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Abstract

We consider the incorporation of causal
knowledge about the presence or absence
of (possibly indirect) causal relations into a
causal model. Such causal relations corre-
spond to directed paths in a causal model.
This type of knowledge naturally arises from
experimental data, among others. Specifi-
cally, we consider the formalisms of Causal
Bayesian Networks and Maximal Ancestral
Graphs and their Markov equivalence classes:
Partially Directed Acyclic Graphs and Par-
tially Oriented Ancestral Graphs. We intro-
duce sound and complete procedures which
are able to incorporate causal prior knowl-
edge in such models. In simulated experi-
ments, we show that often considering even
a few causal facts leads to a significant num-
ber of new inferences. In a case study, we also
show how to use real experimental data to in-
fer causal knowledge and incorporate it into
a real biological causal network. The code is
available at mensxmachina.org.

1. Introduction

Qualitative causal knowledge, such as X causally af-
fects Y (denoted as X 99K Y ) or X does not causally
affect Y (denoted as X ̸99K Y ) is often available in
many domains. It may stem from expert or domain
knowledge (the methylation levels of a gene’s promoter
X causally reduces its expression Y ) or known seman-
tic or temporal constraints (e.g., demographic vari-
ables do not causally affect gender). Such knowledge
may also come from small-sample experiments where
a quantity is manipulated: if temperature X is var-
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ied in a yeast culture, then all (non-)differentially ex-
pressed genes are (not) causally affected by tempera-
ture. These relations can be identified by simple hy-
potheses tests, even if one cannot robustly induce a
complete causal model due to a small sample size.

In this paper, we devise theory and algorithms for in-
corporating a given set K of X 99K Y and X ̸99K Y
relations into a causal model. As causal models we
consider Bayesian Networks (BNs) and Maximal An-
cestral Graphs (MAGs) and their respective Markov
equivalence classes Partially Directed Acyclic Graphs
(PDAGs) and Partially Oriented Ancestral Graphs
(PAGs). Such models can be induced from data
by learning algorithms such as the PC and the FCI
(Spirtes et al., 2000). MAGs are a generalization of
BNs that admit possible latent confounders. Typically,
when learning from observational data, several statis-
tically indistinguishable models are consistent with the
data forming a Markov Equivalence class.These mod-
els share the same edges but may disagree on their
orientations. In these models causal facts of the form
X 99K Y and X ̸99K Y correspond to the presence and
absence of a directed path, respectively.

First, we characterize the Markov equivalence class
of all BNs (MAGs) that belong in the given PDAG
(PAG) and at the same time are consistent with K. It
turns out that this type of equivalence class cannot be
represented with a PDAG (PAG) but a simple exten-
sion of these formalisms is required that we name Path-
Constrained PAG (PDAG) (PC-PAG, PC-PDAG). A
PC-PDAG (PC-PAG) is similar to a PDAG (PAG)
with the addition of new types of edges denoting the
presence or absence of a directed path. In general, the
incorporation of K into a PDAG (PAG) forces the ori-
entation of certain edges and results in a correspond-
ing PC-PDAG (PC-PAG) with fewer structural uncer-
tainties. As a simple example consider that given the
PAG X◦—◦Y ◦—◦Z and knowledge K = {X 99K Z}
one can infer the PC-PAG X → Y → Z (which also
happens to be a PAG and a MAG in this case).
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Subsequently, we develop algorithms that given a
PDAG (PAG) P and a set of knowledge facts K dis-
cover all implied edge orientations and return the cor-
responding PC-PDAG (PC-PAG), if P and K are con-
sistent. We show that the algorithms are computa-
tionally more efficient than brute force algorithms that
enumerate all BNs (MAGs) in the equivalence class of
P to identify the ones that are also consistent with K.
Later on, we extend the algorithms to deal with cases
where P and K are inconsistent.

In simulated experiments with randomly generated
networks as well as real networks appearing in the
literature, we show that often, even for small |K|, a
large number of orientations is made possible. This
provides evidence for the utility of identifying and us-
ing this type of prior knowledge in causal discovery.
We also present a case study where we incorporate
causal knowledge induced from real biological data to
a known biological network.

Several other methods that address prior knowl-
edge for causal discovery have appeared in the lit-
erature. These methods can incorporate knowledge
on the parameters of the network (Niculescu et al.,
2006), on the presence or absence of direct relations
(Meek, 1995), on a total ordering of the variables
(Cooper & Herskovits, 1992), or the complete struc-
ture of the network (Heckerman et al., 1995). Di-
rect causal relations in a model (i.e., not mediated by
any other modeled variable) correspond to edge in the
model; being “direct” depends on the context (i.e., the
modeled variables). In contrast, path-constraints do
not depend on the context and are semantically dif-
ferent. In the yeast example of the first paragraph,
one may deduce that temperature is causally affecting
a gene expression, but not necessarily directly: other
genes may mediate the effect. In (O’Donnell R. T.,
2008) a method is presented for incorporating possi-
bly indirect relations, but relies on computationally
expensive Markov Chain - Monte Carlo (MCMC) sim-
ulations. No prior algorithm (see (Borboudakis et al.,
2011) for an early effort) can incorporate causal knowl-
edge of possibly indirect relations for MAGs.

2. Background

We briefly review some background preliminaries, as-
suming the reader’s familiarity with causal model-
ing. Maximal Ancestral Graphs (MAGs) are graphical
models that represent causal relations among a set of
variables, as well as probabilistic properties, such as
conditional independencies. A key property of MAGs
is that they are able to model latent confounders and
selection variables without explicitly introducing them

into the model, using bi-directed and un-directed edges
respectively. For this paper, we do not consider cases
of selection variables (i.e., we actually consider what is
called Directed Maximal Ancestral Graphs (DMAGs)
that do not have un-directed edges) (Spirtes et al.,
2000; Richardson & Spirtes, 2002). We will refer to
DMAGs as MAGs for ease of notation.

MAGs contain two kinds of edges: directed edges (→)
and bi-directed edges (↔). Each edge has two marks
(or orientations), tails (-) and/or arrowheads (>). A
wildcard mark (∗) can be a tail or an arrowhead. Edge
A∗ → B is into B, and edge A→ B is out of A.

A path in a MAG M is a sequence of distinct vertices
⟨V0, V1, . . . , Vn⟩, s.t. for 0 ≤ i < n, Vi and Vi+1 are
adjacent in M . A path is directed if for 0 ≤ i < n,
Vi → Vi+1 is present in M . A is an ancestor of B and
B a descendant of A if A = B or there is a directed
path from A to B inM . A directed cycle occurs inM if
B → A and A is an ancestor of B. An almost directed
cycle occurs in M if B ↔ A and A is an ancestor of
B. A triple ⟨X,Y, Z⟩ is said to form a collider if X
and Z are into Y .

MAGs, by definition, do not contain any directed or al-
most directed cycles. As a consequence, an arrowhead
denotes non-ancestry, whereas a tail denotes ancestry.
Specifically, a directed edge A→ B denotes that A is a
causal parent of B, whereas a bi-directed edge A↔ B
denotes that neither of the two variables is a causal
ancestor of each other; in addition, when faithfulness
holds (defined below) the bi-directed edge denotes A
and B share a latent common cause (confounder).
Next a graphical criterion called m-separation is de-
fined, which connects the graph with properties of the
joint distribution of the data.

Definition 2.1 (m-separation). In a MAG, a path p
between vertices A and B is m-connecting relative to
(condition to) a set of vertices Z, (A,B ̸∈ Z) if: (i)
every non-collider on p is not a member of Z, (ii) every
collider on p is an ancestor of some member of Z. A
and B are said to be m-separated by Z if there is no
m-connecting path between them relative to Z.

We assume that the Markov Condition and the Faith-
fulness Condition hold for MAGs, i.e., A and B are
m-separated by Z if and only if A and B are indepen-
dent given Z. So, one can graphically determine which
independencies hold in the data distribution. In addi-
tion, it is required by definition of MAGs that for every
missing edge between A and B there exists a subset of
the variables Z s.t. A and B are m-separated by Z.

It may be the case that two or more different MAGs
share the same m-separations. Those MAGs are said
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to be Markov equivalent.

Definition 2.2 (Markov Equivalence). Two MAGs
M1,M2, with the same set of vertices, are Markov
equivalent if for all disjoint sets of vertices A,B,Z,
where A and B are not empty, A and B are m-
separated by Z in M1 if and only if they are m-
separated by Z in M2.

All Markov equivalent MAGs form a Markov equiv-
alence class. A Partially Oriented Ancestral Graph
(PAG) represents such a Markov equivalence class.
PAGs contain three kinds of marks: arrowheads (>),
tails (-) and circles (◦). It has the same adjacencies as
any member of the equivalence class, and every non-
circle mark is invariant in any member of the equiva-
lence class. Arrowheads and tails have the same se-
mantics as in MAGs. Circles denote uncertainties;
both orientations appear in some MAGs of the equiv-
alence class. A path is possibly directed if there is an
orientation of the uncertainties of the PAG which cre-
ates a directed path. A triple ⟨X,Y, Z⟩ forms a defi-
nite non-collider if X and Z are not adjacent and X,Z
are not both into Y . FCI (Spirtes et al., 2000) is an
asymptotically correct algorithm for learning a PAG.

Bayesian Networks (BNs) are special cases of MAGs
with no bi-directed edges; thus, latent causes of two or
more modeled variables (confounders) cannot be rep-
resented so that Faithfulness holds in a way that is also
consistent with the causal semantics of the edges. The
Markov equivalence class of BNs is called Partially Di-
rected Acyclic Graphs (PDAG; some authors use the
term essential graph instead and PDAG for a different
type of graph). In the rest of the paper, we develop
the theory and algorithms for the general case (PAGs)
and discuss specializations for PDAGs.

3. Problem Definition

We assume that a PAG P defined over variables V
is given representing a Markov equivalence class of
MAGs faithful to some distribution over V. P may
contain structural uncertainties about the direction of
some edge-points. P could be induced from data by a
learning algorithm such as FCI, or be otherwise known
and fixed. In addition, we are given a set of prior
knowledge constraints K of the form X 99K Y (we
call these positive constraints) or X ̸99K Y (negative
constraints), where X,Y ∈ V. Thus, knowledge con-
straints must concern modeled variables. A constraint
X 99K Y (X ̸99K Y ) implies that X is (is not) a causal
ancestor of Y , i.e., there must (must not) be a directed
path X → · · · → Y in P. Conversely, given that the
network is faithful to some distribution, if a path is
present (absent) then X is causing (not causing) Y .

Figure 1. (a) Input PAG and prior knowledge constraint.
(b) Corresponding PC-PAG. The orientations V → Y ←
W are inferred; edge X 99K W is necessary to exclude
MAGs that are not consistent with prior knowledge.

Thus, each piece of knowledge in K corresponds to a
path constraint about the presence or absence of a di-
rected path in P. Finally, we assume that P and K
are consistent, i.e., the path-constraints induced by the
latter can be satisfied by at least one MAG in P (later
we develop an algorithm removing this assumption).

As an example, assume that we are given PAG X◦—
◦Y ◦—◦Z. Incorporating knowledge K = {X 99K Z}
one can infer that X → Y → Z. Instead, if K =
{X ̸99K Z} then one can infer X ← ◦Y ◦—◦Z.

Notice that in this setting knowledge is qualitative (the
strength of the causal effect is not represented) and
both P and K are assumed correct (their uncertainty
is not represented). Since P is assumed correct and
it encodes all conditional dependencies and indepen-
dencies in the joint distribution: (a) there is no point
representing and including in K knowledge about the
data dependencies and independencies; they are either
already represented in P or are inconsistent with it.
(b) neither positive nor negative constraints add to
our knowledge about the independencies in P and thus
they cannot affect the skeleton of P, and only reduce
our uncertainty about edge marks.

We now consider how to represent the set of MAGs
that are both Markov equivalent with PAG P and
satisfy prior knowledge K. We call this set Path-
Constrained PAG: PC-PAG(P, K). It is easy to
check that a PC-PAG is an equivalence class. As
we show next, a PC-PAG cannot be represented by
a PAG, thus we need to define a new graphical object
to represent the class.

A simple example is now described. Consider the
PAG P and K = {X 99K Y } in Figure 1(a). Any
MAG in PC-PAG(P, K) must have the orientations
V → Y ← W : if Y ∗ → V , then V → X because
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⟨X,V, Y ⟩ is a definite non-collider. Since X 99K Y the
only remaining option is to orient X → W → Y , in
which case either a cycle or an almost directed cycle
is created. Thus, Y ∗ → V does not hold, i.e., V → Y .
Symmetrically, we get W → Y . Figure 1(b) (ignoring
the dash edge momentarily) shows a PAG P ′ consis-
tent with P and the new orientations. P ′ admits 19
possible MAGs, out of which only 9 are also consistent
with K. It is impossible to further orient any edge in
a way that the PAG admits these 9 MAGs and only
those. Thus, PAGs are not closed under the addition
of path-constraints. We now present a type of graph
that can represent a PC-PAG equivalence class; as for
PAGs we overload the term PC-PAG to indicate both
the class and its graphical representation. The new
type of graph contains additional edges to represent
the path constraints.

Definition 3.1. A Path-Constrained PAG of PAG P
and knowledge K, PC-PAG(P, K) is a graph with two
types of edges: solid and dashed edges, s.t., (i) the
skeleton of the solid edges is the same as P, (ii) each
solid edge-mark is either tail (-) or arrowhead (>) if
the corresponding feature is invariant in all MAGs in
P also consistent with K, and ◦ otherwise, and (iii)
an indirect edge X 99K Y (Y ◦ 99K X) is present if
X 99K Y (X ̸99K Y ) is in K but there is not a directed
path (there is a possible directed path) from X to Y
using solid edges only.

The vertices and the solid edges form a PAG that we
call the underlying PAG. We similarly define Path-
Constrained PDAG and its corresponding underlying
PDAG, when P is a PDAG instead of a PAG.

Figure 1(b) is the PC-PAG of the PAG and knowl-
edge in Figure 1(a). The independencies shared by all
member MAGs in a PC-PAG can be read off the un-
derlying PAG. The dashed edges also denote ancestral
relations so the graph remains ancestral. There can
be at most one edge between a pair of vertices. For a
given P and K the corresponding PC-PAG is unique.
We now define the following problem:

Problem 1. Given a PAG P over variables V and a
set of causal prior knowledge K = {K}Mi=1, where each
Ki is of the form A 99K B or A ̸99K B, A,B ∈ V,
induce the PC-PAG(P, K).

4. Algorithms for Consistent Prior
Knowledge

We now develop algorithms that identify the PC-PAG
or PC-PDAG given a baseline P and knowledgeK. We
will be referring to the general case of PC-PAGs, unless
we need to explicitly differentiate. By definition, the

Algorithm 1 Find-PC-PAG(P ,K)

1: Input: PAG P ; set of causal prior knowledge K
2: Output: boolean sat; PC-PAG C
3:

4: global Found
5: for each un-oriented mark X ∗ − ◦ Y in P do
6: Found(X,Y,>) = false
7: Found(X,Y,−) = false
8: end for
9: sat = Search(P,K)

10: if ¬sat then return ⟨sat, ∅⟩ end if
11: C = P
12: for each un-oriented mark X ∗ − ◦ Y in P do
13: if Found(X,Y,>) ∧ ¬ Found(X,Y,−) then
14: Orient(C,X, Y,>)
15: else if ¬ Found(X,Y,>)∧Found(X,Y,−) then
16: Orient(C,X, Y,−)
17: end if
18: end for
19: for each non-satisfied Ki ∈ K in P do
20: if Ki is of type X 99K Y then
21: Add edge X 99K Y to C
22: else
23: Add edge X L99 ◦Y to C
24: end if
25: end for
26: return ⟨sat, C⟩

Algorithm 2 Search(P ,K)

1: Input: PAG P ; set of causal prior knowledge K
2: Output: boolean sat
3:

4: if ¬V alid(P,K) then return False end if
5: if PruneRule(P) then return True end if
6: ⟨X,Y ⟩ = any X∗—◦Y in P
7: if there is no such edge ⟨X,Y ⟩ then
8: UpdateFound(P )
9: return True

10: end if
11: P1 = ApplyOrientation(P,X, Y,>)
12: sat1 = Search(P1,K)
13: P2 = ApplyOrientation(P,X, Y,−)
14: sat2 = Search(P2,K)
15: return sat1 ∨ sat2

skeleton of the solid edges of PC-PAG is the same as
the one in P; once the edge marks of the solid edges are
determined, the indirect edges are trivially determined
byK. Thus, the main objective should be to determine
the edge marks of the solid edges, i.e., the orientations
shared by all MAGs in P also consistent with K.
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Algorithm 1 starts from a given PAG P and keeps
adding orientations until it is converted to a MAG.
It does so recursively so as to explicitly or implicitly
enumerate all consistent MAGs and identify the invari-
ant edge marks. The data structure Found(X,Y,m)
stores a flag indicating whether a MAG has been found
where the right end-point of edge X—Y is marked as
m. The procedure Search performs the actual search
and computes the values of the identified edge-marks
in Found. If all MAGs identified agree on a given edge-
mark m of edge X—Y , m is transferred to the output
graph C by calling procedure Orient(C, X, Y,m). Once
the edge-marks of C are determined the algorithm in-
serts the dashed edges by applying the PC-PAG defi-
nition. The algorithm is sound and complete provided
the search procedure identifies all edge-marks that be-
long in at least one consistent MAG.

We now focus on the search procedure. The search
strategy is essential for the computational efficiency
of the algorithm. We actually present 4 differ-
ent search procedures, that are all encoded in
the same pseudo-code of Algorithm 2 due to
space limitations. The algorithms perform search with
and without pruning. In addition, sub-procedures
of Algorithm 2 may be specialized for PDAGs or
PAGs. Hence, there are 4 different specialization of the
pseudo-code for each of the above combinations. Algo-
rithm 2 accepts parameters P and K and returns the
corresponding PC-PAG, or a flag indicating no consis-
tent MAG was found.

Search-No-Pruning. This version of Algorithm 2
does not include line 5. For each ◦ mark in an edge
X∗—◦Y , the edge may be oriented as X ← Y or
X∗→Y in a MAG of the class. The procedure per-
forms a chronological backtracking search with forward
checking (Dechter, 2003), i.e., it recursively calls itself
for each possible way to place an edge mark (Lines 12
and 14), while propagating these decisions to eliminate
inconsistent choices. Thus, in the worst case the algo-
rithm calls itself at most 2#u, where #u is the number
of uncertainties (◦ marks in the input graph P). The
procedure stops in two cases:

(i) an orientation has been made that leads to an in-
valid MAG. Procedure Valid(P ′, K) determines va-
lidity by checking the following three conditions:

(1)There are no directed cycles nor almost directed
cycles (the latter is only checked for PC-PAGs).

(2)No prior knowledge constraint is violated.

(3)The set of m-separations justifying each missing
edge in P remains the same in P ′. This set of m-
separations can be stored by FCI or similar algorithms

as P is induced; otherwise it can be found from P
in a preprocessing step. The reason one needs to
check this condition is because orientations imposed
during search may change the set of discriminating
paths (Spirtes et al., 2000), and thus the independence
model of P ′ may be different (in our implementation
this conditions is only checked if there are no more
uncertainties in the graph). This condition is checked
only for PC-PAGs and not for PC-PDAGs (as we will
see later in the ApplyOrientation procedure).

(ii) there are no more uncertainties in the graph and
we have found a MAG P ′ (line 7); if it is valid, then
procedure UpdateFound(P ′) sets Found(X,Y,−) =
True or Found(X,Y,>) = True, if the edge X ← Y
or X∗ → Y is present in P ′, respectively.

Forward Checking. During search, an orientation of
an edge mark may imply other orientations. For ex-
ample, if vertices A,B,C form a definite non-collider
triple and A is oriented into B, the edge between
B and C has to be oriented out of B and into C.
This implicitly prunes the search tree, similar to unit
propagation in SAT solving algorithms. Procedure
ApplyOrientation(P, X, Y , m) applies mark m (ei-
ther − or >) to edge X∗—◦Y and propagates the ori-
entation. For the case of PC-PDAGs one can sim-
ply apply Meek’s rules (Meek, 1995) until conver-
gence to find all implied orientations. Unfortunately,
for the case of PC-PAGs there is no known com-
plete procedure (Zhang notes this as an open prob-
lem (Zhang & Spirtes, 2005), p. 81). In this case, we
use rules R1-R3 of FCI (Zhang & Spirtes, 2005) to do
some, but not all of possible propagations. As a result
it is possible to generate a MAG that does not belong
to the Markov equivalence class represented by the ini-
tial PAG. Thus, Condition 3 in procedure Valid above
is necessary to check. Application of the propagation
rules takes polynomial time.

Search-with-Pruning. We now present a condi-
tion that allows early stopping of the search with-
out sacrificing completeness and significantly im-
proves the efficiency. For a call of Search(P ′,
K), let us call with A(ssigned) the set of as-
signed orientations so far in the search path, i.e.,
A = {⟨X,Y,m⟩ s.t. the end-point at Y is oriented};
let U(nassinged) be the set of orientations remaining,
i.e., U = {⟨X,Y ⟩ s.t. X∗—◦Y ∈ P ′}. Then note that,

Rule 1 (Prune Rule). If for each mark in A, a MAG
has already been found, and for each unassigned mark
in U a MAG has been found for all possible orienta-
tions, there is no need to proceed with search and the
procedure returns True. No matter what the orienta-
tions in U we end up with, our knowledge of possible



Incorporating Causal Prior Knowledge as Path-Constraints in Causal Models

orientations will not increase. This check is performed
by procedure PruneRule.

When pruning, selecting to recurse on the marks for
which a consistent MAG has not been found yet may
lead to earlier pruning. Thus, as a heuristic in line 6,
we give preference to edges with such marks. In section
6 we present results showing that pruning leads to an
exponential speed up of the algorithm.

5. Dealing with Inconsistent Prior
Knowledge

Algorithm 1 returns False if the given PAG P and
prior knowledge K are inconsistent. Ideally in this
case, one should express the uncertainty in both and
infer new orientations in a probabilistic yet efficient
way. Such a procedure however, is still eluding us. As
an approximation, we now present Algorithm 3 that
identifies a subset K′ ⊆ K that is consistent with P
and maximizes a score function denoting preferences
on the prior knowledge.

For each piece of knowledge Ki ∈ K we denote with
ui the utility of satisfying it in a MAG, and ci the cost
(penalty) of not satisfying it. We can then define the
score function of satisfying knowledge K′ ⊆ K:

Sc(K′,K) =
∑

Ki∈K′

ui +
∑

Ki∈K−K′

ci

By setting all ui to 1 and ci to 0, the algorithm will
find the largest subset of consistent prior knowledge
constraints. With the given setup one can also handle
cases where each prior knowledge constraint has a prior
belief pi assigned to it. Specifically, if ui = log(pi) and
ci = log(1−pi) and one assumes these probabilities are
independent, then the Sc(K′,K) corresponds to the
prior probability P (K′). In general of course, these
probabilities will not be independent since P (X 99K
Y 99K Z) = 1 =⇒ P (X 99K Z) = 1.

Algorithm 3 is a branch-and-bound algorithm that
does not branch if the current search path cannot pos-
sibly lead to a MAG with higher score than what has
already been found. Given a PAG P ′ in the current
search node, let Ks be the set of currently satisfied
prior knowledge constraints, Kv the set of violated
constraints and Kr the set of all remaining constraints
in K. An upper bound on the best score to find under
this search path can then be computed as follows:

ScBound(Kr,Ks,Kv) =
∑

Ki∈Ks

ui +
∑

Ki∈Kv

ci+∑
Ki∈Kr

max (ui, ci) (1)

Algorithm 3 SearchBnB(P ,K)

Input: PAG P ; set of causal prior knowledge K
Output: score maximizer K′ ⊆ K stored globally

global S
′
, maximum score found, initialized to −∞

global K
′
, score maximizer, initialized to ∅

if ¬Valid(P,K)∨MaxPosScore(P,K) ≤ S′ then
return

end if
⟨X,Y ⟩ = any X∗—◦Y in P
if there is no such edge ⟨X,Y ⟩ then

S
′
= Score(P,K)

K
′
= FindSatisfied(P,K)

return
end if
P1 =ApplyOrientation(P,X, Y,>)
SearchBnB(P1,K)
P2 =ApplyOrientation(P,X, Y,−)
SearchBnB(P2,K)

Procedures Score and MaxPosScore compute score
Sc and upper bound ScBound given the PAG P in the
current search node and knowledge K. Once a leaf
of the search has been reached, i.e., all orientations
are determined and we have reached a MAG P ′ in
the current node, procedure FindSatisfied is called
to identify the subset of K that is satisfied in P ′.

6. Experimental Evaluation

Speed-Up of Pruning Rule. We evaluated the per-
formance gain of our method when the pruning is on.
We randomly generated Bayesian Networks for varying
numbers of vertices and edges. For PAGs 20% of the
vertices were randomly picked to be hidden. The net-
works were then converted to their corresponding PAG
or PDAG. The numbers of vertices were {5,10,15}
for PAGs and {50,100,150} for PDAGs. Smaller net-
works were generated for PAGs than PDAGs because:
(a) PAGs usually have many more uncertainties than
PDAGs for the same size and settings of the genera-
tion process and (b), the algorithm for PAGs is slower
in general than for PDAGs given the same number of
uncertainties, because orientations lead to more prop-
agations in PDAGs than PAGs. For PAGs we set an
upper limit of 50 on the number of uncertainties to
avoid computationally intractable problems. The edge
density varied between 10-90%, with steps of 1 (a to-
tal of 81 different densities). The number of prior
knowledge constraints were {1,2,3,5,7,10} for PAGs
and {1,2,3,5,7,10,15,20} for PDAGs. The constraints
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Figure 2. Comparing Algorithm 2 with and without prun-
ing for randomly generated PAGs and knowledge con-
straints. Pruning leads to exponential computational sav-
ings: the effective branching factor for PAGs is approxi-
mately 1.25 vs. 1.5 when pruning is off, and for PDAGs is
approximately 1.1 vs 1.2 when pruning is off.

were sampled from the set of unknown and consistent
pairwise causal relations of the given model (i.e., they
were not already satisfied). Figure 2 shows the mean
number of invocations of the algorithm (search nodes)
vs the number of uncertainties of each PAG. The y-
axis is logarithmically scaled. The effective branch-
ing factor b when pruning is on is smaller than when
it is not used, leading to exponential computational
savings. We also compared our algorithm with a one-
sample t-test (using the difference of invocations of the
methods), and obtained p-values of 9·10−3 and 8·10−16

for the PDAG and PAG methods respectively, show-
ing that using pruning offers statistically significant
improvements.

Evaluation of Inference Capabilities. We eval-
uated the ability of our methods to infer new ori-
entations. We randomly generated networks as be-
fore. The number of vertices was {10,15,20,25,30}
and {50,100,150,200,300,500}, whereas the number of
prior knowledge facts was {1,2,3,5,7,10,15,20,25} and
{1,2,3,5,7,10,15,20,30,50} for PAGs and PDAGs re-
spectively. We also ran experiments for 3 real networks
which are commonly used in the literature (Alarm,
Hailfinder and Child). For the real networks, the
number of prior knowledge constraints were within
{1,2,3,5,7,10,15,20,30,50}, both for PDAGs and PAGs.
The selection of prior knowledge was repeated 100
times. That is a total of 3 · 10 · 100 = 3000 runs,
for each type of model (PDAGs and PAGs). We mea-
sure the ability to make novel inferences, called Infer-
ence Rate, as IR = #inferences

#uncertainties where #inferences is
the number of mark orientations inferred by incorpo-
rating the knowledge and #uncertainties the number
of ◦ marks in the input PAG or PDAG. Figures 3(a)
and 3(b) show the mean inference rate for PAGs and

PDAGs respectively, as the number of prior knowledge
constraints increases. In general, (a) inference rate is
significant (more than 30%) even for a small number
of constraints (e.g., 10) and (b) inference rate is higher
in PDAGs than PAGs everything else being equal.

A Case-Study with Real Data. We obtained two
flow-cytometry datasets of (K. Sachs, 2005). Both
datasets measure a set of 11 protein concentrations
on the same biological pathway under different experi-
mental conditions. The first dataset contains 707 sam-
ples and the (indirectly) manipulated variable is PKA,
whereas the second contains 913 samples and the (in-
directly) manipulated variable is PKC. Causal prior
knowledge is inferred as follows: for manipulated pro-
tein M , we infer the constraint M 99K X for every
X with a p-value of a Spearman correlation less than
0.01, and M ̸99K X, when the p-value is greater than
0.5 This leads to 11 causal constraints as knowledge
K. We also consider a portion of the biological path-
way as our gold standard MAG (Figure 4(a)) that we
convert to its corresponding PAG P (Figure 4(b)). K
and P are inconsistent in this case because two con-
straints in K are due to statistical errors. To select a
consistent set of prior knowledge, we ran Algorithm 3
with weights ui = log(1 − pi) and ci = log(pi), where
pi is the p-value of a positive constraint, or 1-p-value
for a negative constraint. The algorithm selected a
consistent subset K′ of size 6 that was then incorpo-
rated into P via Algorithm 1. K′ still included one
statistical error. The resulting PC-PAG is shown in
Figure 4(c). It orients 11 out of 22 initial edge mark
uncertainties, out of which one is erroneous due to the
false negative constraint in K′ with a p-value of 0.86.

7. Conclusion

We present algorithms for incorporating path-
constraints to PDAGs and PAGs corresponding to
known, possibly indirect, causal relations. The algo-
rithms use chronological backtracking search, with for-
ward checking and a pruning rule stemming from the
semantics of the graphs. A branch-and-bound varia-
tion of the algorithms for dealing with knowledge in-
consistent with the given PDAG or PAG is also pre-
sented. Our experimental results show that typically
even a few causal constraints can orient a significant
number of edges. In a case study we show how experi-
mental studies (where some variables are manipulated)
can be used to infer such causal constraints and be in-
corporated into an incomplete (i.e. with structural un-
certainties) causal model. The algorithms could form
a basis for extensions that take into consideration de-
grees of belief on each constrain or network feature.



Incorporating Causal Prior Knowledge as Path-Constraints in Causal Models

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean Inference Rate on random networks

# of Prior Knowledge Constraints

M
ea

n 
In

fe
re

nc
e 

R
at

e

 

 

PAGs
PDAGs

(a)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean Inference Rate for real networks in PAGs

# of Prior Knowledge Constraints

M
ea

n 
In

fe
re

nc
e 

R
at

e

 

 

Child
Alarm
Hailfinder

(b)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean Inference Rate for real networks in PDAGs

# of Prior Knowledge Constraints

M
ea

n 
In

fe
re

nc
e 

R
at

e

 

 

Child
Alarm
Hailfinder

(c)

Figure 3. (a) Inference rates in randomly generated graphs. The rate increases more sharply in PDAGs than in PAGs:
the absence of confounding variables leads to more propagations of the knowledge constraints. In both cases, even a small
number of knowledge constraints (e.g., 10) leads to a significant percent of new inferences (more than 30% of the edge
uncertainties. (b and c) The inference rate in real networks highly depends on the network, particularly for PAGs; the
rate is again much higher for PDAGs than PAGs.

(a) (b) (c)

Figure 4. (a) A part of a biological signal pathway taken from (K. Sachs, 2005) considered as the gold standard in the
case-study. The variables denote protein concentration levels. (b) The PAG of the network. (c) Causal knowledge K was
inferred from two of the experimental flow cytometry datasets in (K. Sachs, 2005). K was inconsistent with the network.
A consistent subset K′ of size 6 was selected via Algorithm 3 and was incorporated into the network by Algorithm 1. Out
of the initial 22 uncertain orientations the algorithm inferred the orientation of 11 of them.
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