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Abstract

A wide variety of machine learning al-
gorithms such as support vector ma-
chine (SVM), minimax probability machine
(MPM), and Fisher discriminant analysis
(FDA), exist for binary classification. The
purpose of this paper is to provide a unified
classification model that includes the above
models through a robust optimization ap-
proach. This unified model has several ben-
efits. One is that the extensions and im-
provements intended for SVM become appli-
cable to MPM and FDA, and vice versa. An-
other benefit is to provide theoretical results
to above learning methods at once by dealing
with the unified model. We give a statisti-
cal interpretation of the unified classification
model and propose a non-convex optimiza-
tion algorithm that can be applied to non-
convex variants of existing learning methods.

1. Introduction

There are a wide variety of machine learning al-
gorithms for binary classification. Support vector
machine (SVM) is one of the most successful clas-
sification algorithms in modern machine learning
(Schölkopf & Smola, 2002). The minimax probabil-
ity machine (MPM) (Lanckriet et al., 2002) and Fisher
discriminant analysis (FDA) (Fukunaga, 1990) also ad-
dress the binary classification problem. Their problem
settings assume that only the mean and covariance ma-
trix of each class are known. The optimal hyperplane
of MPM is determined by minimizing the worst-case
(maximum) probability of misclassification of unseen
test samples over all possible class-conditional distri-
butions. FDA is to find a direction which maximizes
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the projected class means while minimizing the class
variance in this direction.

The purpose of this paper is to provide a unified frame-
work for learning algorithms, including SVM, MPM,
and FDA, from the viewpoint of robust optimiza-
tion (Ben-Tal et al., 2009). Robust optimization is an
approach that handles optimization problems defined
by uncertain inputs. A simple example of robust opti-
mization is

max
w∈W

min
x∈U

x
>

w, (1)

where w is the parameter to be optimized under the
constraint w ∈ W and x is an uncertain input in the
problem. The uncertainty set U represents the uncer-
tainty of the input. (1) determines the decision making
parameter w which maximizes the benefit x

>
w for the

worst-case setup among x ∈ U .

For binary classification, we regard the means x+ and
x− of the data points of each class as uncertain inputs
and prepare uncertainty sets U+ and U− of those un-
certain inputs. We assume that x of (1) exists in the
Minkowski difference U of U+ and U−, i.e.,

U = U+ 	 U− := {x+ − x−

∣∣ x+ ∈ U+, x− ∈ U−},

and define W by {w
∣∣ ‖w‖2 = 1}, where ‖ · ‖ is the

Euclidean norm. Then we transform (1) into

max
w:‖w‖2=1

min
x+∈U+x−∈U−

(x+ − x−)>w. (2)

We call it robust classification model (RCM)1. This
problem always seems to be non-convex because ofW.
However, it reduces to a convex problem that includes
a constraint ‖w‖2 ≤ 1 instead of ‖w‖2 = 1 when U+

and U− do not intersect.

1 Here we used the terminology of “robust” for the
model (2) from the notion of “robust optimization”, not
from the notion of “robust statistics”. The aim of the RCM
is in providing a unified framework to existing learning
methods, not in providing a learning method with better
tolerance to outliers.



A Unified Robust Classification Model

In this paper, we show that RCM (2) reduces to the
learning methods mentioned above, depending on a
prescribed uncertainty set U . For example, we show
that MPM is a special case of (2) with an ellipsoidal
uncertainty set U . When U+ and U− are defined as re-
duced convex hulls (Bennett & Bredensteiner, 2000),
(2) reduces to ν-SVM (Schölkopf et al., 2000) if U+ ∩
U− = ∅ and reduces to Eν-SVM (Perez-Cruz et al.,
2003), otherwise. The difference between these learn-
ing methods turns out only to be in the definition of
U of (2).

The first contribution of handling the unified model
(2) is to obtain new learning methods. For ex-
ample, we can obtain non-convex variants of MPM
and FDA by mimicking Perez-Cruz et al.’s extension
(Perez-Cruz et al., 2003) from convex ν-SVM to non-
convex Eν-SVM.

The second contribution is to provide theoretical re-
sults to above learning methods at once by dealing
with the unified model (2). Indeed, we provide sta-
tistical interpretation for (2) on the basis of the con-
ventional statistical learning theory. We show that
(2) with some corresponding uncertainty set is a good
approximation for the worst-case minimization of ex-
pected loss functions under uncertain probabilities.

We also provide a generalized local optimum search
algorithm, that is applicable to non-convex variants of
learning models. We prove theoretical results on the
local optimum search algorithm.

The paper is organized as follows. In Section 2, we
elucidate the unified model, RCM (2), for classifica-
tion problems. In Section 3, we show RCM’s connec-
tion with existing learning algorithms and obtain non-
convex variants for MPM and FDA in the same way as
non-convex Eν-SVM. In Section 4, we give a statistical
interpretation of RCM in terms of minimizing the up-
per and lower bounds of the worst-case expected loss.
In Section 5, we describe a local optimum search algo-
rithm for non-convex RCM. We summarize our contri-
butions and future work in Section 6.

2. Unified Robust Classification Model

2.1. Problem Settings

We shall start by introducing the problem setting and
the notations. The observed training samples are de-
noted as (xi, yi) ∈ R

d×{+1,−1}, i ∈M := {1, ...,m}.
Let M+ be the set of indices of training samples with
the label +1; likewise for M−. Let |M+| = m+ and
|M−| = m−, where | · | shows the size of the set.

The goal of the classification task is to obtain a classi-

fier that minimizes the prediction error rate for unseen
test samples. For the sake of simplicity, we shall fo-
cus on linear classifiers, i.e., x

>
w + b where w (∈ R

d)
is a vector and b (∈ R) is a bias parameter. Most of
the discussions in this paper can be directly applied
to kernel classifiers (Schölkopf & Smola, 2002). Con-
cretely, the change from x ∈ X to the kernel function
k(·,x) makes statements of Sections 2-4 hold for ker-
nel classifiers, while the algorithm in Section 5 needs
small modification.

We shall assume that the training samples are not
reliable because of noise or measurement errors. To
make a classification model less sensitive to noise in
the training samples, we shall focus on representative
points of each class, denoted by x+ and x−. These
points are not necessarily individual samples, but may
be means of the data points of each class. Since the
training samples are not reliable, it is reasonable to
assume that x+ and x− will involve some uncertainty.
The largest possible sets of x+ and x− are denoted
by U+ and U−, respectively, and these sets are defined
on the basis of training samples. Throughout this pa-
per, we will assume that both U+ and U− are con-
vex and compact and that they have interior points.
Then, their Minkowski difference U is convex and has
a nonempty interior.

The way of constructing the uncertainty set U± is a
very important issue in practice. If we set U too large
in (2), the optimal decision is very robust to uncer-
tain data x but too conservative. Moreover, if we de-
fine U with complicated functions, we cannot easily
solve (2). Many robust optimization studies have used
polyhedral sets and ellipsoidal sets as U for the sake
of computational tractability. We show examples of
U+ and U− in Section 3. We might possibly deal with
more complicated problem setting beyond convex U+

and U− by using kernelization techniques.

2.2. Properties of RCM

To geometrically interpret RCM (2), Figure 1 shows
the ellipsoidal uncertainty sets U+, U− and their
Minkowski difference. We can separate the problem
(2) into two cases, i.e., whether U+ and U− have an
intersection or not, which is equivalent to whether U
includes 0 or not. As shown in Theorem 2.2, there
is a large difference in computational effort between
the two cases. Before giving an intuitive geometric
interpretation of RCM in Theorem 2.2, we introduce
Lemma 2.1 that further separates the case 0 ∈ U into
two cases: U includes 0 in its interior, int(U), or on its
boundary, bd(U). In the geometric sense, 0 6∈ U holds
when U+ and U− are disjoint. 0 ∈ U implies that U+
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Figure 1. Geometric interpretation of RCM (2). Left: Two ellipsoidal uncertainty sets, U+ and U−, are disjoint (0 6∈ U).
Middle: U+ and U− are joint (0 ∈ U). The asterisk shows the optimal point x

∗ in U , and the dash-dot line depicts the
hyperplane x

∗>
w

∗ = 0. The squares are the solutions x
∗
+ and x

∗
− of the inner-minimization on U+ × U−, and the solid

line stands for the optimal hyperplane, (x∗
+ − x

∗
−)>w

∗ + b = 0. The bias term b in the decision function is defined such
that the decision boundary passes through the mid-point of the squares. The green arrows indicate the optimal solution
x

∗, and the purple arrows indicate the normal direction αw
∗ of the hyperplane for some positive α. Right: Optimal

value of RCM (2) with uncertainty set Uη.

and U− are joint. In particular, 0 ∈ bd(U) implies
that U+ and U− touch externally.

Lemma 2.1. The optimal value of RCM (2) is pos-
itive if and only if 0 6∈ U . It is zero if and only if
0 ∈ bd(U), and it is negative if and only if 0 ∈ int(U).

We can prove “if” parts by using the supporting hy-
perplane theorem to three cases (0 6∈ U , 0 ∈ bd(U)
and 0 ∈ int(U)). By taking the contrapositive of all
the “if” parts, we also can prove “only if” parts.

Let Uη be a parametrized uncertainty set for RCM (2)
such that Uη1 ⊂ Uη2 holds for η1 ≤ η2. Then the
following inequality holds:

max
w:‖w‖2=1

min
x∈Uη1

x
>

w ≥ max
w:‖w‖2=1

min
x∈Uη2

x
>

w.

This indicates that the optimal value of (2) is non-
increasing with respect to the inclusion relation of un-
certainty sets. Figure 1 (right) plots the non-increasing
optimal value of RCM (2) with respect to η. An uncer-
tainty set Uη2 might exist such that the optimal value
of (2) becomes zero.

The following theorem shows that when 0 6∈ U , the
equality constraint ‖w‖2 = 1 in (2) can be replaced by
‖w‖2 ≤ 1 without changing the solution. Moreover,
‖w‖2 = 1 can be replaced by ‖w‖2 ≥ 1 when 0 ∈ U .
Figure 1 (left and middle) illustrates Theorem 2.2.

Theorem 2.2. For an uncertainty set such that 0 6∈
U , RCM (2) is equivalent to

max
w:‖w‖2≤1

min
x∈U

x
>

w. (3)

Moreover, the problem is equivalent to

min
x±∈U±

‖x+ − x−‖, or equivalently, min
x∈U
‖x‖. (4)

An optimal w of (3) can be obtained from x
∗/‖x∗‖ by

using the optimal x
∗ ∈ U of (4). For an uncertainty

set such that 0 ∈ int(U), RCM (2) is equivalent to

max
w:‖w‖2≥1

min
x∈U

x
>

w. (5)

Moreover, the problem is equivalent to minx∈Uc ‖x‖,
where Uc is the closure of the complement of the con-
vex set U . An optimal w of (5) can be obtained from
−x

∗/‖x∗‖ by using the optimal x
∗ ∈ Uc.

Proof. Assume 0 6∈ U . By applying the discussion on
the minimum norm duality (Luenberger, 1969) to (3),
we can confirm the equivalence of (3) and minx∈U ‖x‖,
and the optimal solution w

∗ = x
∗/‖x∗‖. On the other

hand, in the case of 0 ∈ int(U), the equivalence of
(5) and minx∈Uc ‖x‖ is proved from Proposition 3.1 of
(Briec, 1997) under the assumption that a convex U
has a nonempty interior. Hence, it is enough to show
that there exists an optimal solution w

∗ of (3) (or (5))
such that ‖w∗‖ = 1, because the difference between (2)
and (3) (or (5)) is only the norm constraint of w.

Lemma 2.1 ensures that the optimal value of (3) is
positive, because

max
w:‖w‖2≤1

min
x∈U

x
>

w ≥ max
w:‖w‖2=1

min
x∈U

x
>

w > 0.

Since the optimal solution w
∗ of (3) satisfies 0 <

‖w∗‖ ≤ 1, the following inequalities hold:

0 < min
x∈U

x
>

w
∗ ≤ min

x∈U
x
>

w
∗/‖w∗‖ ≤ min

x∈U
x
>

w
∗.

The last inequality comes from the optimality of w
∗.

These inequalities imply that w
∗/‖w∗‖ is also an op-

timal solution of (3) and that ‖w∗‖ = 1. For the case
of 0 ∈ int(U), we can similarly show that the optimal
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Table 1. Correspondence with existing classifiers
U 0 ∈ int(U) 0 ∈ bd(U) 0 6∈ U

Ellip. (11)
√

MPM MM-MPM
Ellip. (15)

√
FDA FS-FD

RCH (8) Eν-SVM νmin ν-SVM
CH (6) × × HM-SVM

value of (5) is negative and that an optimal solution
w

∗ of (5) exists such that ‖w∗‖ = 1.

For 0 ∈ int(U), RCM (2) is essentially a non-convex
problem, and we need to use non-convex optimization
methods to solve it. Section 5 describes an optimiza-
tion algorithm for non-convex problems of (2).

3. Equivalence to Existing Classifiers

We will show that RCM can be reduced to support
vector machine (SVM), minimax probability machine
(MPM), or Fisher discriminant analysis (FDA) de-
pending on the prescribed uncertainty set U . In Ta-
ble 1, “×” means that the corresponding cases never
happen. “

√
” means that there are no corresponding

existing models as far as we know. The models indi-
cated by

√
are the target in this paper.

We denote an optimal solution of (2) as w
∗ and define

the bias term b such that the decision boundary passes
through the mid-point of x

∗
+ and x

∗
−, i.e., b = −(x∗

+ +
x
∗
−)>w

∗/2. Here, x
∗
+ ∈ U+ and x

∗
− ∈ U− stand for

the optimal solutions of the inner-minimization in (2)
for w = w

∗.

3.1. Hard-Margin SVM, ν-SVM and Eν-SVM

Whenever a data set is linearly separable, there are
many hyperplanes that correctly classify all training
samples. Vapnik-Chervonenkis theory indicates that
a large margin classifier has a small generalization er-
ror. The problem can be transformed into a quadratic
programming problem and the classification method
is called hard-margin support vector classification ma-
chine (HM-SVM). Here, we define the uncertainty set
(convex hull, CH) as follows:

U± = conv{xi

∣∣ i ∈M±}, (6)

where conv means convex hull. By using the Wolfe
duality, the equivalence of HM-SVM and RCM (4) is
obvious for U+ ∩ U− = ∅.
HM-SVM has been extended to cope with non-
separable data. C-SVM (Cortes & Vapnik, 1995) and
ν-SVM (Schölkopf et al., 2000) are typical examples

of “soft-margin” SVMs. There is a correspondence
between C-SVM and ν-SVM. That is, the classifier es-
timated by C-SVM with C ∈ (0,∞) can be obtained
from ν-SVM with a parameter ν ∈ (νmin, νmax] ⊂
[0, 1], and vice versa. Crisp and Burges (2000) showed
νmax = 2min{m+,m−}/m and gave a geometric inter-
pretation for νmin. For ν ∈ (νmax, 1], the optimization
problem of ν-SVM is unbounded, and for ν ∈ [0, νmin),
ν-SVM provides a trivial solution (w = 0 and b = 0).
Perez-Cruz et al. (2003) devised extended ν-SVM (Eν-
SVM) as a way of avoiding such a trivial solution:

min
w,b,ξ,ρ

− νρ +
1

m

m∑

i=1

ξi (7)

s.t. yi(x
>
i w + b) ≥ ρ− ξi, ξi ≥ 0, i ∈M, ‖w‖2 = 1.

By forcing the norm of w to be unity, a non-trivial and
meaningful solution is obtained for any ν ∈ [0, νmin),
but this comes at the expense of convexity. It further-
more provides the same solution as ν-SVM for other
values of ν. In that sense, Eν-SVM can be regarded as
an extension of ν-SVM. It was experimentally found in
(Perez-Cruz et al., 2003) that Eν-SVM often has bet-
ter generalization performance than ν-SVM.

In order to connect (E)ν-SVM with RCM, we define
Uν
± as

8

<

:

X

i∈M±

λixi

˛

˛

X

i∈M±

λi = 1, 0 ≤ λi ≤
2

νm
, i ∈ M±

9

=

;

. (8)

The set (8) is essentially equal to a reduced convex
hull (RCH) (Bennett & Bredensteiner, 2000) or soft
convex hull (Crisp & Burges, 2000). For linearly non-
separable data set, Uν

+ and Uν
− intersect with small ν.

Crisp and Burges (2000) showed that νmin is the
largest ν such that two RCHs, Uν

+ and Uν
−, intersect.

The model that finds νmin corresponds to the case of
0 ∈ bd(Uν) in the “RCH” of Table 1. Barbero et
al. (2012) transformed ν-SVM and Eν-SVM (7) into
RCM (2) with Uν

± in order to give them a geometric in-
terpretation. Using the results, we can relate ν-SVM,
Eν-SVM, and RCM (2) as shown in Table 1.

3.2. Minimax Probability Machine and Its

Extension

The minimax probability machine (MPM) only uses
the mean and covariance matrix of each class for clas-
sification tasks (Lanckriet et al., 2002). Suppose that
x+ (or x−) is a d-dimensional random vector with
mean x̄+ (or x̄−) and covariance Σ+ (or Σ−). We as-
sume that x̄+ 6= x̄− and that Σ± are positive definite.
The MPM minimizes the misclassification probabili-
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ties under the worst-case setting as follows:

max
α,w,b

α s.t. inf
x±∼(x̄±,Σ±)

Pr{x>
±w + b ≥ 0} ≥ α, (9)

where x+ ∼ (x̄+,Σ+) refers to the class of distribu-
tions that have mean x̄+ and covariance Σ+, but are
otherwise arbitrary; likewise for x−. In practice, the
mean vectors and covariance matrices of each class are
estimated from the training samples.

Lanckriet et al. (2002) represented problem (9) as a
convex optimization problem known as a second-order
cone program (SOCP) and show the dual form:

min
κ

κ s.t. 0 ∈ Uκ := Uκ
+ 	 Uκ

−, (10)

where Uκ
± = {x̄± + Σ

1/2
± u

∣∣ ‖u‖ ≤ κ}. (11)

α of (9) corresponds to κ of (10) as κ =
√

α/(1− α).
Therefore, MPM (9) is the problem to find the small-
est positive κ (denoted by κmax) such that the two
ellipsoids intersect, i.e., 0 ∈ bd(Uκmax).

The idea of MPM is combined with the idea of the mar-
gin maximization in (Nath & Bhattacharyya, 2007).
Given acceptable false positive and negative rates, η+

and η−, the linear classifier can be estimated by

min
w,b

1

2
‖w‖2 s.t. sup

x±∼(x̄±,Σ±)

Pr{x>
±w + b < 0} ≤ η±. (12)

In this paper, we call this model the “margin max-
imized MPM” (MM-MPM). In the same way as in
MPM, (12) can be transformed into an SOCP.

Robust optimization techniques for ellipsoidal uncer-
tainty (Ben-Tal et al., 2009) transform RCM (2) with
U± = Uκ±

± into

min
‖w‖2=1

κ+‖Σ
1/2

+ w‖ + κ−‖Σ
1/2

− w‖ − (x̄+ − x̄−)>w. (13)

We define κmax
+ and κmax

− as constants such that Uκ+

+

and Uκ−

− touch. For κ± ∈ [0, κmax
± ), Uκ+

+ ∩ Uκ−

− = ∅
holds, and RCM (13) is equivalent to MM-MPM (12)
with κ± =

√
(1− η±)/η±. We can confirm this by

comparing the dual form of MM-MPM and the dual of
(13), that is equivalent to (4). Furthermore, (13) with
κ± = κmax coincides with MPM (9) (see Table 1).

3.3. Fisher Discriminant Analysis and Its

Extension

In Fisher discriminant analysis (FDA) as in MPM (9),
a discriminant hyperplane is computed from the means
and covariances of random vectors x+ and x−. The
hyperplane is determined from the optimal solution
w

∗ to the following problem (Fukunaga, 1990):

max
w

(x̄+ − x̄−)>w

‖(Σ+ + Σ−)1/2w‖ . (14)

The problem finds a direction which maximizes the
projected class means while minimizing the class vari-
ance in this direction.

Likewise for MPM, FDA has a probabilistic interpre-
tation under the worst-case scenario. Using the ellip-
soidal uncertainty set defined by

Uζ = {x = (x̄+ − x̄−) + (Σ+ + Σ−)1/2
u

∣∣ ‖u‖ ≤ ζ},
(15)

FDA (14) can be represented as

min
ζ

ζ s.t. 0 ∈ Uζ . (16)

FDA can be extended to RCM (2) with the uncertainty
set Uζ for a prescribed parameter ζ > 0. Let ζmax be
the optimal value of (16). Then, along the same lines
as the MPM in Section 3.2, we find that RCM (2) with
U = Uζmax is equivalent to FDA.

Indeed, RCM (2) with Uζ is transformed into

min
‖w‖2=1

ζ‖(Σ+ + Σ−)1/2
w‖ − (x̄+ − x̄−)>w.

Especially for ζ ∈ [0, ζmax), the norm constraint is
replaced with the convex constraint ‖w‖2 ≤ 1 without
changing the optimal solution. Here, MM-FDA refers
to this estimator. In replacing the Euclidean norm
‖w‖ with the L1-norm ‖w‖1, MM-FDA is equivalent
to a sparse feature selection model based on FDA (FS-
FD) (Bhattacharyya, 2004).

4. Statistical Interpretation for RCM

We can give a statistical interpretation for RCM on
the basis of statistical learning theory. Let us start by
introducing a loss function ` : R→ R that defines the
loss of the decision function x

>
w + b regarding the

sample (x, y) as `(y(x>
w + b)).

A goal of the classification task is to obtain an accurate
classifier. For this purpose, it is reasonable to minimize
the expected loss, E[`(y(x>

w + b))], with respect to
w and b. Let us define p(x|y) as the conditional prob-
ability density of x, given the binary label y, and π+

and π− as the marginal probabilities of the positive
and negative labels, respectively. E[`(y(x>

w + b))] is
computed by

π+

∫
`(x>

w + b)p(x|+ 1)dx

+π−

∫
`(−(x>

w + b))p(x| − 1)dx.

Since the true probability distribution is unknown, we
cannot minimize the expected loss directly.
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Now let us consider the ambiguity of the probability
distribution p(x|y). Let P+ and P− be sets of proba-
bility densities. Each set of probabilities expresses the
uncertainty of the conditional probabilities p(x| + 1)
and p(x| − 1), respectively. We can use the min-max
decision rule for the uncertainty of p(x|y) as follows:

min
w:‖w‖2=1

max
p(x|±1)∈P±

min
b∈R

E[`(y(x>
w + b))]. (17)

The worst-case minimization problem is difficult to
solve. Therefore, we propose to solve RCM (2), since
we can prove that RCM (2) is a good approximation
for minimizing the worst-case expected loss.

To relate (17) and RCM, we firstly give an equivalent
formulation for RCM. Here, we define x+ and x− as
the mean of the input vector x under the conditional
probabilities p(x|+ 1) and p(x| − 1), respectively, i.e.,
x± =

∫
xp(x| ± 1)dx. Here, we assume that all prob-

ability distributions in P± have the mean vector. Let
U+ and U− be

U± =

{ ∫
xp(x| ± 1)dx

∣∣∣∣ p(x| ± 1) ∈ P±

}
. (18)

Suppose that the uncertainty sets of probability densi-
ties, P±, are both convex; i.e., a mixture of two prob-
ability densities also lies in the uncertainty set. Then
U+ and U− are convex sets.

Theorem 4.1. Suppose that `(z) is a non-increasing
function. An optimal solution of the RCM with the
uncertainty sets U+ and U− in (18) is also optimal to

min
w:‖w‖2=1

max
x±∈U±

min
b∈R

J`(w, b;x+,x−), (19)

where

J`(w, b;x+,x−) = π+`(x>
+w + b) + π−`(−x

>
−w − b).

Proof. For a fixed w and x± ∈ U±, minimizing
J`(w, b;x+,x−) respect to b is equivalent to

min
b′

π+`((x+ − x−)>w − b′) + π−`(b′).

Since the objective function above is non-increasing in
(x+ − x−)>w, there exists a non-increasing function
φ(z) such that

φ((x+ − x−)>w) = min
b

J`(w, b;x+,x−).

Hence, one has

min
w:‖w‖2=1

max
x±∈U±

min
b

J`(w, b;x+,x−)

= φ( max
w:‖w‖2=1

min
x±∈U±

(x+ − x−)>w).

As a result, the optimal solution of the RCM is also
optimal for problem (19).

Theorem 4.2. We assume that i) `(z) is convex, de-
creasing, and second-order differentiable, and that ii)
0 ≤ `′′(z) ≤ L ∈ R holds for all z. Suppose that
x± ∈ U± is in the ball with the radius c, i.e., ‖x±‖ ≤ c.
Then, for the optimal value J∗ of (19), one has

min
w:

‖w‖2=1

max
p(x|±1)∈P±

min
b∈R

E[`(y(x>
w+b))] ∈ [J∗, J∗+

Lc2

2
].

Proof. The convexity of `(z) leads to a lower bound,
J`(w, b;x+,x−), and the Taylor expansions of `(z)
around z = x

>
+w + b and z = x

>
−w + b yield an upper

bound, J`(w, b;x+,x−) + Lc2

2 , of E[`(y(x>
w + b))].

Even when the min-max operation is applied, J∗ and

J∗ + Lc2

2 remain bounds for the worst-case expected
loss (17).

The theorem implies that problem (19) minimizes the
bounds of (17). Noticing that the optimal solution of
problem (19) is available by solving RCM as shown
in Theorem 4.1, Theorem 4.2 implies that RCM min-
imizes the upper and lower bounds of the worst-case
expected loss (17) at the same time.

There are various ways to estimate the bias term b
for RCM. The simplest way is to use b∗ = −(x∗

+ +
x
∗
−)>w

∗/2. Another promising method is to construct
an appropriate statistical model for the projected sam-
ples (x>

i w
∗, yi), i ∈M . The projected samples, x

>
i w

∗,
i ∈ M , are scattered in one-dimensional space, from
which we can estimate b on the basis of the statistical
model.

5. Solution Method for RCM

The RCM has a significantly larger range of param-
eter κ or ζ than an existing convex model such as
MPM, MM-MPM, FDA or FS-FD (see Table 1).
Therefore, the RCM enhances a possibility of im-
proving these existing classification models. Indeed,
Perez-Cruz et al. (2003) experimentally showed that
the generalization performance of Eν-SVM is often
better than that of original ν-SVM. In this section,
we propose a solution method that is generalized
from the local algorithms of (Perez-Cruz et al., 2003;
Takeda & Sugiyama, 2008).

5.1. Two-stage Optimization Strategy

Suppose that we solve RCM (2) with the uncertainty
set Uη with one parameter η and that Uη1 ⊂ int(Uη2)
holds for η1 < η2. Let us define ηmax such that the
optimal value of (2) with U = Uηmax is zero.

First, we need to compute ηmax in order to confirm
that the given problem (2) is essentially convex or not.
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Algorithm 5.1.

Step 1: Choose w̃0 satisfying ‖w̃0‖ = 1 and ε > 0.
Let t← 0.
Step 2: Solve the following program:

max
w

g(w) s.t. w̃
>
t w = 1, (21)

where g(w) = minx∈U x
>

w, and let the optimal
solution be ŵ

∗
t .

Step 3: If ‖w̃t − ŵ
∗
t ‖ ≤ ε, terminate and output

w̃
∗ ← w̃t.

Step 4: Otherwise, let w̃t+1 ← ŵ
∗
t /‖ŵ∗

t ‖. Let
t← t + 1. Repeat Steps 2–4.

Figure 2. Local optimum search algorithm for non-convex
RCM with η > ηmax, that is, 0 ∈ int(U).

The parameter ηmax is obtained as the optimal solu-
tion of the convex problem:

min
η

η s.t. 0 ∈ Uη. (20)

When Uη
± are ellipsoidal sets of (11) (or (15)), the

problem reduces to MPM (10) (or FDA (16)). When
Uη
± are RCHs, the problem reduces to a linear pro-

gramming problem and gives us νmin.

If the input parameter η is equal to ηmax, we have
already obtained an optimal solution from (20). If
η < ηmax, we next solve the convex problem (4) by
using a standard optimization software.

5.2. Local Optimization Algorithm for

Non-convex RCM

For η > ηmax, RCM (2) is essentially equivalent to (5)
that includes a non-convex constraint, ‖w‖2 ≥ 1. We
next need to solve (2) as a non-convex problem.

In the area of global optimization, non-convex RCM
(5) (precisely, a problem constructed by taking dual for
the inner-minimization in (5)) is known as a reverse
convex program (RCP), or canonical d.c. program-
ming. This differs from a conventional convex program
only by the presence of a reverse convex constraint
(‖w‖2 ≥ 1 in the current case). When all functions
are linear except for the reverse convex constraint, the
RCP problem is especially called linear reverse con-
vex program (LRCP). Eν-SVM is an LRCP, for which
Perez-Cruz et al. (2003) proposed a local optimum
search algorithm and Takeda and Sugiyama (2008)
proposed a global optimum search algorithm.

Here, we show a local optimum search algorithm (Al-
gorithm 5.1) that is generalized from the local algo-
rithms (Perez-Cruz et al., 2003; Takeda & Sugiyama,

2008) of Eν-SVM for non-convex RCM. It is essen-
tially the same as the local algorithm, Algorithm 7,
in (Takeda & Sugiyama, 2008) when U of g(w) is an
RCH (8) and ε = 0.

RCM (2) requires maximizing g(w) = minx∈U x
>

w

subject to a non-convex constraint, w
>

w = 1. In-
stead of solving the non-convex problem directly, we
can iteratively solve the relaxation problems (21) (in
Algorithm 5.1). Since g(w) is concave, (21) can be
solved by using convex minimization techniques.

The non-convex constraint of (2) is linearized at w̃t

in the algorithm, and the linear constraint w̃
>
t w = 1

is updated every iteration. Note that the negativity
of the optimal value of (21) is guaranteed because of
0 ∈ int(U). As the algorithm proceeds, the solutions
w̃t improve, i.e.,

g(w̃t) ≤ g(ŵ∗
t ) < g(ŵ∗

t /‖ŵ∗
t ‖) = g(w̃t+1) < 0, (22)

because w̃
>
t ŵ

∗
t = 1 together with w̃

>
t w̃t = 1 implies

‖ŵ∗
t ‖ > 1. Note that w̃t is a feasible solution for

(21). Hence, if (21) has no better solutions than w̃t,
w̃t is returned as an optimal solution ŵ

∗
t of (21). The

algorithm terminates after that.

The computation of g(w) may be difficult for general
uncertainty sets. However, we do not need an explicit
formula for g(w) in (21). If U is a convex set, we
can obtain a dual formulation (max-problem) for g(w)
and replace the max-min problem (21) with a simple
max-problem, that is, a one-level convex problem. In-
deed, when the uncertainty set is an RCH (8) of data
points, we can take the dual for g(w) = minx∈U x

>
w

and change (21) into a linearized Eν-SVM (7) whose
constraint is w̃

>
t w = 1 instead of ‖w‖2 = 1. When

the algorithm is applied to the RCM having ellipsoidal
uncertainty, we analytically obtain the optimal value
g(w) for any w. Indeed, for ellipsoidal uncertainty
(11), g(w) is equal to the one derived by multiplying
the objective function of (13) by -1.

Theorem 5.2. For any ε > 0, Algorithm 5.1 termi-
nates in a finite number of iterations.

Proof. Let the negative value gopt be the optimal value
of RCM (2). Suppose ‖ŵ∗

t ‖ > 1 for all t = 1, 2, . . ..
Otherwise, the algorithm terminates. By evaluating
g(w̃t+1)− g(w̃t), we have

∞∑

t=0

(g(w̃t+1)− g(w̃t)) ≥
∞∑

t=0

(
1

‖ŵ∗
t ‖
− 1

)
gopt > 0.

The above inequality and the boundedness of g(w̃t)
lead to limt→∞

1
‖ bw∗

t ‖
− 1 = 0. Therefore, γt exists

such that ‖ŵ∗
t ‖ = 1 + γt, 0 < γt = o(1), that leads
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to ‖w̃t − ŵ
∗
t ‖ =

√
2γt + γ2

t . Since γt → 0 holds, the
stopping rule ‖w̃t−ŵ

∗
t ‖ ≤ ε with positive ε is satisfied

in a finite number of iterations.

We can show that Algorithm 5.1 with ε = 0 termi-
nates within a finite number of iterations when the
uncertainty set of RCM (2) is represented by a convex
polyhedron by mimicking the proof of Theorem 8 for
Eν-SVM in (Takeda & Sugiyama, 2008).

Here, suppose that g(w̃∗) is differentiable, i.e., g(w)
has a unique subgradient at w̃

∗ as ∂g(w̃∗) =
arg minx∈U x

>
w̃

∗ = {∇g(w̃∗)}. For example, g(w)
is differentiable under ellipsoidal uncertainty (11) (or
(15)). Then Theorem 5.3 shows a sufficient condition
for the local optimality of the solution w̃

∗ if it is ob-
tained by Algorithm 5.1 with ε = 0.

Theorem 5.3. Suppose that g(w̃∗) is differentiable.
Algorithm 5.1 that terminates with ε = 0 provides a lo-
cal solution w̃

∗ to RCM (2) when the maximum eigen-
value of ∇2g(w̃∗) is less than g(w̃∗).

Proof. Note that w̃
∗ is the optimal solution of (21)

at the final iteration. Therefore, w̃
∗ satisfies the first-

and second-order necessary conditions:

∇g(w̃∗) + ηw̃
∗ = 0, (23)

d
>∇2g(w̃∗)d ≤ 0, ∀d such that w̃

∗>
d = 0, (24)

where η is a Lagrange multiplier. We can show η =
−g(w̃∗) > 0 by noticing that ∇g(w̃∗) is a minimizer
to minx∈U x

>
w̃

∗ = g(w̃∗) and using (23). When the
maximum eigenvalue of ∇2g(w̃∗) is less than −η, w̃

∗

satisfying (23) and (24) also satisfies the second-order
sufficient conditions for the local optimality of (2):

∇g(w) + 2ζw = 0, d
>(∇2g(w) + 2ζI)d < 0,

∀d 6= 0 such that w
>

d = 0,

where I is the identity matrix and ζ(≥ 0) is a multi-
plier. This shows that w̃

∗ is a local solution of (2).

Theorem 5.3 may be extendable to the non-
differentiable case of g(w̃∗), though more assumptions
are necessary (see Theorems 3.2.16, 3.2.20 and 3.2.21
in (Polak, 1997)).

6. Conclusions

We developed the robust classification model (RCM),
a model which includes SVM, MPM and FDA for spe-
cific uncertainty sets. The choice of uncertainty set
is significant in this model. This model enables ex-
tensions and improvements to SVM to be applied to
MPM and FDA, and vice versa.

The unified model will be of help in clarifying rela-
tionships among existing models and in finding new
classifiers and new algorithms. That is, we might be
able to devise a new classifier by finding a reasonable
uncertainty set for RCM. It will be important to see
how the learning algorithm, uncertainty set, and pre-
diction accuracy relate to each other.
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