
Local Loss Optimization in Operator Models:
A New Insight into Spectral Learning

Borja Balle bballe@lsi.upc.edu
Ariadna Quattoni aquattoni@lsi.upc.edu
Xavier Carreras carreras@lsi.upc.edu
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Abstract

This paper re-visits the spectral method for
learning latent variable models defined in
terms of observable operators. We give a new
perspective on the method, showing that op-
erators can be recovered by minimizing a loss
defined on a finite subset of the domain. This
leads to a derivation of a non-convex opti-
mization similar to the spectral method. We
also propose a regularized convex relaxation
of this optimization. In practice our experi-
ments show that a continuous regularization
parameter (in contrast with the discrete num-
ber of states in the original method) allows a
better trade-off between accuracy and model
complexity. We also prove that in general,
a randomized strategy for choosing the local
loss succeeds with high probability.

1. Introduction

Structured latent variable models (e.g. Hidden Markov
Models or Hidden Conditional Random fields) have
become an essential modelling tool in multiple areas
of machine learning such as Computer Vision, Nat-
ural Language Processing, and Bioinformatics. The
power of these models resides in their ability to ex-
plain dependences in observed data using hidden unob-
served variables. However, this expressivity comes at a
cost: in general inducing the parameters of the model
from observed data is computationally hard. In prac-
tice, despite the intrinsic difficulty, powerful heuristic
methods have been developed. Most of these methods
can be interpreted as instances of the Expectation–
Maximization algorithm (Dempster et al., 1977). EM
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is an iterative algorithm that tries to minimize a non-
convex objective function. One of its appeals is that
it carries an intuitive interpretation, i.e. it minimizes
the empirical error over a set of observed sequences.
Its drawback is that since it attempts to minimize a
non-convex function it is suceptible to local optima
issues.

Recently a new line of work on learning structured la-
tent variable models has emerged. It is the so-called
spectral learning method, introduced by (Hsu et al.,
2009) in the context of HMM and also applied to many
other models such as Reduced Rank HMM (Siddiqi
et al., 2010), Kernelized HMM (Song et al., 2010),
Predictive State Representations (Boots et al., 2011),
Latent Tree Graphical Models (Parikh et al., 2011),
Finite States Transducers (Balle et al., 2011), and
Quadratic Weighted Automata (Bailly, 2011). This
method dodges the two main drawbacks of the EM
algorithm: it always finds a global optimum, and its
running time is linear in the number of training ex-
amples. The key insight of the spectral approach is
to represent the distribution computed by the model
in terms of observable operators and show that (under
certain assumptions) two models with similar opera-
tors compute similar functions (under some metric).

The learning method then provides a set of equations,
involving statistics computed from data, from which
operators can be induced by computing approximate
regularized solutions. In particular, all the works cited
above share a common ingredient: the use of a Singu-
lar Value Decompostion for obtaining operators; hence
the name spectral method. One of the appeals of this
approach is that in general it can be rigorously stud-
ied using sensitivity analysis to bound the effect of
perturbations on the equations used to recover opera-
tors from data. Altogether, it seems fair to assert that
some of the theoretical aspects of the spectral method
are now well understood. When contrasted with EM,
there is little doubt that the spectral method is a very
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attractive alternative. However, EM seems to have
some advantages on the eye of the researchers inter-
ested in exploiting latent variable models for a given
application. Namely, its generic nature makes it easier
to apply to new models and applications.

We believe some important aspects that can ease the
applicability of spectral methods to real world prob-
lems have been overlooked in previous analysis. Some
of these issues are addressed in the present paper.

Our first contribution is to re-visit the problem of
learning observable operators from a loss minimization
perspective. In particular, we give a formulation of the
problem in terms of a regularized local loss minimiza-
tion. We emphasize the local aspect of this minimiza-
tion – which means that, in order to learn a function
computed by an operator model, it is enough to ob-
serve its behavior on a finite set of elements. This is in
contrast to the global loss formulation used in iterative
algorithms such as EM.

To solve the local loss minimization we derive two op-
timization algorithms. The first algorithm frames the
problem as minimizing a non-convex local loss func-
tion. We show that under certain conditions the stan-
dard SVD method can be seen as an optimizer for this
objective.

Our second contribution is to propose a regularized
convex relaxation of the local loss minimization. A
feature of the SVD method is that only one discrete
parameter, the number of states, needs to be tuned.
In practice, this means that the space of all possi-
ble hypothesis can be exhaustively explored in rela-
tively short time. However, in many cases, tuning
this coarse-grained parameter is not enough for at-
taining an optimal trade-off between empirical error
and model complexity. In contrast, our convex opti-
mization algorithm takes a continuous regularization
parameter that can be tuned in order to achieve an
optimal trade-off. In practice, our synthetic exper-
iments show that our method can be more robust to
some spectral properties of the target distribution that
represent a challenge for the SVD method.

In this paper we also address another important prac-
tical issue overlooked by previous work. In the gen-
eral case, the consistency of both the SVD method
and our optimization algorithms depend on a rather
strong hypothesis. Namely, that the “correct” subset
of the domain where the operators must be optimized
– in our terms, the local loss function – is known to
the algorithm. Though very convenient in theoretical
studies, in practice this assumption does not seem very
realistic.

Our third contribution is to prove that a simple ran-
domized strategy can identify a correct local loss func-
tion with high probability. More precisely, we give
bounds on the number of examples required by our
loss-selection algorithm that depend polynomially on
some parameters of the target.

We choose to present our results in the setting of
Weighted Automata. This framework encompasses
several of the models considered in the literature on the
spectral method: HMM, reduced-rank HMM, PNFA,
QWA and rational stochastic languages. With some
modifications, this framework can also deal with input-
output models like FST and PSR. In general, models
defined in terms of a finite state machines over some
finite alphabet can be formulated using Weighted Au-
tomata.

2. Weighted Automata and Hankel
Matrices

2.1. Preliminaries and Notation

Let Σ be a finite alphabet with m symbols. We write
Σ∗ for the set of all strings over Σ and use λ to denote
the empty string. The Hankel matrix of a function
f : Σ∗ → R over strings is a bi-infinite matrix Hf :
Σ∗ × Σ∗ → R with its entries indexed by prefixes and
suffixes: Hf (u, v) = f(uv). The rank of f is defined
as rank(f) = rank(Hf ), which may in principle be
infinite. Given sets of prefixes and suffixes U ,V ⊂ Σ∗,
we define the Hankel sub-block H : U × V → R of Hf

as H(u, v) = f(uv). Note that when |U| = p, |V| = s
we have H ∈ Rp×s. In general, given U and V one has
rank(H) ≤ rank(Hf ). We say that the pair (U ,V) is
a basis for f if rank(H) = rank(Hf ). Note that then
it must be the case that p, s ≥ rank(Hf ). For any
symbol a ∈ Σ, we also define the sub-block Ha ∈ Rp×s
as Ha(u, v) = f(uav).

A weighted automata (WA) over Σ with n states is a
tuple A =

〈
α>1 , α∞, {Aa}a∈Σ

〉
, where α1, α∞ ∈ Rn,

Aa ∈ Rn×n. We write |A| for the number of states of
A. The function fA : Σ∗ → R defined by A is given by

fA(x1 · · ·xt) = α>1 Ax1 · · ·Axtα∞ = α>1 Axα∞ . (1)

It is obvious from the definition that if M ∈
Rn×n is an invertible matrix, the WA B =〈
α>1 M,M−1α∞, {M−1AaM}

〉
satisfies fB = fA.

Sometimes B is denoted by M−1AM .

A probability distribution D over Σ∗ receives the name
of a stochastic languange. We say that D has full sup-
port if D(x) > 0 for all x ∈ Σ∗. A stochastic lan-
guage is rational if there exists a WA A such that
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fA(x) = D(x) for all x ∈ Σ∗.

By default all vectors are assumed to be columns.
The Moore–Penrose pseudo-inverse of a matrix M is
denoted by M+. A rank factorization of a matrix
M ∈ Rm×n with rank(M) = r is a pairQ ∈ Rm×r, R ∈
Rr×n such that M = QR and rank(Q) = rank(R) = r.
We denote the ith row of M by M(i, :), and the jth
column by M(:, j). For Hankel matrices and Hankel
sub-blocks, rows and columns are respectively indexed
by prefixes and suffixes. The notation ‖ · ‖ is used for
the `2 norm of vectors and matrices. Similarly, ‖ · ‖F
denotes the Frobenius norm, and ‖ · ‖∗ the nuclear
norm.

2.2. Probability Distributions over Strings

Throughout the paper it is assumed that some sub-
blocks of the Hankel matrix Hf are known, either ex-
actly or in an approximate form. Obviously, in prac-
tice it only makes sense to consider targets for which
(approximations of) these sub-blocks can be effectively
obtained, say by examples drawn from a probility dis-
tribution, say by making queries to some oracle. In
general, most spectral methods discussed in Section 1
are used for learning probability distributions defined
by some form of finite state machine. In these cases,
the entries of H are probabilities and usually a sam-
ple drawn from the corresponding distribution is used
for obtaining empirical estimates of this probabilities,
yielding an approximate Hankel sub-block Ĥ.

Though we shall not fix any particular probabilistic
model, it is worth noting that our results apply seam-
lessly to most of the settings cosidered so far. In par-
ticular, we can deal with the following two settings:
when f defines probabilities over finite prefixes (like in
the HMM formulations) and words are sampled from
these distributions conditioned on an externally (fixed
or randomly) given length; and, when f is a rational
stochastic language. Furthermore, in the latter case
our model encompasses the settings where a sample
is used to estimate probabilities of words f(x), pre-
fixes f(xΣ∗), or substrings f(Σ∗xΣ∗), since it is not
difficult to see that when f is given by some WA with
n states, there exists another WA with n states com-
puting prefix and substring probabilities (Luque et al.,
2012).

2.3. Duality between WA and Factorizations

Let f : Σ∗ → R be a function over strings with Hankel
matrix Hf . We recall the following result (see (Beimel
et al., 2000)): rank(f) = r < ∞ if and only if f = fA
for some WA A with r states and for any WA A such
that fA = f then |A| ≥ r. If f = fA and |A| = rank(f)

we say that A is minimal for f .

Our ultimate goal is to learn a function f : Σ∗ → R of
finite rank by observing a sub-block of its Hankel ma-
trix. Since our hypotheses will be functions computed
by weighted automata, a natural question to ask is the
relation between (minimal) WA for f and sub-blocks
of Hf . Our first observation is that any minimal WA
for f induces a “nice” factorization of any sub-block
H defined on a “good” set of prefixes and suffixes.

Let A be a minimal WA for some f of rank r. Then
A induces a rank factorization of the Hankel matrix
of f of the form Hf = PfSf , where Pf ∈ R∞×r and
Sf ∈ Rr×∞ are defined as: Pf (u, :) = α>1 Au, and Sf (:
, v) = Avα∞. Actually, for any sets of prefixes U and
suffixes V, A also induces a factorization H = PS of
the associated sub-block with P ∈ Rp×r and S ∈ Rr×s.
Furthermore, we can show that if (U ,V) is a basis of f ,
then H = PS is a rank factorization. Indeed, the in-
equalities r = rank(H) ≤ min{rank(P ), rank(S)} and
p, s ≥ r, imply that rank(P ) = rank(S) = r. Note that
from P (u, :) = α1Au and S(:, v) = Avα∞ one can also
derive the following useful factorization: Ha = PAaS.

Thus, we have seen how a minimal WA for f induces
a rank factorization of H provided that U and V form
a basis of f . The following lemma shows that this
relation can be reversed. Together, these two facts
show that minimal WA for f and rank factorizations
of H are “dual” whenever (U ,V) is a basis.

Lemma 1. Suppose (U ,V) is a basis of f with λ ∈
U and λ ∈ U . Let h>r,λ = H(λ, :) and hc,λ = H(:
, λ) be the respective row and column of H associated
with λ. For any rank factorization H = QR, let A =〈
α>1 , α∞, {Aa}

〉
be the WA given by: α>1 = h>r,λR

+,

α∞ = Q+hc,λ, and Aa = Q+HaR
+. Then A is a

minimal WA for f .

Proof. Let B = 〈β1, β∞, {Ba}〉 be a minimal WA
for f inducing a rank factorization H = PS. It
suffices to prove that there exists an invertible M
such that A = M−1BM . Let M = SR+. Since
(Q+P )(SR+) = Q+HR+ = I, we see that M is in-
vertible with inverse M−1 = Q+P . Now we check
that the operators of A correspond to the operators
of B under the change of basis M . First, we see that
Aa = Q+HaR

+ = Q+PBaSR
+ = M−1BaM . Now

observe that by the definitions of S and P we have
β>1 S = h>r,λ and Pβ∞ = hc,λ. Thus, we see that

α>1 = β>1 M and α∞ = M−1β∞.

From now on, we assume without loss of generality
that any basis (U ,V) contains the empty string λ as a
prefix and a suffix.
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The spectral algorithm of (Hsu et al., 2009) can be
easily derived using Lemma 1. Basically, it accounts
to taking the rank factorization H = (HV )V >, where
H = UΛV > is a compact SVD. In next section we will
derive another algorithm based on loss minimization
that yields similar results.

3. Learning WA via Loss Minimization

In spirit, our algorithm is similar to the spectral
method in the sense that in order to learn a function
f : Σ∗ → R of finite rank, the algorithm infers a WA
using (approximate) information from a sub-block of
Hf . The sub-block used by the algorithm is defined in
terms of a set of prefixes U and suffixes V. Throughout
this section we assume that f is fixed and has rank r,
and that a basis (U ,V) of f is given. How to find these
sets of prefixes and suffixes given a sample is discussed
in Section 4.

We state our algorithm under the hypothesis that sub-
blocks H and {Ha}a∈Σ of Hf are known exactly. It
is trivial to modify the algorithms to work in the case
when only approximations Ĥ and {Ĥa}a∈Σ of the Han-
kel sub-blocks are known.

For 1 ≤ n ≤ s we define the local loss function
`n(X,β∞, {Ba}) on variables X ∈ Rs×n, β∞ ∈ Rn
and Ba ∈ Rn×n for a ∈ Σ as:

`n = ‖HXβ∞ − hc,λ‖22 +
∑
a

‖HXBa −HaX‖2F (2)

The operator learning algorithm is a constrained min-
imization of the local loss:

min
X,β∞,{Ba}

`n(X,β∞, {Ba}) s.t. X>X = I (SO)

Intuitively, this optimization tries to jointly solve the
optimizations solved by SVD and pseudo-inverse in the
spectral method based on Lemma 1. In particular,
likewise for the SVD-based method, it can be shown
that (SO) is consistent whenever a large enough guess
for n is provided.

Theorem 2. Suppose n ≥ r. Then, for any optimal
solution (X∗, β∗∞, {B∗a}) to problem (SO), the weighted

automata B∗ =
〈
h>r,λX

∗, β∗∞, {B∗a}
〉

satisfies f = fB∗

The proof of this theorem is sketched in Appendix A.1.
Though the proof is relatively simple in the case n = r,
it turns out that the case n > r is much more delicate
– unlike in the SVD-based method, where the same
proof applies to all n ≥ r.

Of course, if H and {Ha} are not fully known, but ap-

proximations Ĥ and {Ĥa} are given to the algorithm,

we can still minimize the empirical local loss ̂̀n and
build a WA from the solution using the same method
of Theorem 2.

Despite its consistency, in general the optimization
(SO) is not algorithmically tractable because its ob-
jective function is quadratic non-positive semidefinite
and the constraint on X is not convex. Nonetheless,
the proof of Theorem 2 shows that when H and {Ha}
are known exactly, the SVD method can be used to effi-
ciently compute an optimal solution of (SO). Further-
more, the SVD method can be regarded as an approxi-
mate solver for (SO) with an empirical loss function ̂̀n
as follows. Find first an X̂ satisfying the constraints
using the SVD of Ĥ, and then compute β̂∞ and {B̂a}
by minimizing the loss (2) with fixed X̂ – note that in
this case, the optimization turns out to be convex.

From this perspective, the bounds for the distance
between operators recovered with full and approxi-
mate data given in several papers about the spectral
method, can be restated as a sensitivity analysis of
the optimization solved by the spectral algorithm. In
fact, a similar analysis can be done for (SO), though
we shall not pursue this direction here.

Instead, we shall present a convex relaxation of (SO)
that addresses a practical issue in this optimization
algorithm. That is, the fact that the only parame-
ter a user can adjust in (SO) in order to trade accu-
racy and model complexity is the number of states n.
Though the discreteness of this parameter allows for a
fast model selection scheme through a full exploration
of the parameter space, in some applications one may
be willing to invest some time in exploring a larger,
more fine-grained space of parameters, with the hope
of reaching a better trade-off between accuracy and
model complexity. The algorithm presented in next
section does this by incorporating a continuous regu-
larization parameter.

3.1. A Convex Local Loss

The main idea in order to obtain a convex optimiza-
tion problem similar to (SO) will be to remove X,
since we have already seen that it is the only source of
non-convexity in the optimization. However, the new
convex objective will need to incorporate a term that
enforces the optimization to behave in a similar way
as (SO).

First note that the choice of n effectively restricts the
maximum rank of the operators Ba. Once this max-
imal rank is set, X can be interpreted as enforcing a
common “semantic space” between the different oper-
ators Ba by making sure each of them works on a state
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space defined by the same projection of H. Further-
more, the constraint onX tightly controls its norm and
thus ensures that the operators Ba will also have its
norm tightly controlled to be in the order of ‖Ha‖/‖H‖
– at least when n = r, see the proof of Theorem 2.

Thus, in order to obtain a convex optimization sim-
ilar to (SO) we do the following. First, take n = s
and fix X = I, thus unrestricting the model class and
removing the source of non-convexity. Then penalize
the resulting objective with a convex relaxation of the
term rank([Ba1 , . . . , Bam ]), which makes sure the op-
erators have low rank individually, and enforces them
to work on a common low-dimensional state space.

More formally, for any regularization parameter τ >
0, the relaxed local loss ˜̀

τ (BΣ) on a matrix variable
BΣ ∈ Rs×ms is defined as:

˜̀
τ = ‖BΣ‖∗ + τ‖HBΣ −HΣ‖2F , (3)

where we interpret BΣ = [Ba1
, . . . , Bam ] as a concate-

nation of the operators, and HΣ = [Ha1 , . . . ,Ham ].
Since ˜̀ is clearly convex on BΣ, we can learn a set of
operators by solving the convex optimization problem

min
BΣ

˜̀(BΣ) . (CO)

Given an optimal solution B∗Σ of (CO), we define a WA

B∗ =
〈
h>r,λ, eλ, B

∗
Σ

〉
, where eλ ∈ Rs is the coordinate

vector with eλ(λ) = 1.

Some useful facts about this optimization are collected
in the following proposition.

Proposition 3. The following hold: (1) if H has full
column rank, then (CO) has a unique solution; (2) for
n = s and τ ≥ 1, the optimum value `∗s of (SO) and
the optimum value ˜̀∗

τ of (CO) satisfy `∗s ≤ ˜̀∗
τ ; (3)

suppose rank(H) = rank([HΣ, H]) and let [HΣ, H] =
UΛ[V >Σ V >] be a compact SVD. Then, BΣ = (V >)+V >Σ
is a closed form solution for (CO) when τ →∞

Proof. Fact (1) follows from the observation that when
H has full rank the loss ˜̀

τ is strictly convex. For fact
(2), suppose B∗Σ achieves the optimal value in (CO)
and check that `∗s ≤ `s(I, eλ, B∗Σ) = ‖HB∗Σ −HΣ‖2F ≤
˜̀∗
τ . Fact (3) follows from Theorem 2.1 in (Liu et al.,

2010) and the observation that when τ → ∞ op-
timization (CO) is equivalent to minBΣ ‖BΣ‖∗ s.t.
HBΣ = HΣ.

Note that in general approximations Ĥ of H computed
from samples will have full rank with high probabil-
ity. Thus, fact (1) tells us that either in this case, or
when p = n, optimization (CO) has a unique optimum.

Furthermore, by fact (2) we see that minimizing the
convex loss is also, in a relaxed sense, minimizing the
non-convex loss which is known to be consistent. In
addition, fact (3) implies that when H has full rank
and τ is very large, we recover the spectral method
with n = s. These and other properties of (CO) ap-
pear in the experimens described in Section 5.

Optimization (CO) can be restated in several ways.
In particular, by standard techniques, it can be shown
that it is equivalent to a Conic Program on the inter-
section of a semi-definite cone (given by the nuclear
norm), and a quadratic cone (given by the Frobenius
norm). Similarly, the problem can also be fully ex-
pressed as a semi-definite program, though in general
this conversion is believed to be inefficient. Altogether,
the number of variables in (CO) is ms2. Formulat-
ing the conic program yields O(m2s2) varibles, and
constraints in a space of size O(mps + ms2). When
the fully semi-definite program is considered, the con-
straint space grows to dimension O(m2p2s2). This
shows that finding a small basis, in particular, a ba-
sis defined over a small set of prefixes, is important
in practice. We note here that the complexity of the
SVD method scales similarly.

4. Choosing the Local Loss

We have already discussed why, in practice, it is impor-
tant to have methods for finding a basis. In this section
we show a fundamental result about basis. Namely,
that simple randomized strategies for choosing a basis
succeed with high probability. Furthermore, our result
gives bounds on the number of examples required for
finding a basis that depend polynomially on some pa-
rameters of the target function f : Σ∗ → R and the
sampling distribution D.

We begin with a well-known folklore result about the
existence of minimal basis. This implies that in prin-
ciple all methods for learning WA from sub-blocks of
the Hankel matrix can work with a block whose size is
only quadratic in the number of states of the target.

Proposition 4. For any f : Σ∗ → R of rank r there
exists a basis (U ,V) of f with |U| = |V| = r.

A WA A =
〈
α>1 , α∞, {Aa}

〉
is called strongly bounded

if ‖Aa‖ ≤ 1 for all a ∈ Σ. Note that this implies
the boundeness of fA since |fA(x)| = |α>1 Axα∞| ≤
‖α1‖‖α∞‖. A function over strings f of finite rank
is called strongly bounded if there exists a strongly
bounded minimal WA for f . Note that, in particu-
lar, all models of probabilistic automata discussed in
Section 2.2 are strongly bounded.

Our result states that, under some simple hypothesis,
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Algorithm 1 Random Basis

Input: strings S = (x1, . . . , xN )
Output: basis candidate (U ,V)
Initialize U ← ∅, V ← ∅
for i = 1 to N do

Choose 0 ≤ t ≤ |xi| uniformly at random
Split xi = uivi with |ui| = t and |vi| = |xi| − t
Add ui to U and vi to V

end for

with high probability Algorithm 1 will return a correct
basis when enough examples are examined.

Theorem 5. Let f : Σ∗ → R be a strongly bounded
function of rank r and D a distribution over Σ∗ with
full support.Suppose that N strings sampled i.i.d. from
D are given to Algorithm 1. Then, if N ≥ Cη log(1/δ)
for some universal constant C and a parameter η that
depends on f and D, the output (U ,V) is a basis for f
with probability at least 1− δ.

A proof of this result based on random matrix theory
is given in Appendix A.

5. Experimental Results

We conducted synthetic and real experiments compar-
ing the SVD and the Convex Optimization methods.

For the synthetic experiments, we created random PN-
FAs with alphabet sizes ranging from 2 to 10 symbols
and a random number of states in the same range. For
each random target model, we then sampled k train-
ing sequences and trained models using SVD and CO.
Results are reported in terms of L1 error with respect
to the true distribution (all results are averages of 10
sampling rounds). We fixed the set of prefixes and
suffixes to be all substrings of length 1, following (Hsu
et al., 2009). Table 1 shows learning curves for three
target models. Each model was chosen randomly from
a set of models that have the smallest singular value
of H in the same order of magnitude. For each target
and method we show the error of the best model (i.e.
optimal n for the SVD method and optimal τ for the
CO method). For the second distribution in Table 1,
Figure 1.a shows the L1 error of the CO method as
a function of τ . It also shows the error of the SVD
method for different number of states.

Figure 1.b summarizes all results for the largest size of
training set. For each target model, we show the aver-
age error of the two learned models as a function of the
smallest singular value of the target. We observe that
in general target models with smaller singular values
are harder to learn, and it is in those cases that the

σn 50k 100k 150k 200k

∼10−1 SVD 0.0213 0.0137 0.0128 0.001
CO 0.0199 0.0130 0.0121 0.0093

∼10−2 SVD 0.0501 0.0450 0.0426 0.0399
CO 0.0460 0.0390 0.0362 0.0317

∼10−3 SVD 0.0310 0.0194 0.0186 0.0154
CO 0.0259 0.0173 0.0181 0.0144

Table 1. Learning curves for three target distributions di-
ferring in the magnitude of the smallest singular value.

CO approach obtains the largest gain in accuracy.

We also conducted experiments on natural language
data, for the task of language modeling of syntactic
part-of-speech tags (i.e. noun, verb, adjective, . . . ).
This type of language models are a central building
block in Natural Language Processing methods for tag-
ging the words of a sentence with their syntactic func-
tion. We used the English Penn Treebank with a tag
set of 12 symbols, and used the standard splits for
training (39,832 sentences with avg. length of 23) and
validation (1,700 sentences).

Figure 1.c plots curves on the validation set comparing
the SVD method, the CO method, the standard EM
algorithm, and two simple baselines based on statis-
tics of single symbols (Unigram) and pairs of symbols
(Bigram). For each model we plot the word error rate
with respect to the nuclear norm of their operators. All
hidden state models improve the baselines, while the
CO method is able to improve over the SVD method.
The EM method obtains the best error rates, though
it is much slower to train (a factor of 100 times).

Finally, Table 2 shows the peformance of the SVD
method using random sets of prefixes and suffixes. In
this case, we generated substrings of up to 4 sym-
bols, and sampled them according to their frequency
on the training data. We used the random substrings
to define Hankel sub-blocks of increasing dimension-
alities. For each dimensionality, we trained a model
using SVD, and chose the number of states that mini-
mized error on validation data. Clearly, expanding the
Hankel sub-block results in a benefit in terms of the
error. For comparison, the table also reports the per-
formance of EM with respect to the number of states.

6. Conclusion

In this paper we have attempted to facilitate the un-
derstanding and applicability of spectral approaches
for learning weighted automata. In particular, we
have made the following contributions: (1) formulate
weighted automata learning as a local loss minimiza-
tion; (2) show that under certain conditions the stan-
dard SVD approach is an optimizer of this local loss;
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Figure 1. (a) Synthetic: the effect of the regularization parameter (tau) on a random distribution in terms of average L1

error; for comparison, the plot also depicts the error of the SVD learner for different number of states. (b) Synthetic:
comparison in terms of average L1 error of SVD and CO learners on 40 random targets; the black line is the difference
in errors for each target. (c) Part-of-speech models: error rates on the validation set with respect to the nuclear norm of
models learned using SVD, CO and EM.

SVD
dim n error (%)
12 8 65.1
25 10 63.9
50 12 63.2
100 30 62.2
300 38 61.6
500 38 61.3

EM
n error (%)
12 62.1
15 61.4
20 60.6
30 59.4
50 58.6
100 57.9

Table 2. Error rates of the SVD method using increasing
number of random prefixes and suffixes (dim); n is the
optimal number of states for each dimensionality. Error
rates of EM are with respect to the number of states.

(3) propose a convex relaxation that permits fine tun-
ing of the complexity–accuracy trade-off; (4) offer a
provable correct method for estimating the scope of
the local loss function from samples; and (5) show on
synthetic experiments that under certain conditions
the convex relaxation method is more robust than the
SVD approach.

A. Technical Proofs

A.1. Proof Sketch for Theorem 2

The following two lemmas will be used in the proof.

Lemma 6. Let A =
〈
α>1 , α∞, {Aa}

〉
be a WA with n

states. Suppose that (U ,V) is a basis for fA and write
H = PS for the factorization induced by A on this
Hankel sub-block. For any m and any pair of matrices
N ∈ Rm×n and M ∈ Rn×m such that PMN = P , the
WA B = NAM =

〈
α>1 M,Nα∞, {NAaM}

〉
satistifies

fB = fA.

Lemma 7. Let f : Σ∗ → R be a function of finite
rank r and suppose that (U ,V) is a basis for f . Then
the matrix HΣ = [Ha1

, . . . ,Ham ] has rank r.

Now the following three facts can be established. To-

gether, they imply the result.

Claim 1: The optimal value of problem (SO) is zero.
Let H = UΛV > be a full SVD of H and write
Vn ∈ Rs×n for the n left singular vectors corre-
sponding first n singular values. Then consider the

WA An =
〈
h>r,λVn, (HVn)+hc,λ, {(HVn)+HaVn}

〉
and

show that `n(Vn, (HVn)+hc,λ, {(HVn)+HaVn}) = 0.

Claim 2: For any n ≥ r, An satisfies fAn
= f . Apply

Lemma 6 to show that fAn
= fAr

for n > r, and then
Lemma 1 to show fAr = f .

Claim 3: For any optimal solution B∗ one has fB∗ =
fAn

. Lemma 7 is used to show that HX∗(X∗)> = H.
Then, Lemma 6 with N = (X∗)>Vn and M = V >n X

∗

implies the claim.

A.2. Proof of Theorem 5

We use the following result from (Vershynin, 2012).

Theorem 8 (Corollary 5.52 in (Vershynin, 2012)).
Consider a probability distribution in Rd with full-rank
covariance matrix C and supported in a centered Eu-
clidean ball of radius R. Also, let σ1 ≥ . . . ≥ σd > 0 be
the singular values of C. Take N i.i.d. examples from
the distribution and let Ĉ denote its sample covariance
matrix. Then, if N ≥ K(σ1/σ

2
d)R2 log(1/δ) the ma-

trix Ĉ has full rank with probability at least 1−δ. Here
K is a universal constant.

Consider the prefixes produced by Algorithm 1 on in-
put an i.i.d. random sample S = (x1, . . . , xN ) drawn
from D. We write U = (u1, . . . , uN ) for the tuple of
prefixes produced by the algorithm and use U ′ to de-
note the set defined by these prefixes. We define V
and V ′ similarly. Let p′ = |U ′| and s′ = |V ′|. Our goal
is to show that the random sub-block H ′ ∈ Rp′×s′ of
Hf defined by the output of Algorithm 1 has rank r
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with high probability w.r.t. the choices of input sam-
ple and splitting points. Our strategy will be to show
that one always has H ′ = P ′S′, where P ′ ∈ Rp′×r
and S′ ∈ Rr×s′ are such that with high probability
rank(P ′) = rank(S′) = r. The arguments are identi-
cal for P ′ and S′.

Fix a strongly bounded minimal WA A =〈
α>1 , α∞, {Aa}

〉
for f , and let Hf = PfSf denote

the rank factorization induced by A. We write p>u =
Pf (u, :) for the uth row of Pf . Note that since A is
strongly bounded we have ‖p>u ‖ = ‖α>1 Au‖ ≤ ‖α>1 ‖.
The desired P ′ will be the sub-block of Pf correpond-
ing to the prefixes in U ′. In the following we bound
the probability that this matrix is rank deficient.

The first step is to characterize the distribution of the
elements of U . Since the prefixes ui are all i.i.d., we
write Dp to denote the distribution from which these
prefixes are drawn, and observe that for any u ∈ Σ∗

and any 1 ≤ i ≤ N we have Dp(u) = P[ui = u] =
P[∃ v : xi = uv ∧ t = |u|], where xi is drawn from D
and t is uniform in [0, |xi|]. Thus we see that Dp(u) =∑
v∈Σ∗(1 + |uv|)−1D(uv).

Now we overload our notation and let Dp also denote
the following distribution over Rr supported on the
set of all rows of Pf : Dp(q>) =

∑
u:p>u =q> Dp(u). It

follows from this definition that the covariance ma-
trix of Dp satisfies Cp = E[qq>] =

∑
uDp(u)pup

>
u .

Observe that this expression can be written in ma-
trix form as Cp = P>f DpPf , where Dp is a bi-infinite
diagonal matrix with entries Dp(u, u) = Dp(u). We
say that the distribution D is pref-adversarial for A if
rank(Cp) < r. Note that if D(x) > 0 for all x ∈ Σ∗,
then Dp has full-rank and consequently rank(Cp) = r.
This shows that distributions with full support are
never pref-adversarial, and thus we can assume that
Cp has full rank.

Next we use the prefixes in U to build a matrix P ∈
RN×r whose ith row corresponds to the uith row of Pf ,
that is: P (i, :) = p>ui . It is immediate to see that P ′

can be obtained from P by possibly removing some re-
peated rows and reordering the remaining ones. Thus
we have rank(P ) = rank(P ′). Furthermore, by con-

struction we have that Ĉp = P>P is the sample covari-
ance matrix of N vectors in Rr drawn i.i.d. from Dp.
Therefore, a straightforward application of Theorem 8
shows that if N ≥ K(κ(Cp)/σ(Cp))‖α>1 ‖2 log(1/δ),
then rank(P ′) = r with probability at least 1−δ. Here
K is a universal constant, κ(Cp) is the condition num-
ber of Cp, and σ(Cp) is the smallest singular value of
Cp, where these last two terms depend on A and D.

The result follows by symmetry from a union

bound. Furthermore, we can take η = η(f,D) =
infA max{(κ(Cp)/σ(Cp))‖α>1 ‖2, (κ(Cs)/σ(Cs))‖α∞‖2},
where the infimum is taken over all minimal strongly
bounded WA for f .
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