BANDIT will be generated
by selecting an action kt from Zn uniformly at random,



and then providing BANDIT with the state hθ(kt). At
which point, BANDIT will output an action and demand
a reward. If the action selected by bandit is the special
action a∗, then its reward is simply b0.5/(1 + k)c∗ +
[θpub]. If the action selected by bandit is at satisfying
hθ(a

t) = hθ(k), its reward is 1+[θpub]. Otherwise, it’s
reward is [θpub].

By hypothesis, with probability 1/2, the actions at

generated by BANDIT must satisfy h(at) = hθ(kt) for
at least one round t ≤ T . Thus, if we choose a round τ
uniformly at random from {1, ..., q(T )}, and give state
hθ(k

∗) to BANDIT on that round, the action aτ returned
by bandit will satisfy P (hθ(a

τ ) = hθ(k)) ≥ 1
2q(d) . This

inverts hθ(k
∗), and contradicts the assumption that hθ

belongs to a family of cryptographic trapdoor func-
tions.

A.4. Proof of Theorem 5

We now show that relaxing KWIK to supervised no-
regret insufficient to imply no-regret on MAB.

Restatement of Theorem 5:
(Relaxing KWIK to supervised no-regret insufficient to
imply no-regret on MAB) There exists a class F that is
supervised no-regret learnable such that if N(t) =

√
t,

for any learning algorithm A and any T , there is a
sequence of trials in the arriving action model such
that RA(T )/T > c for some constant c > 0.

Proof. First we describe the class F . For any n-bit
string x, let fx be a function such that fx(x) is some
large value, and for any x′ 6= x, fx(x′) = 0. It’s easy
to see that F is not KWIK learnable with a polyno-
mial number of don’t-knows — we can keep feeding
an algorithm different inputs x′ 6= x, and as soon as
the algorithm makes a prediction, we can re-select the
target function to force a mistake. F is no-regret learn-
able, however: we just keep predicting 0. As soon as
we make a mistake, we learn x, and we’ll never err
again, so our regret is at most O(1/T ).

Now in the arriving action model, suppose we initially
start with r distinct functions/actions fi = fxi ∈ F ,
i = 1, . . . , r. We will choose N(T ) =

√
T , which is

sublinear, and r =
√
T , and we can make T as large

as we want. So we have a no-regret-learnable F and a
sublinear arrival rate; now we argue that the arriving
action MAB problem is hard.

Pick a random permutation of the fi, and let i be the
indices in that order for convenience. We start the
task sequence with all x1’s. The MAB learner faces
the problem of figuring out which of the unknown fis
has x1 as its high-payoff input. Since the permutation

was random, the expected number of assignments of
x1 to different fi before this is learned is r/2. At that
point, all the learner has learned is the identify of f1

— the fact that it learned that other fi(x1) = 0 is
subsumed by learning f1(x1) is large, since the fi are
all distinct.

We then continue the sequence with x2’s until the
MAB learner identifies f2, which now takes (r − 1)/2
assignments in expectation. Continuing in this vein,
the expected number of assignments made before

learning (say) half of the fi is
∑r/2
j=1(r − j)/2 =

Ω(r2) = Ω(T ). On this sequence of Ω(T ) tasks, the
MAB learner will have gotten non-zero payoff on only
r =

√
T rounds. The offline optimal, on the other

hand, always knows the identity of the fi and gets
large payoff on every single task. So any learner’s cu-
mulative regret to offline grows linearly with T .


