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Abstract

We demonstrate that almost all non-
parametric dimensionality reduction meth-
ods can be expressed by a simple procedure:
regularized loss minimization plus singular
value truncation. By distinguishing the role
of the loss and regularizer in such a pro-
cess, we recover a factored perspective that
reveals some gaps in the current literature.
Beyond identifying a useful new loss for man-
ifold unfolding, a key contribution is to de-
rive new convex regularizers that combine
distance maximization with rank reduction.
These regularizers can be applied to any loss.

1. Introduction

Dimensionality reduction is an ubiquitous and impor-
tant form of data analysis. Recovering the inherent
manifold structure of data—i.e. the local directions
of large versus minimal variation—enables useful rep-
resentations based on encoding highly varying direc-
tions. Not only can this reveal important structure
in data, and hence support visualization, it also pro-
vides an automated form of noise removal and data
normalization that can aide subsequent data analysis.

Although linear dimensionality reduction is a well
studied topic, recent progress continues to be made
with the investigation of convex regularizers, such as
the trace norm or 2,1-norm, that enable application
to general losses beyond squared error (Candes et al.,
2011; Xu et al., 2010; Srebro & Shraibman, 2005). The
literature on nonlinear dimensionality reduction, by
comparison, has grown more rapidly yet devoted rel-
atively less attention to developing appropriate regu-
larizers. This provides one of our main motivations.

The focus of this paper is on unsupervised dimension-
ality reduction; that is, we will not directly address su-
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pervised variants, e.g. (Weinberger & Saul, 2009). We
will also focus on non-parametric formulations that
do not require an explicit map connecting the low
and high dimensional representations; e.g. as in re-
stricted Boltzmann machines (Larochelle & Bengio,
2008), auto-encoders (Rifai et al., 2011), or parame-
terized kernel reductions (Wang et al., 2010).

The primary benefit of focusing on unsupervised, non-
parametric formulations is that it allows a simple yet
comprehensive overview of current methods. In partic-
ular, we observe that nearly all current non-parametric
methods can be expressed as regularized loss mini-
mization of a reconstruction matrix followed by sin-
gular value truncation. This perspective allows us to
distinguish the role of the loss from that of the reg-
ularizer : the loss relates the learned reconstruction
to the data, whereas the regularizer relates the recon-
struction to the desired topology independent of the
data. Such a separation allows a simpler organization
of current methods than current overviews (Burges,
2010; Lee & Verleysen, 2010a). More importantly,
it reveals new research directions. A brief overview
of current losses, for example, reveals a useful alter-
native that remains uninvestigated. Similarly, an as-
sessment of current regularizers reveals that very few
have been explored: in fact, only one family of con-
vex regularizers has been widely used in the nonlinear
case (distance maximization), which has known weak-
nesses. Although non-convex regularizers have been
proposed to mitigate these weaknesses, these introduce
intractability. Our main contribution is to derive effi-
cient new convex regularizers that are able to combine
distance maximization with rank reduction.

2. Preliminaries

Below we will need to manipulate and relate data, ker-
nel, and Euclidean distance matrices respectively. As-
sume one is given t observations, either expressed as
a t× n data matrix X; a t× t kernel matrix K where
K = K ′ and K < 0; or a t× t squared Euclidean dis-
tance matrix D where D = D′, D ≥ 0, δ(D) = 0
and HDH 4 0, such that δ denotes diagonal and
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H = I − 1
t11

′ denotes the centering matrix. Then
we can map between these various matrices via

K(X) = XX ′ (1)

D(X) = δ(XX ′)1′ + 1δ(XX ′)′ − 2XX ′ (2)

D(K) = δ(K)1′ + 1δ(K)′ − 2K (3)

K(D) = − 1
2HDH (4)

(where the function intended is determined by the ar-
gument). Note that it is easy to map a data matrix to
its corresponding kernel or Euclidean distance matrix,
but such a map is neither linear nor invertible: kernel
matrices drop orientation, while Euclidean distance
matrices drop orientation and translation. However,
by centering the data or kernel matrix, thus removing
translation information, the relationship between ker-
nel and Euclidean distance matrices becomes simple.

Proposition 1 A linear bijection exists between cen-
tered kernel and squared Euclidean distance matrices.

It is easy to verify that D(K(D)) = D and K(D(K)) =
HKH for a valid Euclidean distance and kernel ma-
trix respectively. Therefore if f(D) is convex in D then
f(D(K)) must be convex in K. Proposition 1 thus al-
lows one to equivalently re-express problems in terms
of centered kernel matrices or Euclidean distance ma-
trices without affecting expressiveness or convexity.

In this paper we assume the target dimensionality d is
fixed beforehand. That is, we are not addressing the
problem of estimating the intrinsic dimensionality; for
a survey see (Lee & Verleysen, 2010a, Ch.3). We will
also need to make use of the indicator function

[[φ]] =

{
0 if the predicate φ is true
∞ if the predicate φ is false

. (5)

3. Background: Linear Case

First briefly consider linear dimensionality reduction,
which illustrates some basic points. Here one is given a
data matrix X and seeks a reduced rank representation
X̂. It turns out that a simple, generic strategy covers
almost all methods that have been proposed: First,
solve the regularized loss minimization problem

min
X̃

L(X̃;X) +R(X̃) (6)

for a given loss L and regularizer R, obtaining the
reconstruction X̃. Then recover the low rank repre-
sentation X̂ by truncating all but the top d singular
values of X̃; that is, X̂ = Ũ:,1:dΣ̃1:d,1:dṼ

′
:,1:d such that

Ũ Σ̃Ṽ ′ = X̃ is the singular value decomposition. Note
that the loss relates X̃ to the data, X, whereas the reg-
ularizer enforces assumptions on the reconstruction X̃

that are independent of the data. Interestingly, it is
the regularizer, not the loss, that typically determines
the computational difficulty of this problem.

Regularizers: The role of the regularizer is to en-
courage the desired topology. To illustrate, consider
the common regularizers proposed for the linear case

R1(X̃) = [[rank(X̃) ≤ d]] (7)

R2(X̃) = α‖X̃‖tr (8)

R3(X̃) = α‖X̃ ′‖2,1 (9)

where α ≥ 0 is a regularization parameter. All of these
clearly encode a desire for reduced rank.

In particular, the rank indicator (7) is the stan-
dard regularizer for spectral dimensionality reduction,
which eliminates the need for truncation. Unfortu-
nately rank is not convex, and enforcing (7) is only
known to be tractable for squared loss (10) (Jolliffe,
1986). For other losses, such as absolute error (11) or
Bregman divergence (12), rank is normally enforced by
means of alternating descent in a factored representa-
tion: minAB L(AB;X) where A and B are t × d and
d×n respectively (Collins et al., 2001; Gordon, 2002).
Unfortunately, this cannot guarantee optimality.1

The difficulty of working with rank explains the emer-
gence of convex, rank-reducing regularizers such as the
trace norm (8) (Candes et al., 2011; Srebro & Shraib-
man, 2005) and block norm (9) (Xu et al., 2010). In
fact, the trace norm is known to be the tightest con-
vex approximation to rank.2 These regularizers allow
a tractable formulation for general convex losses, and
also allow a desired rank to be enforced by appropri-
ately choosing α (Cai et al., 2008).

Loss Functions: Despite the importance of regular-
ization, it is interesting to observe that until recently
much of the research effort in linear dimensionality re-
duction investigated alternative losses, including

L1(X̃;X) = ‖X − X̃‖2F (10)

L2(X̃;X) = ‖X − X̃‖1,1 (11)

L3(X̃;X) = BF (X̃‖X), such that (12)

BF (X̃‖X) = F (X̃)−F (X)− tr(∇F (X)′(X̃−X)). (13)

Here ‖ · ‖F denotes Frobenius norm, ‖ · ‖1,1 denotes
1,1 block norm, and (13) is a Bregman divergence as-
sociated with strictly convex potential F . Beyond the
squared error (10) used for PCA (Jolliffe, 1986), the

1 Random projection has also been considered, but
it is difficult to establish guarantees for general losses
(Brinkman & Charikar, 2003).

2 Specifically, it is the bi-conjugate of the rank function
over the unit sphere in spectral-norm (Recht et al., 2010).
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absolute loss (11) has been recently proposed for ro-
bust PCA (Candes et al., 2011; Xu et al., 2010), and
Bregman divergences (12) have been implicitly pro-
posed in exponential family PCA (Collins et al., 2001;
Gordon, 2002).3 Interestingly, all these standard loss
functions are convex in X̃.

The conclusion we draw from the linear case that the
loss functions considered are standard, convex, and not
the source of computational difficulty. Instead, it is
regularization that has posed the greatest difficulty,
particularly the desire to reduce rank. Interestingly,
for the non-parametric case we find the same holds:
almost every method follows regularized loss minimiza-
tion plus truncation, almost every loss adopted is stan-
dard (if expressed between Euclidean distance matri-
ces), and the main difficulty lies in devising regular-
izers that encourage desired topology. Such a simple
perspective is surprisingly not widely appreciated.

4. Nonlinear Case

A general non-parametric approach to dimensionality
reduction can be obtained by expressing the problem
in terms of kernel matrices. (Recall that data or Eu-
clidean distance matrices can always be converted to
kernel matrices.) Here we assume one is given a t × t
kernel matrix K determined by the data and seeks a
reconstruction K̃ that allows a reduced rank repre-
sentation. Here too it turns out that a simple, generic
strategy covers almost all methods that have been pro-
posed: First, solve the regularized loss minimization

min
K̃=K̃′,K̃<0,K̃1=1

L(D(K̃);D(K)) +R(K̃) (14)

for a given loss L and regularizer R, obtaining the re-
construction K̃. Then recover the low rank representa-
tion X̂ by truncating all but the top d eigenvalues and

factoring; that is, X̂ = Q̃:,1:dΛ̃
1/2
1:d,1:d, where Q̃Λ̃Q̃′ = K̃

is the eigenvalue decomposition of K̃.

(The reason for stating the loss in (14) in terms of
D(K̃) will be explained below. Note that if the loss
function L is convex in its first argument it must also
be convex in K̃ by Proposition 1.)

Although the difference between the linear and non-
parametric formulations does not appear large, (14)
offers far greater flexibility in recovering alternative
topological structures, such as nonlinear manifolds in
the original data. In fact, a key intuition behind most
non-parametric dimensionality reduction methods is
unfolding, where one supposes the data lay on a low di-

3 Noting the equivalence between regular exponential
families and Bregman divergences (Banerjee et al., 2005).

mensional curved submanifold that is to be “unfolded”
into a linear subspace. Unfortunately, current propos-
als conflate the role of the loss and regularizer in such a
process, and propose only specific combinations of the
two. We find it revealing to consider them separately.

4.1. Regularizers

The natural role for regularization in dimensionality
reduction is to relate the reconstruction K̃ to a desired
topology, expressing prior assumptions about the na-
ture of the target representation independent of the
data. For example, one might seek a coordinate repre-
sentation in a linear subspace, in which case it is desir-
able to encourage “flattening” by spreading distances.
However, regularization can express other topologies
(see below). As before, the computational challenges
appear to be primarily dictated by the regularizer.

The most common target topology is a linear subspace,
for which the most common regularizers considered are

R1(K̃) = [[rank(K̃) ≤ d]] (15)

R2(K̃) = βtr(K̃) (16)

R3(K̃) = −αtr(K̃) (17)

where α ≥ 0 and β ≥ 0 are regularization parameters.

For example, the rank indicator (15) is the most com-
monly used regularizer, often associated with classical
spectral dimensionality reduction (kernel PCA) using
squared error (22) (Schoelkopf et al., 1999; Ham et al.,
2004). Unfortunately, rank is not convex, and efficient
training procedures are not known for other losses. In-
stead, for other losses, rank is typically enforced by
resorting to local minimization in a factored represen-
tation: minX̂ L(D(X̂X̂ ′);D) where X̂ is a t× d repre-
sentation matrix. Unfortunately, no current loss pro-
vides a convex formulation in X̂, and optimal solutions
usually cannot be guaranteed.

Consequently, convex regularizers have also played a
prominent role in non-parametric dimensionality re-
duction. For example, applying the trace norm here
yields (16). Unfortunately, tr(K̃) = 1′D(K̃)1/(2t)
for centered K̃, thus minimizing trace is equivalent to
shrinking distances; in opposition to the desire to un-
fold manifolds. Consequently, the negated regularizer
(17) has proved more effective, forming one of the key
components of maximum variance unfolding (MVU)
(28) (Weinberger et al., 2004; 2007). Neither of these
regularizers is completely satisfactory however.

Partitioned regularizer: It is obvious what one
would desire: to spread distances in the top d dimen-
sions and shrink distances in the remaining dimen-
sions, for the target dimensionality d. Such a regu-
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larizer has been proposed by (Shaw & Jebara, 2007):

R4(K̃) = −αmax
P∈P

tr(PK̃) + β min
P∈P

tr((I − P )K̃) (18)

= min
P∈P

βtr(K̃)− (α+ β)tr(PK̃), where (19)

P = {P : P ′ = P, I < P < 0, tr(P ) = d}. (20)

Unfortunately, (19) is not convex; (Shaw & Jebara,
2007) resort to alternating minimization between K̃
and P . Below we provide new convex regularizers that
approximate (19), providing our main contribution.

Topographic Methods: As an aside, it is interest-
ing to note that alternative topologies can be encour-
aged via regularization. For example, given a graph
expressed as an adjacency matrix G ∈ {0, 1}t×t, a reg-
ularizer can encourage K̃ to adopt G’s structure

R5(K̃) = − max
M∈{0,1}t×t,M1=1, 1′M=1′

tr(M ′K̃MG), (21)

which provides a generalized approach to topographic
embedding (Quadrianto et al., 2010; Bishop et al.,
1998). Unfortunately, (21) is concave in K̃ and the
inner optimization over M is an NP-hard quadratic
assignment problem, so we do not pursue this further.

4.2. Loss Functions

The role of the loss function is to relate the recon-
struction to the data. In the formulation (14) we have
chosen to express losses as between Euclidean distance
matrices. We will see that such a viewpoint, although
nonstandard, provides clarity. For example, unfolding
is naturally enabled by loss locality : errors in recon-
structing small target distances should be punished
more harshly than errors in larger distances. Loss
locality allows larger distances in the reconstruction
more leeway to adapt to the desired target topology.

Expressing current losses in terms of distances reveals
that they are almost all standard, convex, and obvious.
We briefly survey standard losses to demonstrate how
broadly the perspective applies to current methods,
and to highlight useful alternatives.

Classical Losses: The oldest losses used for dimen-
sionality reduction do not express locality, and there-
fore tend to recover linear subspace representations:

L1(D̂;D) = ‖H(D − D̂)H‖2F (22)

L2(D̂;D) = ‖D − D̂‖2F (23)

L3(D̂;D) = ‖
√
D −

√
D̂‖2F (24)

L4(D̂;D) = ‖D − D̂‖1,1 (25)

Here
√
· is applied component-wise. These losses are

all convex in D̂ (Dattorro, 2012, Ch.7). The dou-
bly centered squared loss (22) is used in kernel PCA

(Schoelkopf et al., 1999) (recall HDH = −2K(D)).
Although (23) is frequently mentioned in the multidi-
mensional scaling (MDS) literature (Cox & Cox, 2001),
its use is rare since it cannot be tractably combined
with rank (15) (Dattorro, 2012). The absolute loss
(25) in an important alternative that has been used in
robust MDS (Cayton & Dasgupta, 2006).

Local Losses: Unlike the classical losses, however,
local losses encourage unfolding by de-emphasizing er-
rors on large distances. Let N (D) ∈ {0, 1}t×t denote
an adjacency function, such that N (D)ij = 1 indicates
that i and j are neighbors in D (i.e. either within a
distance of ε or among the k nearest neighbors). The
best known examples of local losses are

L5(D̂;D) =
∑
ij(Dij − D̂ij)

2/Dij (26)

L6(D̂;D) =
∑
ij(Dij − D̂ij)

2 w(D̂ij) (27)

L7(D̂;D) =
∑
ij [[N (D)ij = 1 and D̂ij 6= Dij ]] (28)

L8(D̂;D) =
∑
ij N (D)ij(Dij − D̂ij)

2. (29)

These are the Sammon loss (26) (Sun et al., 2011;
Lee & Verleysen, 2010a); the curvilinear components
loss (27) (Sun et al., 2010); the neighborhood indica-
tor used in MVU and Isomap (28) (Weinberger et al.,
2004; Tenenbaum et al., 2000); and the relaxed loss in-
troduced in regularized MVU (29) (Weinberger et al.,
2007), respectively. All such losses emphasize errors
on small target distances (or predictions) over errors
on large target distances. Moreover, they are all con-
vex in D̂.4 Although the convexity of these losses with
respect to D̂ has not always received significant notice
in the literature, this is an important fact for (14).

Bregman Divergences: Bregman divergences pro-
vide another loss specification that emphasizes local-
ity. Recall that a Bregman divergence is defined by
BF (D̂‖D) = F (D̂)−F (D)− tr(∇F (D)′(D̂−D)) for
a strictly convex differentiable potential F , which by
construction must be convex in D̂. A number of such
divergences have proved to be important in the dimen-
sionality reduction literature, including

BF9
(D̂ij‖Dij) = D̂ij(log D̂ij−logDij)+Dij−D̂ij (30)

BF10
(D̂ij‖Dij) = exp(−D̂ij/σ)− exp(−Dij/σ)

+ exp(−Dij/σ)(D̂ij −Dij)/σ (31)

BF11
(D̂i:‖Di:) = p(Di:)(log p(Di:)− log p(D̂i:))

′ (32)

such that p(Di:) =
exp(−Di:)

exp(−Di:1)
(33)

4 The convexity of curvilinear components loss (27) de-

pends on w(d̂); for example exp(−d̂/σ), 1(d̂≤ε), or 1/d̂ (Lee

& Verleysen, 2010a). The latter makes (27) convex.
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BF12
(D̂‖D) = tr(p(D)′(log p(D)− log p(D̂))) (34)

such that p(D) =
exp(−D)

1′ exp(−D)1
, (35)

where σ > 0 is a scale parameter, log and exp are
applied component-wise, and it is assumed the diver-
gences are summed over all ij or all i where necessary.

The unnormalized entropy (30) was proposed in (Sun
et al., 2011) to approximate the Sammon loss (26),
whereas the reciprocal exponential Bregman diver-
gence (31) was proposed in (Sun et al., 2010) to ap-
proximate the curvilinear components loss (27) under

w(d̂) = exp(d̂/σ). However, the latter approximation
was achieve by placing D̂ in the second position, using
`(D̂ij ;Dij) = BF (Dij‖D̂ij), which is no longer convex
(see below). The Bregman divergence (32) matches
the loss used in SNE (van der Maaten & Hinton, 2008)
up to a minor variation: the transfer p in SNE does
not normalize over the entire vector, but only over the
vector minus the current entry. The later, symmet-
ric SNE error can also be recovered (almost) from the
matrix-wise Bregman divergence (34) up to the same
minor variation, plus a second exception: even though
p(D̂) is computed as in (35), p(D) is computed by av-
eraging the column and row probabilities through ij
using (33).

Surprisingly, the exponential divergence (31) has not
previously been used with D̂ in the first, convex po-
sition. This yields a highly localized loss that is
well suited to manifold unfolding, demonstrating even
stronger locality than the other divergences. Therefore,
we investigate its behavior further below.

Large Margin Losses: Large margin losses for non-
linear dimensionality reduction have also been pro-
posed in (Shaw & Jebara, 2009):

L13(D̂;D) =
∑
i

max
j
N̄ (D)ij(max

k
N (D)ikD̂ik − D̂ij)

where N̄ (D)ij = 1−N (D)ij (36)

L14(D̂;D) = max
N∈N

`(N,N (D)) + tr(D̂(N (D)−N)) (37)

where ` is a local margin loss function. The intuition
behind the loss (36) is simple: for each node i, one
would like the distances to all disconnected nodes j
(such that N (D)ij = 0) to be greater than the dis-
tance to the furthest connected node k (i.e. such that
N (D)ik = 1). The second loss (37) is defined with
respect to a class of alternative adjacency matrices N
producible by running an efficient dynamic program
on candidate distance matrices D̂. This loss, termed
“structure preserving” in (Shaw & Jebara, 2009), be-
haves like a structured output SVM loss that tries

to make sure that the sum of estimated distances on
N (D) are less than on any alternative adjacency ma-
trix in N, plus a margin dictated by how far N ∈ N is
from N (D). Both losses are convex.

Non-convex Losses: Finally, even though non-
convex losses are computationally problematic, a few
important methods are expressible in this manner:

L15(D̂;D) =
∑
ij p(D)ij(log p(D)ij−log q(D̂)ij) (38)

where q(D̂)ij =
(1 + D̂ij)

−1∑
k 6=l(1 + D̂kl)−1

(39)

L16(D̂;D) = − max
W :δ(W )=0,WN̄=0,W1=1

tr
(

(I −W )((1− ρ)D + ρD̂)(I −W )′
)

(40)

where ρ ≥ 0 is a weighting parameter. The first loss
corresponds to tSNE (38), which is a modification of
the symmetric SNE loss (34), using the same transfer
p(D) on the target distances D, but using a “heavier
tailed” transfer function on D̂ (van der Maaten & Hin-
ton, 2008). The second loss (40) can be shown to be
equivalent to local linear embedding (LLE) (Roweis &
Saul, 2000; Saul & Roweis, 2003; Ham et al., 2004) if
one tracks the solution in the limit as ρ↘ 0. Clearly,
this formulation shows that the LLE loss is highly non-
convex in D̂.

Note that other non-parametric dimensionality reduc-
tion methods can also be expressed in terms of regular-
ized minimization of a loss between distance matrices,
but the above suffices to illustrate how comprehen-
sively current methods can be covered. Interestingly,
this loss-based framework generalizes probabilistic for-
mulations (Lawrence, 2011), since e.g. large margin
losses cannot be naturally expressed as log-likelihoods.

5. New Convex Regularizers

Our main contribution is to propose two new convex
regularizers for non-parametric dimensionality reduc-
tion. In particular, we formulate convex relaxations of
the partitioned regularizer (19), which simultenously
seeks to spread distances on the top d dimensions while
shrinking distances in the remaining directions. The
consequences for both rank reduction and manifold un-
folding are clear. We first introduce a slight modifica-
tion of (19) by adding a small quadratic smoother

R5(K̃) = min
P∈P

γ

2
tr(K̃2)+βtr(K̃)−(α+β)tr(PK̃), (41)

where γ > 0, and P is the same as defined previously
in (20). Although this modified regularizer is still not
convex in K̃, it enables two useful relaxations.
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5.1. Completed Square

The first relaxation we propose is extremely simple:
(41) can be made jointly convex in K̃ and P simply
by completing the square, yielding

R6(K̃) = min
P∈P

βtr(K̃) +
γ

2

∥∥∥K̃ − α+β
γ P

∥∥∥2
F
. (42)

This is guaranteed to be an upper bound on (41) since
we are merely adding a nonnegative term γ

2 ‖
α+β
γ P‖2F .

A lower bound on (41) can be recovered by subtracting
d(α+β)2

2γ from (42) since ‖P‖2F ≤ d for all P ∈ P.

The main benefit of this relaxation is that it is ex-
tremely simple and computationally attractive: a sim-
ple modification of the alternating minimization strat-
egy of (Shaw & Jebara, 2007) now yields a global solu-
tion. This does not, however, yield the tightest convex
approximation of (41), as we now demonstrate.

5.2. Bi-conjugation

Recall that the conjugate of a function f is defined by
f∗(y) = supx∈dom(f)〈x, y〉 − f(x) (Borwein & Lewis,
2006). Importantly, any function is lower bounded
by its bi-conjugate; i.e. f ≥ f∗∗ (Borwein & Lewis,
2006, §4.2). Therefore, a general strategy for deriving
maximal convex lower bounds on objective functions
can be based on Fenchel bi-conjugation (Jojic et al.,
2011). Here, we obtain a new regularizer by formulat-
ing the tightest convex relaxation of (41) based on its
bi-conjugate and define

R7(K̃) = R∗∗5 (K̃). (43)

By construction, this must be a convex function in K̃.

Theorem 1

R∗∗5 (U) = max
Z=Z′

tr(UZ)

− 1

2γ
max
P∈P
‖[Z−βI+(α+β)P ]+‖2F , (44)

where [·]+ = max(0, ·) is applied to the eigenvalues.

Proof: We compute the Fenchel bi-conjugate of

g(K) =

{
R5(K) if K < 0

∞ otherwise
. (45)

First, the conjugate of g(K) is easily derived as

g∗(Z) = max
K<0

tr(Z ′K)−R5(K) (46)

= max
K<0

max
P∈P

tr(Z ′K)− γ

2
tr(K2)− βtr(K)

+ (α+ β)tr(KP ). (47)

Note that the domain of g∗ is actually all t×t matrices,
but (47) implies that g∗(Z) = g∗(Z ′) = g∗((Z+Z ′)/2),
hence for the purpose of computing g∗∗ no generality
is lost if we restrict the domain of g∗ to symmetric
matrices. Now for any U < 0 we obtain

g∗∗(U) = max
Z∈St

tr(UZ)− g∗(Z) (48)

= max
Z∈St

min
P∈P

min
K<0

tr(UZ)− tr(ZK)

+
γ

2
tr(K2) + βtr(K)− (α+ β)tr(KP )

= max
Z∈St

min
P∈P

tr(UZ)−

max
K<0

tr[K(Z − βI + (α+ β)P )]− γ

2
‖K‖2F (49)

= max
Z∈St

tr(UZ)− 1

2γ
max
P∈P
‖[Z−βI+(α+β)P ]+‖2F .

The last equality is due to von Neumann’s trace in-
equality (Borwein & Lewis, 2006) and the elementary
equality maxx≥0 xy − γ

2x
2 = 1

2γ (y)2+.

Putting γ = 0, Theorem 1 implies that the Fenchel
biconjugate of (19) is exactly (17) (for Z = −αI) if
d > 0 and is (16) (for Z = βI) if d = 0, which might
explain the success of MVU (Weinberger et al., 2004).

Although (44) appears to be a complex regularizer, it
is not computationally much harder to optimize than
(42). To evaluate R∗∗5 (U), an optimal Z in (44) must
be solved, but this is a convex problem and admits
efficient optimization. First note that the inner max-
imization in (44) necessarily attains its maximum at
some extreme point of the set P (for we are maximizing
a convex function). Next inspecting (49) and invoking
von Neumann’s trace inequality one more time we re-
duce (44) to its vector counterpart. Let {zi} and {ui}
(both arranged in decreasing order) be the eigenvalues
of Z and U , respectively, then we just need to solve:

min
zi≥zi+1

−(2γ)u′z +

d∑
i=1

[zi + α]2+ +

t∑
i=d+1

[zi − β]2+. (50)

Temporarily ignoring the constraints, the optimal z is
obvious since all elements of z are separated in (50):

ẑi =

{
γui − α if i ≤ d
γui + β if i ≥ d+ 1

. (51)

Now observe that ẑi automatically satisfies the order
constraints in the two blocks, thus the only possibility
of violating the order constraint is between the blocks,
i.e. ẑd < ẑd+1. But if we knew ẑd = λ, we would be
able to fix the order by setting

zi(λ) =

{
max(ẑi, λ) if i ≤ d
min(ẑi, λ) if i ≥ d+ 1

. (52)
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Data set Loss tr(K) −tr(K) partition partition(γ) bi-conjugate compl. sq.
rMVU 246M (33) 1.00 (0.2) 1.00 (5) 1.00 [0.0] (5) 0.33 [-1.7] (6) 0.95 [15] (6)

Swiss SNE 7.82 (42) 1.00 (14) 1.69 (4) 1.69 [1K] (4) 0.61 [143] (100) 0.64 [442] (74)

expBreg 0.00 (1) 1.00 (1) 0.47 (5) 0.47 [1.3] (5) 0.00 [-1.7] (6) 0.00 [15] (7)

rMVU 36K (15) 1.00 (0.2) 1.00 (3) 1.00 [0.01] (3) 0.64 [-0.6] (47) 0.82 [17] (2)

Face SNE 1.31 (31) 1.00 (12) 1.69 (6) 1.69 [974] (6) 1.03 [486] (35) 0.83 [503] (32)

expBreg 0.27 (0.6) 1.00 (0.3) 1.00 (3) 1.00 [0.03] (2) 0.27 [-0.1] (1) 0.34 [17] (2)

rMVU 112K (25) 1.00 (0.1) 1.00 (6) 1.00 [0.01] (4) 0.25 [-2.0] (6) 0.80 [19] (7)

3d-sin SNE 1.22 (35) 1.00 (4) 2.00 (2) 2.00 [757] (2) 0.76 [116] (29) 0.70 [296] (23)

expBreg 0.39 (1) 1.00 (0.5) 1.01 (2) 1.01 [2.4] (2) 0.41 [-1.6] (3) 0.42 [20] (2)

rMVU 252 (2) 1.00 (0.3) 1.61 (0.4) 1.61 [0.3] (0.4) 0.41 [-1.2] (1) 0.42 [59] (0.3)

Brush SNE 0.99 (2) 1.00 (0.4) 2.43 (0.7) 2.43 [38] (0.6) 0.98 [-14] (7) 0.79 [70] (2)

expBreg 0.06 (0.2) 1.00 (0.1) 0.55 (0.6) 0.55 [1.1] (0.6) 0.07 [-1.3] (1) 0.07 [59] (0.4)

mean 204M 1.00 1.29 1.29 0.48 0.57

Table 1. Relative reconstruction losses using different losses (SNE (34), regularized MVU loss (29), exponential divergence
(31)) and six different regularizers (from left to right: (16), (17), (19), (41), (44), (42)). The trace maximizing regularizer
(17) is being used as the reference. In each case d = 2, α = 1, β = 0.1, γ = 10−3, and losses were scaled by 10. In the
three leftmost columns, the number (s) in parentheses gives the run time in seconds. In the three rightmost columns, the
numbers [o](s) in the parentheses give the objective function value [o] and run time in seconds (s) respectively.

Therefore we only need to find λ that minimizes (50),
which is a univariate convex piecewise quadratic func-
tion in λ, hence can be done very quickly.

To summarize, for evaluating R∗∗5 (U) (and obtaining a
subgradient), we need to perform SVD on U and then
solve (50). The former costs O(t3) while the latter
costs O(t), where t is the number of points.

6. Experimental Evaluation

Most evaluations of dimensionality reduction methods
resort to subjective assessments of specific case studies.
However, many proposals exist for quantitatively eval-
uating the quality of different methods in a somewhat
objective manner (Sun et al., 2011; Lee & Verleysen,
2010b; van der Maaten, 2009). Evaluation is clearer
when the regularizer and loss components are consid-
ered separately. In particular, to compare regulariz-
ers, an objective assessment can be based on the loss
values achieved by the low-rank reconstruction. For
a given loss function L, we measure the reconstruc-
tion loss L(D(X̂X̂ ′);D) achieved by the recovered low
rank representation X̂. Another objective assessment
can be based on the run time of the corresponding
methods.5 Finally, we can assess the quality of the
convex relaxations by measuring the gap between the
final objective values achieved using the relaxed regu-
larizers versus their source regularizer R5 (41).

5 Here we measure run time using a common implemen-
tation based on accelerated projected subgradient descent
(Tseng, 2008). Accelerated projected subgradient descent
proves to be a far more scalable and generally applicable
method for these problems than a generic SDP solver.

In our experiments, we compare different regularizers
on a representative set of loss functions. The losses
we considered are: regularized MVU loss (29), SNE
(34), and the reciprocal exponential Bregman diver-
gence (31). The results are given in Table 1 for six reg-
ularizers and three losses on four different data sets.6

The regularizers used are R2 (16), R3 (17), R4 (19),
R5 (41), R6 (42), and R7 (44). Additionally, we report
the objective values for R5 and its relaxations R6 and
R7, to assess the approximation gap.

In terms of reconstruction error, the new convex reg-
ularizers obtain the best reconstruction errors overall,
almost always outperforming the other competitors.
A particular disadvantage of the partitioned regulariz-
ers is that they are not convex, hence sensitive to ini-
tialization: the objective values (shown in the square
brackets in the rightmost three columns) demonstrate
that inferior local minima do exist, since the completed
square regularizer (R6) provides an upper bound on
the optimal partition(γ) objective. The run times for
the new regularizers are somewhat slower.

7. Conclusion

We have presented simple view of non-parametric di-
mensionality reduction by separating the roles of the
regularizer and loss function. The result is a com-
pact survey of a large fraction of the literature, which
reveals a natural loss function that has not been thor-
oughly explored. More importantly, we developed two
new convex relaxations of a useful, but non-convex reg-

6 Data set details are given in the supplement.
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ularizer. We investigated the behavior of the new reg-
ularizers across a representative sample of loss func-
tions. Important directions for future research include
extending the convex regularization framework to con-
sider other target topologies, sparsity, and mixtures.
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