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Abstract

Traditional approaches to ranking in web
search follow the paradigm of rank-by-score:
a learned function gives each query-URL
combination an absolute score and URLs
are ranked according to this score. This
paradigm ensures that if the score of one URL
is better than another then one will always be
ranked higher than the other. Scoring con-
tradicts prior work in behavioral economics
that preference between items depends not
only on the items but also on the presented
alternatives. Thus, for the same query, pref-
erence between items A and B may depend
on the presence or absence of item C. We
propose a new model of ranking, the Ran-
dom Shopper Model, that allows and explains
such behavior. In this model, each feature is
viewed as a Markov chain over the items to
be ranked, and the goal is to find a weight-
ing of the features that best reflects their im-
portance. We show that our model can be
learned under the empirical risk minimiza-
tion framework, and give an efficient learning
algorithm. Experiments on commerce search
logs demonstrate that our algorithm outper-
forms scoring-based approaches including re-
gression and listwise ranking.

1. Introduction

In web search, an item’s relevance to a query is usually
absolute (Freund et al., 2003; Joachims, 2002; Burges
et al., 2005; 2006; Cao et al., 2007; Dou et al., 2008;
Crammer & Singer, 2001). Indeed, ranking algorithms
assume the existence of a training set of 〈query, item〉
pairs that have been labeled in such an absolute sense,
e.g., Perfect, Excellent, Good, Fair or Bad. Further, in
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interpreting user behavior in click logs, the dominant
view is that a user either prefers one item to another
or vice versa, but not both. Even in the ranking pro-
cess, a learned function f takes a query and an item
and produces a score. This score induces an absolute
ordering between any two items.

In the context of consumer behavior, preference be-
tween two items is often dependent on the other items
that are shown. In a seminal paper, Amos Tversky
showed that user preference between alternatives is
relative and comparative: when presented with items
A and B alone, users may prefer A to B, but when
presented with a third alternative C, users may flip
their preference to B over A (Tversky, 1972). We
have found similar examples in the search logs from
a commerce search engine (refer to Figure 1). (One
example of a commerce search engine is Amazon.) For
the search query “paper shredders”, when shown A, a
$20 seven-sheet capacity shredder, vs. B, a $50 eleven-
sheet capacity shredder, users typically prefer A to B.
One rationale for this preference is that most users pre-
fer saving $30 at the expense of smaller sheet capacity.
However, when C, a $95 12-sheet capacity shredder, is
shown, users flip their preference to B over A. The
presence of C causes a change in preference possibly
because a shredder that can shred eleven sheets for $50
looks like a bargain compared to one that can shred
twelve sheets for $95. This is not a one-off example.
We find that about 25% of commerce queries have a
product C where users click A more than B in the ab-
sence of C, and B more than A in its presence (details
of experiment omitted).

Such behavior violates a well-known axiom in social
choice called independence of irrelevant alternatives:
the preference between two choices should be indepen-
dent of context (Arrow, 1950). In this paper, we show
that violation of IIA is quite sensible and even explain-
able. As everyday folklore examples, people often or-
der the second most expensive dish of a menu or the
second cheapest wine on the list.
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We propose a new model of ranking, called the Ran-
dom Shopper Model (RSM) that allows and explains
context-dependent user preferences. RSM’s main nov-
elty is in viewing features as Markov chains instead of
numeric scores. Products are modeled as vertices on a
directed graph, and the weight of an edge denotes the
probability that a user transitions from one product
to another. Intuitively, the weight from u to v reflects
how much better v is than u according to this feature.
For example, if the feature is “lower price”, then with
high probability users will transition to cheaper prod-
ucts, with lower probability users will keep to products
of similar price, and with even lower probability users
will move to more expensive products.

RSM has a weighting of these Markov chains that cap-
tures how important each Markov chain is in the mind
of an average user. Our hypothetical shopper starts at
a product and repeatedly transitions between items,
where in every step she randomly picks one Markov
chain according to how important it is and moves to
a new product using this chain. In this paper, we give
algorithms for learning these weights.

The advantage of RSM is that it ranks in context. The
preference between two products is not absolute and
may change depending on the other products. Markov
processes have the property that the process induced
on a subset of items can be very different from the
original process over all items. For the paper shredder
example, Figure 1 demonstrates how RSM recreates
the flip between A and B in the presence of C. Rank-
ing functions that assume feature values are absolute
scores are inherently incapable of reconstructing such
flips. While RSM does not fully capture the shopping
process of a user, we believe it constitutes a step to-
wards better user modeling beyond scoring products.

Contributions To our knowledge, RSM is the first
learning model where the input features are Markov
chains. We believe it is a good model when users make
a large number of pairwise comparisons, such as online
shopping. On the theoretical front, we show that RSM
fits into the Empirical Risk Minimization framework—
given sufficiently many iid samples, one can learn a
hypothesis with bounded error with high probability.
We establish a formal bound on the sample complexity
in Section 3. Next, we present a general learning algo-
rithm for RSM. Our algorithm is iterative and draws
upon the work of Haviv and Van Der Heyden (1984)
that bounds the changes in stationary distribution due
to changes in the transition matrix. The algorithm is
presented in Section 4.

We conduct an empirical evaluation of RSM using data
obtained from a commerce search engine. We cre-
ate a challenging test set consisting only of pairs of
preference flips. The test set is such that context-
oblivious algorithms cannot achieve over 50% accu-

Product Price Sheet Capacity
A $20 7
B $50 11
C $95 12
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Figure 1. The three vertices denote paper shredders with
specifications given in (a). We show a topology for “price”
in (b) and for “sheet capacity” in (c). Note that roles of
A and C are reversed for the two topologies, since A is the
cheapest and C has the highest capacity. The weight of the
feature “sheet capacity” is 0.4 and of “price” is 0.6. This
allows RSM to predict the flip in preference of A over B.

racy. We give context-dependent features to existing
learning algorithms and show that RSM outperforms
these approaches. Our experiment, detailed in Sec-
tion 5, suggests that RSM is better able to predict
preference flips in commerce search.

2. The Random Shopper Model

The Random Shopper Model (RSM) attempts to
model the decision process of a user who chooses
among a set of items by their features. Under RSM,
each feature is viewed as a weighted directed graph
called a topology (or a transition matrix in the alge-
braic context). A vertex denotes an item and an edge
a preference relation. The weight of a directed edge
corresponds to the probability that a user transitions
from one product to the other. For example, a feature
could be “lower price” (Figure 1(b)). The transition
probability from u to v increases as v gets cheaper com-
pared to u. In addition, there exists a set of weights
over these features. A hypothetical user starts with an
item and repeatedly performs the following: she picks
a feature at random proportional to its weight, and
transitions from the current item to another according
to the probabilities given by the feature.

Formally, we denote the ith topology as T (i), and the
weight of each feature by w∗(i). The weights w∗(i) are
non negative and sum to 1. (Throughout the paper,
all weights and vectors we mention satisfy these two
conditions, unless stated otherwise.) We hypothesize
that a user follows a random walk according to the

combined topology P (w∗) =
∑k
i=1 w

∗(i)T (i), where
the weighted sum is computed over the topologies in-
terpreted as transition matrices. The stationary dis-
tribution of this walk determines the final ranked or-
der. This model can be interpreted as viewing users
as shoppers who go back and forth among items, con-
stantly seeking one that is better than the item they
currently consider. Ranking is therefore done accord-
ing to where more shoppers are likely to be in the limit.
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In our model each query-context pair has k topolo-
gies uniquely associated with it, whereas the weights
w∗(i) remain fixed throughout all samples. This cor-
responds to users applying the same considerations for
price, size, reviews etc. for different sets of TVs for the
same query. This is similar to standard machine learn-
ing scenarios where each sample has its own features
(Markov chains in our case) while the target hypothe-
sis stays fixed throughout.

To ensure that the combined topology converges to a
single stationary distribution, we make the common
assumption of an “all random” topology – with prob-
ability λ the shopper transitions into a random item.
We assume λ is a constant, fixed throughout the paper.
This assumption plays an important role in Section 3.

Given a collection of products to rank for a query,
ranking proceeds as follows. We (1) restrict the topolo-
gies to the products in the collection, (2) renormalize
the weights so that outgoing probabilities from each
vertex form a probability distribution, (3) weight the
restricted topologies according to their importance, (4)
compute the stationary distribution of the resulting
random walk, and (5) order the products according to
this probability distribution.1

We now demonstrate that RSM ranks in context. Re-
call the paper shredder example. In Figure 1, we ex-
hibit two topologies, one for price, and one for sheet
capacity. For the same set of weights (0.6 for price
and 0.4 for sheet capacity) A is preferable to B in the
absence of C, but B is preferable to A in the presence
of C.

The Learning Problem The focus of our work is
on learning the weights of the features in the proper
learning setting. We assume that the features, i.e.,
the topologies, are given. Designing these topologies
requires domain knowledge and may be difficult for
certain domains – just as creating features is chal-
lenging for machine learning. We leave it as an in-
teresting direction for future work. Each example is
composed of a query q, a context C (set of prod-
ucts shown to the user), k topologies for this con-
text: T [q,C](1), . . . , T [q,C](k), and a particular prod-
uct u ∈ C. In the training set, each example is la-
beled by p∗u[q, C] the stationary distribution of u under
the topology

∑
i w
∗(i)T [q,C](i). Our goal is to learn

weights w for these topologies that best approximates
w∗, namely, s.t. the difference in two labels produced
by w and by w∗ is smaller than some given threshold
ε. We believe that the problem of learning under a
feature space of topologies is important and of inde-
pendent interest.

1This distribution is different from a weighted combina-
tion of the stationary distribution of each of the topologies;
the latter problem can be learned using existing algorithms.

Formally, we denote D as some distribution over
{q, C, u}, and assume the existence of some oracle that
given q and C, provides the learner with the k topolo-
gies. We also denote by S our training data of m iid
samples from D.

Problem 2.1. The Random Shopper Problem is (ε, δ)-
learnable if there exists an algorithm that for any D,
gets m iid examples from D, and outputs weights w s.t.
for any q, C, the weights w induce the stationary dis-
tribution p[q, C] of the topology

∑
i w(i)T [q,C](i), and

we have that w.p. ≥ 1− δ

errD(w) ≡ E(q,C,u)∼D

[
|pu[q, C]− p∗u[q, C]|

]
≤ ε (1)

To simplify notation, we will henceforth drop C, treat-
ing each query-context combination as its own query.
We may also drop q when the context is clear.

Observe that Problem 2.1 is more general than what
is traditionally required of ranking algorithms. Typ-
ically, one requires that if the target ranking notice-
ably prefers u to v, then the hypothesis outputted
should also rank u above v. In our setting such a re-
quirement translates to correctly ranking u above v if
p∗u[q] > p∗v[q]+Γ for some given Γ. A solution to Prob-
lem 2.1 for ε = Γ/2 implies a solution to the traditional
ranking problem. Thus, we focus on Problem 2.1.

3. Sample Complexity

We now consider learning under RSM. First, we show
that the learning problem fits in the Empirical Risk
Minimization framework—with sufficiently many iid
examples, a hypothesis with small error on the sam-
ple will be a hypothesis with small error on the true
distribution with high probability. Formally, we show:

Theorem 3.1. Let D be any distribution over problem
instances {q, u}. Fix any desired ε, δ > 0. Let S be a
sample of size m = O( kε2 log( k

λεδ )) drawn iid from D.
Define the true error errD(w) of a hypothesis w using
Eq. (1) and sample error errS(w) as

errS(w) = E(q,u)∈RS

[ ∣∣pu[q]− p∗u[q]
∣∣ ] .

then with probability ≥ 1− δ, for every w, we have

|errD(w)− errS(w)| < ε .

To prove Theorem 3.1, we consider a discretization of
the hypothesis space into a (k − 1)-dimensional sim-
plex, where two adjacent points differ by at most ε in
any coordinate. We show next that on this ε-grid, the
point ŵ closest to w∗ yields a stationary distribution
that differs from the “true” one by at most ε′.

Lemma 3.2 (Main Lemma). Fix ε > 0. For any w∗

and ŵ, it holds that |p̂u[q]− p∗u[q]| ≤ kε/λ .
Using this lemma, we sketch the Proof to Theorem 3.1.

Proof sketch for Theorem 3.1. Set ε′ = ελ/3k. Using
the union bound and the Hoeffding bound on a sample
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of m = O( kε2 log( k
λεδ )) iid examples taken from D, we

can show that all of the (k − 1)1/ε′ hypotheses on the
ε′-grid have roughly the same true error and sample
error, i.e., w.p. ≥ 1− δ, all w on the ε′-grid have

|errD(w)− errS(w)| < ε/3 .

Fix any w in the simplex, and denote ŵ as its clos-
est grid point. Lemma 3.2 gives that both |errS(w)−
errS(ŵ)| < ε/3 and |errD(w)− errD(ŵ)| < ε/3.

As a corollary, if k is a small constant, there exists a
polynomial time algorithm for the RSM learning prob-
lem by brute force enumeration of the (ελ/3k)-grid.

We now prove Lemma 3.2. In what follows, we refer
to vectors with non-negative entries that sum to one
simply as distributions. We start by recalling the defi-
nition of the limiting and the fundamental matrix from
Markov chain theory.

Definition 3.3 (Limiting Matrix). For Markov chain
P with stationary distribution p, the limiting matrix
is defined as

P∞ = limi→∞ P i = 1 pT .

The matrix P∞ represents the result of an “infinite”
traversal over the transition matrix P . It takes in one
step any distribution to the stationary distribution.

Definition 3.4 (Fundamental matrix). For Markov
chain P , the fundamental matrix is defined as

Z = [I − (P − P∞)]−1 .

Recall that for a geometric series with |x| < 1,
∑∞
i≥0 x

i

converges to (1−x)−1. Likewise, for ‖P −P∞‖∞ < 1,

Z = I + (P − P∞) + (P − P∞)2 + . . . .

Hence, one can bound the norm of Z by

‖Z‖∞ ≤
∑
i≥0 ‖P − P∞‖i∞ = 1/(1− ‖P − P∞‖∞) .

Further details on the properties of these matrices can
be found in Ch. 4 of (Kemeny & Snell, 1969).

Now consider the stationary distributions p and p∗ of
the Markov Chains P (w) and P (w∗). Let ∆ be the dif-
ference P (w)−P (w∗). Let Z(w∗) be the fundamental
matrix of P (w∗). It has been shown in (Schweitzer,
1968) and (Haviv & Van Der Heyden, 1984) that

(p− p∗)T = pT∆Z(w∗) . (2)

We generalize their results as follows.

Claim 3.5. For any distribution v and a scalar
λ > 0, let M be the outer-product λ1vT. Then, if∑
i≥0(P (w∗)−M)i converges,

(p− p∗)T = pT∆
(∑

i≥0(P (w∗)−M)i
)
.

Proof. By construction, for any distribution x, xTM =
λvT. Hence, (p − p∗)TM = 0T. Note that both p and
p∗ are distributions but their difference is not. Now
consider the LHS of the above equation.

(p− p∗)T = pTP (w)− (p∗)TP (w∗)

= pT(∆ + P (w∗))− (p∗)TP (w∗)

= (p− p∗)TP (w∗) + pT∆

⇒ pT∆ = (p− p∗)T (I − P (w∗)) + 0T

= (p− p∗)T [I − (P (w∗)−M)]

If
∑
i≥0(P (w∗) − M)i converges, it is equal to

[I − (P (w∗)−M)]
−1

. Multiplying both sides of the
equation with this term concludes the proof.

We now construct a suitable M to use with Claim 3.5.
Let M = λ

nJ , where J is the n× n all-1-matrix. This
corresponds to a random restart with probability λ.
Consider Q∗ = P (w∗) −M . As each row of Q∗ sums
up to (1 − λ), we have ‖Q∗‖∞ < 1, and so the sum∑
i≥0(Q∗)i converges. This yields

(p− p∗)T = pT∆
(∑

i≥0(Q∗)i
)

= pT∆ (I −Q∗)−1
(3)

Corollary 3.6. ‖p− p∗‖∞ ≤ ‖∆‖∞λ
Proof. Observe that in Eq. (3), multiplication is on the
left, whereas operator norms of matrices are defined
for the right. So we bound the norm of the transpose,
using the fact that for every matrix ‖A‖∞ = ‖AT‖1.

‖p− p∗‖∞ ≤ ‖p− p∗‖1 ≤ ‖(
∑
i≥0(Q∗)i)T‖1 ‖∆T‖1 ‖p‖1

≤
∑
i(‖(Q∗)‖∞)i‖∆‖∞ · 1 = ‖∆‖∞

1−(1−λ)

Corollary 3.6 proves Lemma 3.2 immediately, since for
ŵ, the closest grid point to w∗, we have that ‖∆‖∞ ≤∑
i |ŵ(i)− w∗(i)|‖T (i)‖∞ ≤ kε · 1.

4. The RSM Algorithm

Previously, we have shown that as a corollary to The-
orem 3.1, one can solve the RSM learning problem by
brute force enumeration for small k in theory. In prac-
tice, as borne out by our experience in Section 5, the
learning problem can be solved much faster using the
iterative algorithm described in Figure 2.

The overall strategy of the algorithm is as follows:
given a target stationary distribution p∗, at each it-
eration of the algorithm, we make small changes to
the current weights ws such that the difference be-
tween the stationary distributions p∗ and ps becomes
smaller. The key to understanding our algorithm is
the derivation of the objective function Eq. (4).

Let w∗ be the weights such that p∗ corresponds to the
stationary distribution of the transition matrix P ∗ =
P (w∗). At iteration s, with weights ws, the algorithm
computes the transition matrix P (ws), the stationary
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1. Set w0 arbitrary. Set s = 0.

2. For each query q: compute Gs[q] =
∑

i w
s(i)T [q](i), its stationary distribution ps[q], and its fundamental matrix

Z [q](ws) =
[
I − (Gs[q]− 1(ps[q])T)

]−1
.

3. Solve the following convex optimization problem:

minimize x

∑
q

[(
p∗u[q][q]− psu[q][q]

)
−
∑
i

x(i)
(

(ps[q])TT [q](i) Z [q](ws)eu[q]

)]2
(4)

s.t. ∀i, − η ≤ x(i) ≤ η
(
formally, −min{η, w(i)} ≤ x(i) ≤ min{η, 1− λ− w(i)}

)∑
i

x(i) = 0

4. If ‖x‖ ≤ ε then halt. Otherwise set ws+1 = ws + x, s = s+ 1 and repeat from 2.

Figure 2. The RSM Algorithm

distribution ps, the limiting matrix P∞(ws), and the
fundamental matrix Z(ws). From Eq. (2),

(p∗ − ps)T = (p∗)T [P ∗ − P (ws)]Z(ws)

= (ps + (p∗ − ps))T[P ∗ − P (ws)]Z(ws)

Recall that T (i) denote the i-th topology. Let xs(i) =
w∗(i)−ws(i). In (Schweitzer, 1968), it was shown that
(I − [P ∗ − P (ws)]Z(ws)) is invertible. Hence, rear-
ranging the preceeding, we can show that (p∗ − ps)T

= (ps)T [P ∗ − P (ws)]Z(ws) ·
(
I − [P ∗ − P (ws)]Z(ws)

)−1

= (ps)T
[∑

i

xs(i)T (i)Z(ws)
]
·
[∑
n≥0

(∑
i

xs(i)T (i)Z(ws)
)n]

= (ps)T
[∑
n≥1

(∑
i

xs(i)T (i)Z(ws)
)n]

The difference in the u-th coordinate, p∗u− psu, equals

p∗u − psu = (ps)T

[∑
n≥1

(∑
i

xs(i)T (i)Z(ws)
)n]

eu (5)

where eu is the indicating vector of coordinate u. If
one can solve the above in closed form, then w∗ can be
found in one step. Unfortunately, there does not exist
an explicit formula for the roots of Eq. (5). Thus, we
approximate the RHS by the first term of the sum,

p∗u − psu ≈ (ps)T

[∑
i

xs(i)T (i)Z(ws)
]
eu

This is a good approximation when xs(i) is small, as
the sum will be dominated by the linear term. In fact,
if ‖xs‖∞ < α

kn , we can show that∣∣∣(p∗u−psu)−
∑
i

xs(i)
(

(ps)TT (i)Z(ws)eu

)∣∣∣ ≤ α2

1− α
< α2

To sum up, we apply iterative gradient ascent, where
in iteration s, we compute xs s.t. ‖xs‖∞ ≤ η for some
small constant η and s.t. xs minimizes the above dif-
ference, and set the new weights ws+1 = ws + xs.
As a sanity check, we ran experiments over synthetic
data, applying both the RSM algorithm and the brute-
force algorithm which uses ε-grid. The weights found

by both algorithms were very close. Also, we found
that performances are better if we minimize the pair-
wise difference between two items according to p∗ and
ps. This requires a change in the optimization routine.
Full details are omitted due to space limitations.

5. Experiments on Commerce Data

Overview Our goal is to evaluate how well one can
predict flips in users’ preferences due to changing con-
texts. We focus on flip prediction as this is a hard
problem that no previous algorithms in the ranking
literature can solve. Each row of our dataset consists
of a query, a context (the top five products shown), and
the click-through rates (CTRs) of the products. The
CTRs are aggregated over users as we are interested
in flips in preferences of the population and not of the
individual. The task for the algorithms is to predict
the CTRs given query and context. A row is treated
as five problem instances, one for each product.

To measure performance on flip prediction, we care-
fully construct the dataset to be composed of pairs of
rows where each row in the pair has the same query but
a different context, and for which there are two prod-
ucts A and B where A is preferred to B in one and B to
A in the other. The algorithms are evaluated on their
ability to predict preference flips. In other words, we
measure their performance on predicting the relative
CTRs between these two products. Note that this is a
particularly challenging test because it is loaded with
“contradictions”. Any algorithm that produces an ab-
solute score for a query-product pair will be correct
on one instance and wrong on the other, and cannot
achieve an accuracy of > 50%.

Dataset We obtain queries and clicks from a com-
merce search engine from 08/2010 to 02/2011. We
focus on queries related to TVs and digital cameras
as these are major categories of consumer products
where users carefully examine product attributes. We
group the data by query and context, where context is
defined as the top five products shown for the query.
We believe this is a reasonable definition as the top
five products are typically visible to the users without
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scrolling. For each query and context, we count the
number of clicks by all users on the five products.

Next, we examine all products surfaced for a query
across all contexts. For each pair of products A and
B, we look for the existence of two contexts where in
one A is clicked more often than B and in another
B more often than A. We consider a context only if
there are more than five total clicks, and the difference
in clicks between A and B is at least two. This is
done to reduce our exposure to spurious clicks. If there
are multiple such contexts, we select the two where
the preferences expressed are the strongest, i.e., the
differences in CTRs between A and B are the largest.
Such pairs of instances are added to our dataset. For
each run of our experiment, the dataset is randomly
split into 80% training and 20% test data. We ensure
that paired rows are not split between training and
test.

Features The features used in this study are Brand,
Price, Diagonal Size/Megapixel (depending on TV or
camera), Number of Reviews, Average Rating, BM25
and Position of the product in the result set. We se-
lect these features as they are visible to users on the
result page (with the exception of BM25, which mea-
sures how closely a product title matches a query, and
hence is quite “visible” too). All features are numeric
except for Brand, which we manually map to the range
of {−1, 0,+1}. Reputable brands, such as Samsung
and Sony, receive a label of +1, while unknown brands
received a label of −1, and others 0.

For RSM, we convert each feature into a weighted di-
graph with self-loops as follows. For each feature, the
n = 5 products in the context are ordered by fea-
ture value, and assigned a rank from 1 to n where
high-ranked products are more desired (e.g., cheaper,
better brands, more highly rated). The edge weight
from product i to j is set to [n + rank(j) − rank(i)]
and then normalized so that the weights of outgoing
edges from each product sum to 1. We choose this
encoding as it is simple, scale-invariant and most im-
portantly relative—it depends on all products shown
and not on the actual numeric values. This method of
constructing topologies differs from the one detailed in
Section 2. This is because position bias ranks exactly
five items. To avoid the imbalance of n = 5 products
for the position bias topology while having extremely
large n for other topologies, we construct all topolo-
gies with five products. The question of how best to
encode a feature as a Markov chain is an interesting
future research direction.

Baseline Our baseline consists of two algorithms:
Least Squares (LS) and Listwise Ranking (LR) (Cao
et al., 2007). The objective of LS is to learn a weighted
combination of features that best predicts the CTR.
Learning such a hyperplane is a natural choice as our

task of learning CTR is related to regression. Another
baseline is Listwise Ranking. We select it as the algo-
rithm trains on lists of choices instead of pairs. In the
classical setting, LR assumes each query is associated
with a set of URLs with their relevance labels. In our
case, relevance is approximated by CTR. The LR al-
gorithm depends on certain parameters. We select the
parameters to maximize performance on a validation
set sampled from the training data.

Metrics We measure performance by the fraction
of flips in preferences an algorithm correctly predicts
in the test set. Recall that for each pair of rows of
data, there are two products A and B where prefer-
ences are flipped depending on context. We compare
the predicted CTR for these two products under the
two contexts, and count the number of times the pre-
dicted CTR agrees with the preference. Under this
metric, random guessing will have a performance of
50%. Also, any context-oblivious approach that as-
signs the same score to a query-product pair will have
a performance of 50%.

Note that for this experiment, we cannot apply tra-
ditional IR metrics such as MAP, MRR, or NDCG.
These metrics rely on relevance labels assigned to
query-product pairs. Assigning context-oblivious rel-
evance labels to query-product pairs is not consistent
with the fact that preference is context dependent.
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Figure 3. Prediction Accuracy of Different Algorithms

Results The prediction accuracies of each method
averaged over 100 random training-test splits are re-
ported in Figure 3. The solid line at 0.5 in the chart
represents the performance of random guessing. The
standard deviation of each method is shown in error
bars. Despite the overlapping error bars, the differ-
ences in performance among all three methods are sta-
tistically significant under a paired t-test, with p-value
< 10−5. The pairing is done by having all three meth-
ods evaluated on the same training-test split. In our
experiments, we set λ = 0.15. Our results are not sen-
sitive to the choice of λ, from 56.8% with λ = 0.01
to 57.9% with λ = 0.3. In our experiments, train-
ing time was – RSM: 14s, Listwise:1.3s, LS: 5ms; and
ranking time was – RSM: 0.02ms, Listwise: 0.001ms,
LS: 0.001ms.

Note that both LR and LS have accuracy > 0.5. This
is because the Position feature varies depending on
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where a product is shown. Both LR and LS assigns
a negative weight to this feature, predicting that a
product ranked higher in the result set is more likely to
be clicked, confirming the importance of position bias.
While all methods had access to the same features,
RSM significantly outperforms both LR and LS. Our
novel view of a feature as a Markov Chain, as well as
our better modeling of the learning problem, are key
to this improved performance.

Discussion The experiments have several limita-
tions. First, clicks are a noisy signal for measuring
preferences. A click could be due to sheer curiosity or
even a mistake. We try to mitigate this problem by
requiring a minimum number of clicks. A better sig-
nal may be user purchases. Second, all queries are
grouped together for learning. It may be that de-
pending on the nature of the query, the weights on
the features are different. For example, users who is-
sue [32” LCD TV] may behave differently than those
that issue [widescreen TV]. Finally, many important
features may be missing, e.g., was the product shown
with a photo. Finding important and relevant features
remains an ongoing challenge.

In summary, we showed that under a careful setup,
beyond statistical doubt, RSM outperforms two strong
baselines. Our proof of concept provides real evidence
that RSM is a model deserving additional study and
experimentation.

6. Related Work

Learning to Rank: Many techniques have been pro-
posed for the problem of learning to rank, including
boosting (Cohen et al., 1999; Freund et al., 2003), gra-
dient descent (Burges et al., 2005; 2006), and large-
margin classifiers (Joachims, 2002); see Liu (2009) for
a recent survey. Typically, the global ordering is given
by some scoring function learned from data. Our work
has two important differences. First, we are interested
in learning an ordering that depends on the set of
items shown to the user, i.e., the context. It is cru-
cial that the method generalize to previously unseen
contexts. We do so by learning how the ordering de-
pends on context. Second, our work treats features as
topologies over items, whereas most past work deals
with standard numeric features. One exception to fea-
ture as scores is Cohen et al (1999), where features are
viewed as acyclic graphs. Their generalization allows
two items to be incomparable. Our work takes the
generalization further, allowing each feature to be an
arbitrary graph, possibly containing cycles.

Listwise Ranking (Cao et al., 2007) learns from a list of
items, and not from pairs of items. It was proposed as
a technique to improve computational efficiency. Even
though the paper states that each query is associated
with a unique list of items, one can view the work in

a context-dependent way, i.e., each query is associated
with multiple lists of items. However, it still outputs
a single value per query-item pair. Xiong et al (2012)
observed that the click-through rate (CTR) of an ad
is often dependent on the other ads shown alongside,
and introduce a context-dependent learning scenario.
They discuss algorithms for learning which ad a search
engine should surface in response to a query, and pro-
pose one that learns from a list of ads rather than one.

Behavioral Economics: The foundation of our work
is built on the observation that people’s preferences are
often influenced by context. Some prototypical exam-
ples are presented in (Ariely, 2008). The effect of con-
text on preferences has been studied systematically by
Tversky. Tversky and Simonson (1993) demonstrated
that preferences between two options often depends on
other options present. As a consequence, there is no
global ranking function that will be consistent with the
choices if one ignores the context, which motivates our
present work. Tversky (1972) proposed a choice model
called elimination by aspects (EBA). Under EBA, a
decision maker chooses among options by sets of as-
pects. An example aspect could be {price < $100}.
The decision maker chooses an option by picking an
aspect and eliminating all choices that do not satisfy
the aspect, and repeating until she is left with a single
option. In our model, rather than eliminate options,
we transition from an inferior option to a superior one
along the selected aspect. This process can be viewed
as a “softening” of the hard decisions made by EBA.

PageRank: Our work can be viewed as a general-
ization of PageRank (Brin & Page, 1998). Whereas
PageRank postulates that users randomly surf from
one webpage to another via a hyperlink, our model
postulates that users randomly pick a topology accord-
ing to some distribution, and transition from one item
to another based on the selected topology. The distri-
bution over topologies is learned from data such that
the stationary distribution closely approximates ob-
served click probabilities. The problem of learning the
weights to a random walk has recently been considered
by Backstrom and Leskovec (2011). In that paper, the
authors study how to assign weights to the edges of a
given topology so as to approximate a target station-
ary distribution. In our problem, topologies and their
associated edge weights are given as input, and we are
interested in learning the weights of each topology un-
der the aforementioned random walk. In the context of
learning, Girolami and Kaban (2004) learn a model of
random walks by finding a small set of Markov chains
that explain a large collection of transition sequences
(they also assume the chains themselves come from
some probabilistic model).

Rank Aggregation: The problem of using rank ag-
gregation in web search was studied by Dwork et
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al (2001). Their goal is to aggregate different search
results into one ranking that is close to all of the in-
put rankings, where proximity is measured by Kendall
tau distance or Spearman footrule (see (Dwork et al.,
2001) for definitions). Our goal differs in that we seek
to rank results differently depending on the context of
the other results shown.

Using Context to Order: In the database setting,
Agrawal et al (2006) consider the problem of rank-
ing selected tuples in a context-dependent manner.
Each context is a conjunction of attributes over a rela-
tional table. A collection of preferences is assumed to
be given per context, where each preference is of the
form attribute value x is preferred to attribute value
y in context Z. Given a select predicate query, their
method finds a ranking of tuples that maximally agrees
with the contextual preferences. Our work differs in
that we define the context to be the set of items shown
to the user. Further, our model supports generaliza-
tion to contexts, i.e., sets of items, that have not been
seen in the input preferences.

7. Future Work

We proposed the Random Shopper Model, a new
model that can explain contextual preferences in con-
sumer behavior. While this does not directly model
how people shop, it moves in a direction that is closer
to human behavior than rank by score. It is also a first
step towards expanding the view of a feature from a
number to a Markov chain. This new view could draw
more research interest to non-numeric features such as
graphs and Markov chains.

While consumers do flip their preference, characteriz-
ing when and why they flip is important. We anecdo-
tally observe that users early in the shopping process
are more likely to flip, e.g., flips occur with “steam
mop” and not when a precise product is pinned down,
e.g., “garmin 265wt”. Other reasons for flips include
asymmetric dominance and extremal aversion (Tver-
sky & Simonson, 1993). An improved characterization
can lead to ML algorithms that prefilter which queries
to trigger an algorithm such as RSM vs. triggering the
usual ranking algorithm.

Finally, consumer behavior is more complex than pre-
dicting flips. The behavioral economics community
has studied many other aspects of consumer behav-
ior. Commerce logs open the door to understanding
whether and how often such behavior exists. For ex-
ample, anchoring (Tversky & Kahneman, 1974) sug-
gests that the first product influences subsequent buy-
ing decisions, as future products are compared to the
first product the user saw. Analogously, in commerce
search, the first search result may also have an anchor-
ing effect. Future challenges lie in designing models
that better capture consumer behavior.
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