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Abstract

This paper analyzes the problem of Gaus-
sian process (GP) bandits with determin-
istic observations. The analysis uses a
branch and bound algorithm that is related
to the UCB algorithm of (Srinivas et al.,
2010). For GPs with Gaussian observa-
tion noise, with variance strictly greater
than zero, (Srinivas et al., 2010) proved
that the regret vanishes at the approximate
rate of O

(
1√
t

)
, where t is the number of

observations. To complement their result,
we attack the deterministic case and at-
tain a much faster exponential convergence
rate. Under some regularity assumptions,
we show that the regret decreases asymp-

totically according to O
(
e
− τt

(ln t)d/4
)

with
high probability. Here, d is the dimension
of the search space and τ is a constant that
depends on the behaviour of the objective
function near its global maximum.

1. Introduction

Let f : D → R be a function on a compact sub-
set D ⊆ Rd. We would like to address the global
optimization problem

xM = argmax
x∈D

f(x).

Let us assume for the sake of simplicity that the
objective function f has a unique global maximum
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(although it may have many local maxima).

The space D might be the set of free parameters that
one could feed into a time-consuming algorithm or
the locations where a sensor could be deployed, and
the function f might be a measure of the perfor-
mance of the algorithm (e.g. how long it takes to
run). We refer the reader to (Močkus, 1982; Schon-
lau et al., 1998; Gramacy et al., 2004; Brochu et al.,
2007; Lizotte, 2008; Martinez–Cantin et al., 2009;
Garnett et al., 2010) for practical examples. In this
paper, our assumption is that once the function has
been probed at point x ∈ D, then the value f(x)
can be observed with very high precision. This is
the case when the deployed sensors are very accu-
rate or if the algorithm is deterministic. An exam-
ple of this is the configuration of CPLEX parameters
in mixed-integer programming (Hutter et al., 2010).
More ambitiously, we might be interested in the si-
multaneous automatic configuration of an entire sys-
tem (algorithms, architectures and hardware) whose
performance is deterministic in terms of several free
parameters and design choices.

Global optimization is a difficult problem without
any assumptions on the objective function f . The
main complicating factor is the uncertainty over the
extent of the variations of f , e.g. one could con-
sider the characteristic function, which is equal to
1 at xM and 0 elsewhere, and none of the methods
we mention here can optimize this function without
exhaustively searching through every point in D.

The way a large number of global optimization
methods address this problem is by imposing some
prior assumption on how fast the objective function
f can vary. The most explicit manifestation of this
remedy is the imposition of a Lipschitz assumption
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on f , which requires the change in the value of f(x),
as the point x moves around, to be smaller than
a constant multiple of the distance traveled by x
(Hansen et al., 1992). As pointed out in (Bubeck
et al., 2011, Figure 3), it is only important to have
this kind of tight control over the function near its
optimum: elsewhere in the space, we can have what
they have dubbed a “weak Lipschitz” condition.

One way to relax these hard Lipschitz constraints
is by putting a Gaussian Process (GP) prior on the
function. Instead of restricting the function from
oscillating too fast, a GP prior requires those fast
oscillations to have low probability, cf. (Ghosal &
Roy, 2006, Theorem 5).

The main point of these bounds (be they hard or
soft) is to assist with the exploration-exploitation
trade-off that global optimization algorithms have
to grapple with. In the absence of any assumptions
of convexity on the objective function, a global al-
gorithm is forced to explore enough until it reaches
a point in the process when with some degree of cer-
tainty it can localize its search space and perform
local optimization (exploitation). Derivative bounds
such as the ones discussed here together with the
boundedness of the search space, guaranteed by the
compactness assumption on D, provide us with such
certainty by producing a useful upper bound that al-
lows us to shrink the search space. This is illustrated
in Figure 1. Suppose we know that our function is
Lipschitz with constant L, then given sample points
as shown in the figure, we can use the Lipschitz prop-
erty to discard pieces of the search space. This is
done by finding points in the search space where the
function could not possibly be higher than the max-
imum value already encountered. Such points are
found by placing cones at the sampled points with
slope equal to L and checking where those cones lie
below the maximum observed value.

This crude approach is wasteful because very often
the slope of the function is much smaller than L. As
shown in Figure 2), GPs do a better job of providing
lower and upper bounds that can be used to limit
the search space, by essentially choosing Lipschitz
constants that vary over the search space and the
algorithm run time.

We also assume that the objective function f is
costly to evaluate. We would like to avoid probing
f as much as possible and to get close to the opti-
mum as quickly as possible. A solution to this prob-
lem is to approximate f with a surrogate function
that provides a good upper bound for f and which
is easier to calculate and optimize (Brochu et al.,

2009). Surrogate functions also aid with global opti-
mization by restricting the domain of interest. The
surrogate that we will make extensive use of here is
called the Upper Confidence Bound (UCB). It is de-
fined to be µ+Bσ, where µ and σ are the posterior
predictive mean and standard deviation of the GP
and B is a constant to be chosen by the algorithm.
This surrogate function has been studied extensively
in the literature and this paper relies heavily on the
ideas put forth in the paper by Srinivas et al (Srini-
vas et al., 2010), in which the algorithm consists of
repeated optimization of the UCB surrogate func-
tion after each sample. It must be noted however
that our algorithm is distinctly different from their
UCB algorithm.

One key difference between our setting and that of
(Srinivas et al., 2010) is that, whereas we assume
that the value of the function can be observed ex-
actly, for the analysis presented in (Srinivas et al.,
2010) it is necessary for the noise to be non-trivial
(and Gaussian) because the main quantity that is
used in the estimates, namely information gain, cf.
(Srinivas et al., 2010, Equation 3), becomes unde-
fined when the variance of the observation noise (σ2

in their notation) is set to 0, cf. the expression for
I(yA; fA) that was given in the paragraph following
Equation (3). So, our analysis is complementary to
theirs. Of course, one could still use their algorithm
in the noiseless setting, but their analytical results
are inapplicable to that case. Moreover, we show
that the regret, r(xt) = maxD f − f(xt), decreases

according to O
(
e
− τt

(ln t)d/4
)

, implying that the cu-
mulative regret is bounded from above.

The paper whose results are most similar to ours
is (Munos, 2011), but there are some key differ-
ences in the methodology, analysis and obtained
rates. For instance, we are interested in cumula-
tive regret, whereas the results of (Munos, 2011)
are proven for finite stop-time regret. In our case,
the ideal application is the optimization of a func-
tion that is C2-smooth and has an unknown non-
singular Hessian at the maximum. We obtain a

regret rate O
(
e
− τt

(ln t)d/4
)

, whereas the DOO algo-

rithm in (Munos, 2011) has regret rate O(e−t) if
the Hessian is known and the SOO algorithm has
regret rate O(e−

√
t) if the Hessian is unknown. In

addition, the algorithms in (Munos, 2011) can han-
dle functions that behave like −c‖x − xM‖α near
the maximum (cf. Example 2 therein). Moreover,
the hierarchical decomposition of the search space
utilized by DOO and SOO makes them much more
efficient in practice than the algorithm presented in
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Figure 1. An example of the Lipschitz hypothesis being used to discard pieces of the search space when finding the
maximum of a function f . Although f is only known at the red sample points, if the derivative upper bounds (dashed
lines) are below the best attained value thus far, f(x+), the corresponding areas of the search space (shaded regions)
may be discarded.

Figure 2. An example of our branch and bound maximization algorithm with UCB surrogate µ+Bσ, where µ and σ
are the mean and standard deviation of the GP respectively. The region consisting of the points x for which the upper
confidence bound µ(x) + Bσ(x) is lower that the maximum value of the lower confidence bound µ(x) − Bσ(x) does
not need to be sampled anymore. Note that the UCB surrogate function bounds f from above.

this paper: this is a shortcoming of our algorithm
that we would like to remedy in the future.

This problem was also studied by (Vazquez & Bect,
2010) and (Bull, 2011), but using the Expected Im-
provement surrogate instead of UCB. Our method-
ology and results are different, but complementary
to theirs.

2. Gaussian process bandits

2.1. Gaussian processes

As in (Srinivas et al., 2010), the objective function
is distributed according to a Gaussian process prior:

f(x) ∼ GP(m(·), κ(·, ·)). (1)

For convenience, and without loss of generality, we
assume that the prior mean vanishes, i.e., m(·) = 0.
There are many possible choices for the covariance
kernel. One obvious choice is the anisotropic ker-
nel κ with a vector of known hyperparameters (Ras-

mussen & Williams, 2006):

κ(xi, xj) = κ̃
(
−(xi − xj)>D(xi − xj)

)
, (2)

where κ̃ is an isotropic kernel and D is a diagonal
matrix with positive hyperparameters along the di-
agonal and zeros elsewhere. Our results apply to
squared exponential kernels and Matérn kernels with
parameter ν ≥ 2. In this paper, we assume that the
hyperparameters are fixed and known in advance.

We can sample the GP at t points by choosing
points x1:t := {x1, . . . , xt} and sampling the values
of the function at these points to produce the vec-
tor f1:t = [f(x1) · · · f(xt)]>. The function values are
distributed according to a multivariate Gaussian dis-
tribution N (0,K), with covariance entries κ(xi, xj).
Assume that we already have several observations
from previous steps, and that we want to decide
what action xt+1 should be considered next. Let
us denote the value of the function at this arbitrary
new point as ft+1. Then, by the properties of GPs,
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f1:t and ft+1 are jointly Gaussian:[
f1:t
ft+1

]
∼ N

(
0,
[
K k>

k κ(xt+1, xt+1)

])
,

where k = [κ(xt+1, x1) · · ·κ(xt+1, xt)]>. Using the
Schur complement, one arrives at an expression for
the posterior predictive distribution:

P (ft+1|x1:t+1, f1:t) = N (µt(xt+1), σ2
t (xt+1)),

where

µt(xt+1) = k>K−1f1:t,
σ2
t (xt+1) = κ(xt+1, xt+1)− k>K−1k

(3)

and f1:t = [f(x1) · · · f(xt)]>.

2.2. Surrogates for optimization

When it is assumed that the objective function f
is sampled from a GP, one can use a combination
of the posterior predictive mean and variance given
by Equations (3) to construct surrogate functions,
which tell us where to sample next. Here we use the
UCB combination, which is given by

µt(x) +Btσt(x),

where {Bt}∞t=1 is a sequence of numbers specified by
the algorithm. This surrogate trades-off exploration
and exploitation since it is optimized by choosing
points where the mean is high (exploitation) and
where the variance is large (exploration). Since the
surrogate has an analytical expression that is easy
to evaluate, it is much easier to optimize than the
original objective function. Other popular surrogate
functions constructed using the sufficient statistics of
the GP include the Probability of Improvement, Ex-
pected Improvement and Thompson sampling. We
refer the reader to (Brochu et al., 2009; May et al.,
2010; Hoffman et al., 2011) for details on these.

2.3. Our algorithm

The main idea of our algorithm (Algorithm 1) is to
tighten the bound on f given by the UCB surro-
gate function by sampling the search space more and
more densely and shrinking this space as more and
more of the UCB surrogate function is “submerged”
under the maximum of the Lower Confidence Bound
(LCB). Figure 2 illustrates this intuition.

More specifically, the algorithm consists of two it-
erative stages. During the first stage, the function
is sampled at enough points in L (the red crosses
in Figure 3) until every point in the search space is

Figure 3. Branch and Bound algorithm for a 2D func-
tion. The colored region is the search space and the color-
map, with red high and blue low, illustrates the value of
the UCB. Four steps of the algorithm are shown; pro-
gressing from left to right and top to bottom. The green
dots designate the points where the function was sam-
pled in the previous steps, while the red crosses denote
the freshly sampled points.

contained inside a simplex of diameter δ, where by
the diameter of a set we mean the maximum length
between any pair of points in the set. In the sec-
ond stage, the search space is shrunk to discard re-
gions where the maximum is very unlikely to reside.
Such regions are obtained by finding points where
the UCB is lower than the LCB (the complement of
the colored region in the same panel as before). The
remaining set of relevant points is denoted by R̃. To
simplify the task of shrinking the search space, we
simply find an enclosing ball, which is denoted by R
in Algorithm 1. Back to the first stage, we consider
a lattice that is twice as dense as in the first stage of
the previous iteration, but we only sample at points
that lie within our new smaller search space.

In the second stage, the auxiliary step of approxi-
mating the relevant set R̃ with the ball R introduces
inefficiencies in the algorithm, since we only need to
sample inside R̃. This can be easily remedied in
practice to obtain an efficient algorithm. Our analy-
sis will show that even without these improvements
it is already possible to obtain very strong exponen-
tial convergence rates. Of course, practical improve-
ment will result in better constants and ought to be
considered seriously.

Note that Algorithm 1 terminates once the relevant
region becomes too small to intersect the lattice L.
Our analysis requires for the algorithm to sample
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Algorithm 1 Branch and Bound

Input: A compact subset D ⊆ Rd, a function f : D → R and a discrete lattice L ⊆ D that is divisible by
powers of 2. Set R ← D and δ ← 1.
repeat

Sample Twice as Densely:
• δ ← δ/2.
• Sample f at enough points in L so that every point in R is contained in a simplex of diameter δ.

Shrink the Relevant Region:
• Set

R̃ :=
{
x ∈ R

∣∣∣∣µT (x) +
√
βTσT (x) > sup

R
µT (x)−

√
βTσT (x)

}
.

T is the number points sampled so far and βT = 2 ln
(
|L|T 2

α

)
= 4 lnT + 2 ln |L|α with α ∈ (0, 1).

• Solve the following constrained optimization problem: (x∗1, x
∗
2) = argsup(x1,x2)∈ eR× eR ‖x1 − x2‖.

• R ← B

(
x∗1 + x∗2

2
, ‖x∗1 − x∗2‖

)
, where B(p, r) is the ball of radius r centred around p.

until R∩ L = ∅

points from a fixed finite set of points, although we
can pick L to be the set of all points in D with
floating point coordinates.

3. Analysis

We begin our analysis by showing that, given suf-
ficient explored locations, the posterior predictive
variance is small. Specifically, the following approx-
imation result is proved in the supplementary mate-
rial:

Proposition 1 (Variance Bound) Let κ : Rd ×
Rd → R be a kernel that is four times differentiable
along the diagonal {(x, x) |x ∈ Rd}, with Q defined
as in part 2 of Lemma 5, and f ∼ GP (0, κ(·, ·)) a
sample from the corresponding GP. If f is sampled
at points x1:T = {x1, . . . , xT } that form a δ-cover of
a subset D ⊆ Rd, then the resulting posterior predic-
tive standard deviation σT satisfies

sup
D
σT ≤

Qδ2

4
.

3.1. Finiteness of regret

Having shown that the variance vanishes according
to the square of the resolution of the lattice of sam-
pled points, we now move on to show that this esti-
mate implies an exponential asymptotic vanishing of
the regret encountered by our Branch and Bound al-
gorithm. This is laid out in our main theorem stated
below and proven in the supplementary material.

Recall that D ⊆ Rd is assumed to be a non-
empty compact subset and f a sample from the

GP GP (0, κ(·, ·)) on D. Moreover, in what fol-
lows we will denote the global maximum by xM :=
argmax
x∈D

f(x) and the regret by r(xt) = f(xM ) −

f(xt). Also, by convention, for any set S, we will
denote its interior by S◦, its boundary by ∂S and
if S is a subset of Rd, then conv(S) will denote its
convex hull. The following holds true:

Theorem 2 Suppose we are given:
1. α > 0, a compact subset D ⊆ Rd, and κ a kernel

on Rd that is four times differentiable along the
diagonal;

2. f ∼ GP(0, κ) a continuous sample on D that
has a unique global maximum xM , which satis-
fies one of the following two conditions:
(†) xM ∈ D◦ and f(xM ) − c1‖x − xM‖2 <

f(x) ≤ f(xM )− c2‖x− xM‖2 for all x sat-
isfying x ∈ B(xM , ρ0) for some ρ0 > 0;

(‡) xM ∈ ∂D and both f and ∂D are smooth
at xM , with ∇f(xM ) 6= 0;

3. any lattice L ⊆ D satisfying the following two
conditions

• 2L ∩ conv(L) ⊆ L (4)

• 2d− log2
ρ0

diam(D)e+1L ∩ L 6= ∅ (5)
if f satisfies (†)

Then, there exist positive numbers A and τ and an
integer T such that the points specified by the Branch
and Bound algorithm, {xt}, will satisfy the following
asymptotic bound: For all t > T , with probability
1− α we have

r(xt) < Ae
− τt

(ln t)d/4 .
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Given the exponential rate of convergence we ob-
tain in Theorem 2, we have the following finiteness
conclusion for the cumulative regret accrued by our
Branch and Bound algorithm:

Corollary 3 Given κ, f ∼ GP(0, κ) and L ⊆ D as
in Theorem 2, the cumulative regret is bounded from
above.

Remark 4 It is worth pointing out the trivial ob-
servation that using a simple UCB algorithm with
monotonically increasing and unbounded factor

√
βt,

without any shrinking of the search space as we
do here, necessarily leads to unbounded cumulative
regret since eventually

√
βt becomes large enough

so that at points x′ far away from the maximum,√
βtσt(x′) becomes larger than f(xM ) − f(x). In

fact, eventually the UCB algorithm will sample every
point in the lattice L.

3.2. Remarks on the main theorem

This section includes a discussion of the assumptions
placed on the objective function in Theorem 2 as well
as an outline of the proof, the full details of which
are included in the appendix.

3.2.1. On the statement of Theorem 2

A few remarks on the assumptions and the conclu-
sion of the main theorem are in order:

A. Relationship between the local and global
assumptions on f : The theorem has two seem-
ingly unrelated restrictions on the function f : the
global GP prior and the local behaviour near the
global maximum. However, in many circumstances
of interest, the local condition follows almost surely
from the global condition. Two such circumstances
are if κ is a Matérn kernel with ν > 2 (including
the squared exponential kernel) or if κ is six times
differentiable. In either case, the sample f is twice
differentiable almost surely, in the former case by
(Adler & Taylor, 2007, Theorem 1.4.2) and (Stein,
1999, §2.6)) and in the latter situation by (Ghosal &
Roy, 2006, Theorem 5). If the global maximum xM
lies in the interior of D, the Hessian of f at xM will
almost surely be non-singular since the vanishing of
at least one of the eigenvalues of the Hessian is a co-
dimension 1 condition in the space of all functions
that are smooth at a given point, hence justifying
condition (†).

On the other hand, if xM lies on the boundary
of D, then condition (‡) will be satisfied almost
surely, since the additional event of the vanishing

of ∇f(xM ) is a codimension d phenomenon in the
space of functions with global maximum at xM .

B. Uniqueness of the global maximum: A ran-
domly drawn continuous sample from a GP on a
compact domain will almost surely have a unique
global maximum: this is because the space of con-
tinuous functions on a compact domain that attain
their global maximum at more than one point have
codimension one in the space of all continuous func-
tions on that domain.

C. Assumptions on L: The two conditions (4) and
(5) simply require that the lattice be “divisible by 2”
and that it be fine enough so that the algorithm can
sample inside the ball B(xM , ρ0) when the maximum
of the function is located in the interior of the search
space D. One can simply choose L to be the set of
points in D that have floating point coordinates: it’s
just the points at which the algorithm is allowed to
sample the function.

D. On τ ’s dependence: Finally, it is important to
point out that the decay rate τ does not depend on
the choice of the lattice L, even though as stated,
the statement of the theorem chooses τ only after
L is specified. The theorem was written this way
simply for the sake of readability.

3.2.2. Outline of the proof of Theorem 2

The starting point for the proof is the observation
that one can use the posterior predictive mean and
standard deviation of the GP to obtain a high prob-
ability envelope around the objective function (cf.
Lemma 8 in the appendix). Given the fact that the
thickness of this envelope is determined by the height
of the posterior predictive standard deviation, σ, we
can use the bound given by Proposition 1 to show
that asymptotically one can rapidly dispense with
large portions of the search space, as illustrated in
Figure 2.

One disconcerting component of Algorithm 1 is the
step that requires sampling twice as densely in each
iteration, since the number of samples can start to
grow exponentially, hence killing any hope of ob-
taining exponentially decreasing regret. However,
this is where the assumption on the local behaviour
near the global maximum becomes relevant. Since
Proposition 1 tells us that every time the function is
sampled twice as densely, σ decreases by a factor of
4, and given our assumption that the function has
quadratic behaviour near the global maximum, we
can conclude that the radius of the search space is
halved after each iteration and so the number of sam-
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pled points added in each iteration roughly remains
constant. Of course, this assumes that the multi-
plicative factor

√
βt remains constant in this process.

However, the algorithm requires
√
βt to grow loga-

rithmically, and so to fill this gap we need to bound
the growth of

√
βt, which is tied to the number of

samples needed in each iteration of the algorithm,
which in turn is linked to the resolution of the lat-
tice of sampled points δ and the size of the relevant
set R, which in turn depends on the size of

√
βtσt.

This circular dependence gives rise to a difference
equation, whose solutions we bound by solving the
corresponding differential equation.

3.2.3. Further remarks on the GP prior

Let us step back for a moment and pose the question
of whether it would be possible to carry out a similar
line of reasoning under other circumstances. To an-
swer this, one needs to identify the key ingredients
of the proof, which are the following:

A. A mechanism for calculating a high probabil-
ity envelope around the objective function (cf.
Lemma 8);

B. An estimate showing that the thickness of the
envelope diminishes rapidly as the function is
sampled more and more densely (cf. Proposi-
tion 1), so that the search space can be shrunk
under reasonable assumptions on the behaviour
of the function near the peak.

The reason for our imposing a GP prior on f is that
it gives us property A, while our smoothness assump-
tion on the kernel guarantees property B. However,
GPs are but one way one could obtain these proper-
ties and they do this essentially by coming up with
local estimates of the Lipschitz constant based on
the observed values of the objective function nearby.
Perhaps one could explicitly incorporate similar lo-
cal estimates on the Lipschitz constant into tree
based approaches like HOO and SOO, cf. (Bubeck
et al., 2011) and (Munos, 2011), in which case one
would be able to dispense with the GP assumption
and get similar performance. But, that is beyond
the scope of this paper and will be left for future
work.

4. Discussion

In this paper we proposed a modification of the UCB
algorithm of (Srinivas et al., 2010) which addresses
the noise free case. The key difference is that while
the original algorithm achieves an O(t−

1
2 ) rate of

convergence to the regret minimizer, we obtain an
exponential rate in the number of function evalu-
ations. In other words, the noise free problem is
significantly easier, statistically speaking, than the
noisy case. The key difference is that we need not
invest any samples in noise reduction to determine
whether our observations deviate far from their ex-
pectation.

This allows us to discard pieces of the search space
where the maximum is very unlikely to be, when
compared to (Srinivas et al., 2010). We show that
this additional step leads to a considerable im-
provement of the regret accrued by the algorithm.
In particular, the cumulative regret obtained by
our Branch and Bound algorithm is bounded from
above, whereas the cumulative regret bound ob-
tained in the noisy bandit algorithm is unbounded.
The possibility of dispensing with chunks of the
search space can also be seen in the works involving
hierarchical partitioning, e.g. (Munos, 2011), where
regions of the space are deemed as less worthy of
probing as time goes on.

Our results mirror the observation in active learn-
ing that noise free and large margin learning of half
spaces can be achieved much more rapidly than iden-
tifying a linear separator in the noisy case (Bshouty
& Wattad, 2006; Dasgupta et al., 2009). This is
also reflected in classical uniform convergence results
for supervised learning (Audibert & Tsybakov, 2007;
Vapnik, 1998) where the achievable rate depends on
the decay of probability mass near the margin.

This suggests that the ability to extend our results
to the noisy case is somewhat limited. An indica-
tion of what might be possible can be found in (Bal-
can et al., 2009), where regions of the version space
are eliminated once they can be excluded with suf-
ficiently high probability. One could model a corre-
sponding Branch and Bound algorithm, which dis-
penses with points that lie outside the current (or
perhaps the previous) relevant set when calculating
the covariance matrix K in the posterior equations
(3). Analysis of how much of an effect such a com-
putational cost-cutting measure would have on the
regret encountered by the algorithm is a subject of
future research.
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