
Learning Parameterized Skills

Bruno Castro da Silva bsilva@cs.umass.edu

Autonomous Learning Laboratory, Computer Science Dept., University of Massachusetts Amherst, 01003 USA.

George Konidaris gdk@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge MA 02139, USA.

Andrew G. Barto barto@cs.umass.edu

Autonomous Learning Laboratory, Computer Science Dept., University of Massachusetts Amherst, 01003 USA.

Abstract

We introduce a method for constructing skills
capable of solving tasks drawn from a distri-
bution of parameterized reinforcement learn-
ing problems. The method draws example
tasks from a distribution of interest and uses
the corresponding learned policies to esti-
mate the topology of the lower-dimensional
piecewise-smooth manifold on which the skill
policies lie. This manifold models how policy
parameters change as task parameters vary.
The method identifies the number of charts
that compose the manifold and then applies
non-linear regression in each chart to con-
struct a parameterized skill by predicting pol-
icy parameters from task parameters. We
evaluate our method on an underactuated
simulated robotic arm tasked with learning
to accurately throw darts at a parameterized
target location.

1. Introduction

One approach to dealing with the complexity of apply-
ing reinforcement learning to high-dimensional control
problems is to specify or discover hierarchically struc-
tured policies. The most widely used hierarchical re-
inforcement learning formalism is the options frame-
work (Sutton et al., 1999), where high-level options
(also called skills) define temporally extended policies
that can be used directly in learning and planning but
abstract away the details of low-level control. One of
the motivating principles underlying hierarchical rein-

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

forcement learning is the idea that subproblems recur,
so that acquired or designed options can be reused in
a variety of tasks and contexts.

However, the options framework as usually formulated
defines an option as a single policy. An agent may in-
stead wish to define a parameterized policy that can
be applied across a class of related tasks. For exam-
ple, consider a soccer playing agent. During a game
the agent might wish to kick the ball with varying
amounts of force, towards various different locations
on the field; for such an agent to be truly competent it
should be able to execute such kicks whenever neces-
sary, even with a particular combination of force and
target location that it has never had direct experience
with. In such cases, learning a single policy for each
possible variation of the task is clearly infeasible. The
agent might therefore wish to learn good policies for
a few specific kicks, and then use this experience to
synthesize a single general skill for kicking the ball—
parameterized by the amount of force desired and the
target location—that it can execute on-demand.

We propose a method for constructing parameterized
skills from experience. The agent learns to solve a few
instances of the parameterized task and uses these to
estimate the topology of the lower-dimensional mani-
fold on which the skill policies lie. This manifold mod-
els how policy parameters change as task parameters
vary. The method identifies the number of charts that
compose the manifold and then applies non-linear re-
gression in each chart to construct a parameterized
skill by predicting policy parameters from task param-
eters. We evaluate the method on an underactuated
simulated robotic arm tasked with learning to accu-
rately throw darts at a parameterized target location.

Learning Parameterized Skills

2. Setting

In what follows we assume an agent which is presented
with a set of tasks drawn from some task distribution.
Each task is modeled by a Markov Decision Process
(MDP) and the agent must maximize the expected re-
ward over the whole distribution of possible MDPs.
We assume that the MDPs have dynamics and reward
functions similar enough so that they can be consid-
ered variations of a same task. Formally, the goal of
such an agent is to maximize:∫

P (τ)J
(
πθ, τ

)
dτ, (1)

where πθ is a policy parameterized by a vector
θ ∈ RN , τ is a task parameter vector drawn from
a |T |-dimensional continuous space T , J(π, τ) =

E
{∑K

t=0 rt|π, τ
}

is the expected return obtained when
executing policy π while in task τ and P (τ) is a prob-
ability density function describing the probability of
task τ occurring. Furthermore, we define a parameter-
ized skill as a function

Θ : T → RN ,

mapping task parameters to policy parameters. When
using a parameterized skill to solve a distribution of
tasks, the specific policy parameters to be used depend
on the task currently being solved and are specified by
Θ. Under this definition, our goal is to construct a
parameterized skill Θ which maximizes:∫

P (τ)J
(
πΘ(τ), τ

)
dτ. (2)

2.1. Assumptions

We assume the agent must solve tasks drawn from a
distribution P (τ). Suppose we are given a set K of
pairs {τ, θτ}, where τ is a |T |-dimensional vector of
task parameters sampled from P (τ) and θτ is the cor-
responding policy parameter vector that maximizes re-
turn for task τ . We would like to use K to construct
a parameterized skill which (at least approximately)
maximizes the quantity in Equation 2.

We start by highlighting the fact that the probability
density function P induces a (possibly infinite) set of
skill policies for solving tasks in the support of P , each
one corresponding to a vector θτ ∈ RN . These poli-
cies lie in an N -dimensional space containing sample
policies that can be used to solve tasks drawn from
P . Since the tasks in the support of P are assumed
to be related, it is reasonable to further assume that
there exists some structure in this space; specifically,

that the policies for solving tasks drawn from the dis-
tribution lie on a lower-dimensional surface embedded
in RN and that their parameters vary smoothly as we
vary the task parameters.

This assumption is reasonable in a variety of situa-
tions, especially in the common case where the policy
is differentiable with respect to its parameters. In this
case, the natural gradient of the performance J

(
πθ, τ

)
is well-defined and indicates the direction (in policy
space) that locally maximizes J but which does not
change the distribution of paths induced by the policy
by much. Consider, for example, problems in which
performance is directly correlated to how close the
agent gets to a goal state; in this case one can interpret
a small perturbation to the policy as defining a new
policy which solves a similar task but with a slightly
different goal. Since under these conditions small pol-
icy changes induce a smoothly-varying set of goals, one
can imagine that the goals themselves parameterize
the space of policies: that is, that by varying the goal
or task one moves over the lower-dimensional surface
of corresponding policies.

Note that it is possible to find points in policy space
in which the corresponding policy cannot be further
locally modified in order to obtain a solution to a new,
related goal. This implies that the set of skill policies
of interest might be in fact distributed over several
charts of a piecewise-smooth manifold. Our method
can automatically detect when this is the case and
construct separate models for each manifold, essen-
tially discovering how many different skills exist and
creating a unified model by which they are integrated.

3. Overview

Our method proceeds by collecting example task in-
stances and their solution policies and using them to
train a family of independent non-linear regression
models mapping task parameters to policy parameters.
However, because policies for different subsets of T
might lie in different, disjoint manifolds, it is necessary
to first estimate how many such lower-dimensional sur-
faces exist before separately training a set of regression
models for each one.

More formally, our method consists of four steps: 1)
draw |K| sample tasks from P and construct K, the
set of task instances τ and their corresponding learned
policy parameters θτ ; 2) use K to estimate the geom-
etry and topology of the policy space, specifically the
number D of lower-dimensional surfaces embedded in
RN on which skill policies lie; 3) train a classifier χ
mapping elements of T to [1, . . . , D]; that is, to one

Learning Parameterized Skills

of the D lower-dimensional manifolds; 4) train a set
of (N ×D) independent non-linear regression models
Φi,j , i ∈ [1, . . . , D], j ∈ [1, . . . N], each one mapping
elements of T to individual skill policy parameters θi,
i ∈ [1, . . . N]. Each subset [Φi,1, . . . ,Φi,N] of regression
models is trained over all tasks τ in K where χ(τ) = i.1

We therefore define a parameterized skill as a vector
function:

Θ(τ) ≡ [Φχ(τ),1, . . . ,Φχ(τ),N]T . (3)

Task space
T

i

policy space

i

k
m

χ(τ)
P (τ)

τ
Φi,1

Φi,N

...
...

θ1

θN

Figure 1. Steps involved in executing a parameterized skill:
a task is drawn from the distribution P ; the classifier χ
identifies the manifold to which the policy for that task
belongs; the corresponding regression models for that man-
ifold map task parameters to policy parameters.

Figure 1 depicts the above-mentioned steps. Note
that we have described our method without specifying
a particular choice of policy representation, learning
algorithm, classifier, or non-linear regression model,
since these design decisions are best made in light of
the characteristics of the application at hand. In the
following sections we present a control problem whose
goal is to accurately throw darts at a variety of tar-
gets and describe one possible instantiation of our ap-
proach.

4. The Dart Throwing Domain

In the dart throwing domain, a simulated planar un-
deractuated robotic arm is tasked with learning a pa-
rameterized policy to accurately throw darts at targets
around it (Figure 4). The base of the arm is affixed
to a wall in the center of a 3-meter high and 4-meter
wide room. The arm is composed of three connected
links and a single motor which applies torque only to
the second joint, making this a difficult non-linear and

1 This last step assumes that the policy features are
approximately independent conditioned on the task; if this
is known not to be the case, it is possible to alternatively
train a set of D multivariate non-linear regression models
Φi, i ∈ [1, . . . , D], each one mapping elements of T to com-
plete policies parameterizations θ ∈ RN , and use them to
construct Θ. Again, the i-th such model should be trained
only over tasks τ in K such that χ(τ) = i.

underactuated control problem. At the end of its third
link, the arm possesses an actuator capable of holding
and releasing a dart. The state of the system is a 7-
dimensional vector composed by 6 continuous features
corresponding to the angle and angular velocities of
each link and by a seventh binary feature specifying
whether or not the dart is still in being held. The goal
of the system is to control the arm so that it executes
a throwing movement and accurately hits a target of
interest. In this domain the space T of tasks con-
sists of a 2-dimensional Euclidean space containing all
(x, y) coordinates at which a target can be placed—a
target can be affixed anywhere on the walls or ceiling
surrounding the agent.

5. Learning Parameterized Skills for
Dart Throwing

To implement the method outlined in Section 3 we
need to specify methods to 1) represent a policy; 2)
learn a policy from experience; 3) analyze the topol-
ogy of the policy space and estimate D, the number of
lower-dimensional surfaces on which skill policies lie;
4) construct the non-linear classifier χ; and 5) con-
struct the non-linear regression models Φ. In this sec-
tion we describe the specific algorithms and techniques
chosen in order to tackle the dart-throwing domain.
We discuss our results in Section 6.

Our choices of methods are directly guided by the char-
acteristics of the domain. Because the following ex-
periments involve a multi-joint simulated robotic arm,
we chose a policy representation that is particularly
well-suited to robotics: Dynamic Movement Primi-
tives (Schaal et al., 2004), or DMPs. DMPs are a
framework for modular motor control based on a set
of linearly-parameterized autonomous non-linear dif-
ferential equations. The time evolution of these equa-
tions defines a smooth kinematic control policy which
can be used to drive the controlled system. The spe-
cific trajectory in joint space that needs to be followed
is obtained by integrating the following set of differen-
tial equations:

κv̇ = K(g − x)−Qv + (g − x0)f

κẋ = v,

where x and v are the position and velocity of the
system, respectively; x0 and g denote the start and
goal positions; κ is a temporal scaling factor; and K
and Q act like a spring constant and a damping term,
respectively. Finally, f is a non-linear function which
can be learned in order to allow the system to generate

Learning Parameterized Skills

arbitrarily complex movements and is defined as

f(s) =

∑
i wiψi(s)∑
i ψi(s)

,

where ψi(s) = exp(−hi(s − ci)
2) are Gaussian basis

functions with adjustable weights wi and which de-
pend on a phase variable s. The phase variable is
constructed so that it monotonically decreases from 1
to 0 during the execution of the movement and is typi-
cally computed by integrating κṡ = −αs, where α is a
pre-determined constant. In our experiments we used
a PID controller to track the trajectories induced by
the above-mentioned system of equations.

This results in a 37-dimensional policy vector θ =
[λ, g, w1, . . . , w35]T , where λ specifies the value of the
phase variable s at which the arm should let go of
the dart; g is the goal parameter of the DMP; and
w1, . . . , w35 are the weights of each Gaussian basis
function in the movement primitive.

We combine DMPs with a policy learning method
known to perform well with this type of policy rep-
resentation. PoWER (Kober & Peters, 2008) is a
policy search technique that collects sample path ex-
ecutions and updates the policy’s parameters towards
ones that induce a new success-weighted path distri-
bution. We choose PoWER due to its simplicity and
because it has been shown to outperform other pol-
icy learning algorithms in a variety of standard bench-
marks and on real robotics problems (Kober & Peters,
2010). PoWER works by executing rollouts ρ con-
structed based on slightly perturbed versions of the
current policy parameters; perturbations to the pol-
icy parameters consist of a structured, state-dependent
exploration εt

Tφ(s, t), where εt ∼ N (0, Σ̂) and Σ̂ is a
meta-parameter of the exploration; φ(s, t) is the vec-
tor of policy feature activations at time t. By adding
this type of perturbation to θ we induce a stochas-
tic policy whose actions are a = (θ + εt)

Tφ(s, t)) ∼
N (0, φ(s, t)T Σ̂φ(s, t)). After performing rollouts us-
ing such a stochastic policy, the policy parameters are
updated as follows:

θk+1 = θk +

〈 T∑
t=1

W(s, t)Qπ(s,a, t))

〉−1

ω(ρ)

×

〈 T∑
t=1

W(s, t)εtQ
π(s,a, t))

〉
ω(ρ)

where Q̂π(s,a, t) =
∑T
t̃=t r(st̃,at̃, st̃+1, t̃) is an

unbiased estimate of the return, W(s, t) =

φ(s, t)φ(s, t)T
(
φ(s, t)T Σ̂φ(s, t)

)−1
and 〈·〉ω(ρ) denotes

an importance sampler which can be chosen depending

on the domain. A useful heuristic when defining ω is
to discard sample rollouts with very small importance
weights; importance weights, in our experiments, are
proportional to the relative performance of the rollout
in comparison to others.

To analyze the geometry and topology of the pol-
icy space and estimate the number D of lower-
dimensional surfaces on which skill policies lie we used
the ISOMAP algorithm (Tenenbaum et al., 2000).
ISOMAP is a technique for learning the underlying
global geometry of high-dimensional spaces and the
number of non-linear degrees of freedom that under-
lie it. This information provides us with an estimate
of D, the number of disjoint lower-dimensional mani-
fold where policies are located; ISOMAP also specifies
to which of these disconnected manifolds a given in-
put policy belongs. This information is used to train
the classifier χ, which learns a mapping from task pa-
rameters to numerical identifiers specifying one of the
lower-dimensional surfaces embedded in policy space.
For this domain we have implemented χ by means of
a simple linear classifier. In general, however, more
powerful classifiers could be used.

Finally, we must choose a non-linear regression algo-
rithm for constructing Φi,j . We use standard Support
Vector Machines (SVM) (Vapnik, 1995) due to their
good generalization capabilities and relatively low de-
pendence on parameter tuning. In the experiments
presented in Section 6 we use SVMs with Gaussian
kernels and a inverse variance width of 5.0. As pre-
viously mentioned, if important correlations between
policy and task parameters are known to exist, mul-
tivariate regression models might be preferable; one
possibility in such cases are Structure Support Vector
Machines (Tsochantaridis et al., 2005).

6. Experiments

Before discussing the performance of parameterized
skill learning in this domain, we present some empiri-
cally measured properties of its policy space. Specifi-
cally, we describe topological characteristics of the in-
duced space of policies generated as we vary the task.
We sampled 60 tasks (target positions) uniformly at
random and placed target boards at the correspond-
ing positions. The policies for solving each one of these
tasks were computed using PoWER; the learning algo-
rithm was configured to perform a policy update every
20 rollouts and to run until a minimum performance
threshold was reached. In our simulations, this crite-
ria corresponded to the moment when the robotic arm
first executed a policy that landed the dart within 5
centimeters of the intended target. In order to speed

Learning Parameterized Skills

up the sampling process we initialize policies for subse-
quent targets with ones computed for previously sam-
pled tasks.

We first analyze the structure of the policy manifold
by estimating how each dimension of a policy varies
as we smoothly vary the task. Figure 2a presents this
information for a representative subset of policy pa-
rameters. On each subgraph of Figure 2a the x axis
corresponds to a 1-dimensional representation of the
task obtained by computing the angle at which the
target is located with respect to the arm; this is done
for ease of visualization, since using x, y coordinates
would require a 3-D figure. The y axis corresponds to
the value of a selected policy parameter. The first im-
portant observation to be made is that as we vary the
task, not only do the policy parameters vary smoothly,
but they tend to remain confined to one of two dis-
joint but smoothly varying lower-dimensional surfaces.
A discontinuity exists, indicating that after a certain
point in task space a qualitatively different type of pol-
icy parameterization is required. Another interesting
observation is that this discontinuity occurs approx-
imately at the task parameter values corresponding
to hitting targets directly above the robotic arm; this
implies that skills for hitting targets to the left of the
arm lie on a different manifold than policies for hit-
ting targets to its right. This information is relevant
for two reasons: 1) it confirms both that the manifold
assumption is reasonable and that smooth task varia-
tions induce smooth, albeit non-linear, policy changes;
and 2) it shows that the policies for solving a distri-
bution of tasks are generally confined to one of several
lower-dimensional surfaces, and that the way in which
they are distributed among these surfaces is correlated
to the qualitatively different strategies that they im-
plement.

1 0 1 2 3 4
10

0

10

20

1 0 1 2 3 4
4

2

0

2

1 0 1 2 3 4
4

2

0

2

4

1.5 2 2.5 3 3.5 4
0

1

2

3

1.5 2 2.5 3 3.5 4
459

459.5

460

460.5

1.5 2 2.5 3 3.5 4
142.5

143

143.5

144

0.5 0 0.5 1 1.5 2
8

9

10

11

0.5 0 0.5 1 1.5 2
7

6

5

4

3

0.5 0 0.5 1 1.5 2
463

462

461

460

459

a)

b)

c)

Figure 2. Analysis of the variation of a subset of policy
parameters as a function of smooth changes in the task.

Figures 2b and 2c show, similarly, how a selected sub-
set of policy parameters changes as we vary the task,

but now with the two resulting manifolds analyzed
separately. Figure 2b shows the variations in policy
parameters induced by smoothly modifying tasks for
hitting targets anywhere in the interval of 1.57 to 3.5
radians—that is, targets placed roughly at angles be-
tween 90◦ (directly above the agent) and 200◦ (lowest
part of the right wall). Figure 2c shows that same in-
formation but for targets located on one of the other
two quadrants—that is, targets to the left of the arm.
We superimposed in Figures 2a-c a red curve repre-
senting the non-linear fit constructed by Φ while mod-
eling the relation between task and policy parameters
in each manifold. Note also how a clear linear sepa-
ration exists between which task policies lie on which
manifold: this separation indicates that two qualita-
tively distinct types of movement are required for solv-
ing different subsets of the tasks. Because we empiri-
cally observe that a linear separation exists, we imple-
ment χ using a simple linear classifier mapping tasks
parameters to the numerical identifier of the manifold
to which the task belongs.

We can also analyze the characteristics of the
lower-dimensional, quasi-isometric embedding of poli-
cies produced by ISOMAP. Figure 3 shows the 2-
dimensional embedding of a set of policies sampled
from one of the manifolds. Embeddings for the other
manifold have similar properties. Analysis of the resid-
ual variance of ISOMAP allows us to conclude that
the intrinsic dimensionality of the skill manifold is 2;
this is expected since we are essentially parameteriz-
ing a high-dimensional policy space by task parame-
ters, which are drawn from the 2-dimensional space T .
This implies that even though skill policies themselves
are part of a 37-dimensional space, because there are
just two degrees-of-freedom with which we can vary
tasks, the policies themselves remain confined to a
2-dimensional manifold. In Figure 3 we use lighter-
colored points to identify embeddings of policies for
hitting targets at higher locations. From this obser-
vation it is possible to note how policies for similar
tasks tend to remain geometrically close in the space
of solutions.

Figure 4 shows some types of movements the arm is ca-
pable of executing when throwing the dart at specific
targets. Figure 4a and Figure 4b present trajectories
corresponding to policies aiming at targets high on the
ceiling and low on the right wall, respectively; these
were presented as training examples to the parameter-
ized skill. Note that the link trajectories required to
accurately hit a target are complex because we are us-
ing just a single actuated joint to control an arm with
three joints.

Learning Parameterized Skills

10 5 0 5 10 15
10

8

6

4

2

0

2

4

6

8

Figure 3. 2-dimensional embedding of policies parameters.

Figure 4c shows a policy that was predicted by the pa-
rameterized skill for a new, unknown task correspond-
ing to a target in the middle of the right wall. A total
of five sample trajectories were presented to the pa-
rameterized skill and the corresponding predicted pol-
icy was further improved by two policy updates, after
which the arm was capable of hitting the intended tar-
get perfectly.

Figure 4. Learned arm movements (a,b) presented as train-
ing examples to the parameterized skill; (c) predicted
movement for a novel target.

Figure 5 shows the predicted policy parameter error,
averaged over the parameters of 15 unknown tasks
sampled uniformly at random, as a function of the
number of examples used to learn the parameterized
skill. This is a measure of the relative error between

the policy parameters predicted by Θ and parameters
of a known good solution for the same task. The lower
the error, the closer the predicted policy is (in norm)
to the correct solution. After 6 samples are presented
to the parameterized option it is capable of predicting
policies whose parameters are within 6% of the correct
ones; with approximately 15 samples, this error sta-
bilizes around 3%. Note that this type of accuracy is
only possible because even though the spaces analyzed
are high-dimensional, they are also highly structured;
specifically, solutions to similar tasks lie on a lower-
dimensional manifold whose regular topology can be
exploited when generalizing known solutions to new
problems.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 fe
at

ur
e

re
la

tiv
e

er
ro

r

Sampled training task instances

Figure 5. Average predicted policy parameter error as a
function of the number of sampled training tasks.

Since some policy representations might be particu-
larly sensitive to noise, we additionally measured the
actual effectiveness of the predicted policy when di-
rectly applied to novel tasks. Specifically, we measure
the distance between the position where the dart hits
and the intended target; this measurement is obtained
by executing the predicted policy directly and before
any further learning takes places. Figure 6 shows that
after 10 samples are presented to the parameterized
skill, the average distance is 70cm. This is a reason-
able error if we consider that targets can be placed
anywhere on a surface that extends for a total of 10
meters. If the parameterized skill is presented with a
total of 24 samples the average error decreases to 30cm,
which roughly corresponds to the dart being thrown
from 2 meters away and landing one dartboard away
from the intended center.

Although these initial solutions are good, especially
considering that no learning with the target task pa-
rameters took place, they are not perfect. We might
therefore want to further improve them. Figure 7
shows how many additional policy updates are re-
quired to improve the policy predicted by the param-
eterized skill up to a point where it reaches a perfor-

Learning Parameterized Skills

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 d
is

ta
nc

e
to

 ta
rg

et
 b

ef
or

e
le

ar
ni

ng
 (c

m
)

Sampled training task instances

Figure 6. Average distance to target (before learning) as a
function of the number of sampled training tasks.

mance threshold. The dashed line in Figure 7 shows
that on average 22 policy updates are required for find-
ing a good policy when the agent has to learn from
scratch. On the other hand, by using a parameterized
skill trained with 9 examples it is already possible to
decrease this number to just 4 policy updates. With
20 examples or more it takes the agent an average of
2 additional policy updates to meet the performance
threshold.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

Po
lic

y
up

da
te

s t
o

pe
rf

or
m

an
ce

 th
re

sh
ol

d

Sampled training task instances

With parameterized skill
Without parameterized skill

 (averaged over tasks)

Figure 7. Average number of policy updates required to
improve the solution predicted by the parameterized skill
as a function of the number of sampled training tasks.

7. Related Work

The simplest solution for learning a distribution of
tasks in RL is to include τ , the task parameter vec-
tor, as part of state descriptor and treat the entire
class of tasks as a single MDP. This approach has sev-
eral shortcomings: 1) learning and generalizing over
tasks is slow since the state features corresponding
to task parameters remain constant throughout each
episode; 2) the number of basis functions needed to ap-
proximate the value function or policy needs to be in-
creased since the policy representation has to be pow-

erful enough to not only solve the current MDP but
to capture all the non-trivial correlations between task
policy parameters; 3) sample task policies cannot be
collected in parallel and later on combined in order to
accelerate the construction of the parameterized skill;
and 4) if the distribution of tasks is non-stationary,
there is no simple way of adapting a single estimated
policy in order to deal with a new pattern of tasks.

Alternative, more efficient approaches have been pro-
posed under the general heading of skill transfer.
Konidaris and Barto (2007) introduce a method for
constructing reusable options by learning them in an
agent-centered state space instead of in the original
problem-space. This technique does not, however, con-
struct generalized skills capable of solving a family of
related tasks. Soni and Singh (2006) create adapt-
able options whose meta-parameters, e.g., their termi-
nation criteria, can be adapted on-the-fly in order to
deal with unknown, changing aspects of a task. How-
ever, this technique does not directly predict a com-
plete parameterization of the policy for new tasks. Liu
and Stone (2006) propose a method for transferring a
value function between a specific given pair of tasks
but require prior knowledge of the task dynamics in
the form of a Dynamic Bayes Network.

Several other similar methods have been proposed in
which the goal is to transfer a model or value function
between a given pair of tasks, but not necessarily to
reuse a set of learned tasks and construct a generalized,
parameterized solution. It is also often assumed that
a mapping between features and actions of the source
and target tasks exists and is known a priori, as in Tay-
lor and Stone (2007). Hausknecht and Stone (2011)
propose a way of estimating a parameterized skill for
kicking a soccer ball with varying amounts of energy.
They exhaustively test variations of a control policy
by varying one of its parameters, known a priori to be
relevant for the skill, and measuring the resulting net
effect on the distance that the ball travels. By assum-
ing a quadratic relation between these variables, they
are able to construct a regression model and invert it,
thereby obtaining a closed-form for the value that the
policy parameter needs to assume whenever a given
type of kick is desired. This is an interesting example
of the type of parameterized skill that we would like
to construct, albeit a very domain-dependent one. Fi-
nally, Braun et al. (2010) discuss how Bayesian model-
ing can be used to explain experimental data from cog-
nitive and motor neuroscience that supports the idea
of structure learning in humans, a concept very simi-
lar in nature to the one of parameterized skills. The
authors do not, however, propose a concrete method
for properly identifying and constructing such skills.

Learning Parameterized Skills

8. Conclusions and Future Work

We have presented a general framework for construct-
ing parameterized skills. The idea underlying our
method is to sample a small number of task instances
and generalize them to new problems by combining
classifiers and non-linear regression models. This ap-
proach is effective in practice because it exploits the
intrinsic structure of the policy space and because
skill policies for similar tasks typically lie on a lower-
dimensional manifold. Our framework allows for the
construction of effective parameterized skills and is
also able to identify the number of qualitatively differ-
ent strategies required for solving a given distribution
of tasks.

This work can be extended in several important di-
rections. First, the question of how to actively select
training tasks in order to improve the overall readiness
of a parameterized skill, given a distribution of tasks
expected in the future, needs to be addressed. Another
important open problem is how to properly deal with
a non-stationary distribution of tasks. If a new task
distribution is known exactly it might be possible to
use it to resample instances from K and thus recon-
struct the parameterized skill. However, more general
strategies are needed if the task distribution changes
in a way that is not known to the agent.

Another important question is how to analyze the
topology and geometry of the policy space more effi-
ciently. Methods for discovering the underlying global
geometry of high-dimensional spaces typically require
dense sampling of the manifold, which could, in case
of very irregular spaces, require solving an unreason-
able number of training tasks. Note, however, that
most local policy search methods like the Natural Ac-
tor Critic and PoWER move smoothly over the mani-
fold of policies while searching for locally optimal solu-
tions. Therefore, at each policy update during learn-
ing they provide us with a new sample which can be
used for further train the parameterized skill; each task
instance therefore results in a trajectory through pol-
icy parameter space. Integrating this type of sam-
pling into the construction of the skill essentially cor-
responds to a type of off-policy learning method, since
samples collected while estimating one policy could be
used to generalize it to different tasks.

Acknowledgments

This research was partially funded by the European
Community 7th Framework Programme (FP7/2007-
2013), grant agreement No. ICT-IP-231722, project
“IM-CLeVeR - Intrinsically Motivated Cumulative

Learning Versatile Robots”.

References

Braun, D., Waldert, S., Aertsen, A., Wolpert, D., and
Mehring, C. Structure learning in a sensorimotor as-
sociation task. PLoS ONE, 5(1):e8973, 2010.

Hausknecht, M. and Stone, P. Learning powerful kicks on
the Aibo ERS-7: The quest for a striker. In RoboCup-
2010: Robot Soccer World Cup XIV, volume 6556 of Lec-
ture Notes in Artificial Intelligence, pp. 254–65. Springer
Verlag, 2011.

Ijspeert, A., Nakanishi, J., and Schaal, S. Movement im-
itation with nonlinear dynamical systems in humanoid
robots. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pp. 1398–1403, May
2002.

Kober, J. and Peters, J. Policy search for motor primitives
in robotics. In Advances in Neural Information Process-
ing Systems 21, pp. 849–856, 2008.

Kober, J. and Peters, J. Imitation and reinforcement learn-
ing. IEEE Robotics & Automation Magazine, 17(2):55–
62, 2010.

Konidaris, G. and Barto, A. Building portable options:
Skill transfer in reinforcement learning. In Proceedings
of the Twentieth International Joint Conference on Ar-
tificial Intelligence, pp. 895–900, 2007.

Liu, Y. and Stone, P. Value-function-based transfer for re-
inforcement learning using structure mapping. In Pro-
ceedings to the Twenty-First National Conference on Ar-
tificial Intelligence, pp. 415–420, 2006.

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A.
Learning movement primitives. In Proceedings of
the Eleventh International Symposium on Robotics Re-
search. Springer, 2004.

Soni, V. and Singh, S. Reinforcement learning of hierar-
chical skills on the Sony Aibo robot. In Proceedings of
the Fifth International Conference on Development and
Learning, 2006.

Sutton, R., Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112:181–
211, 1999.

Taylor, M. and Stone, P. Cross-domain transfer for rein-
forcement learning. In Proceedings of the Twenty Fourth
International Conference on Machine Learning, 2007.

Tenenbaum, J., de Silva, V., and Langford, J. A global ge-
ometric framework for nonlinear dimensionality reduc-
tion. Science, 290(5500):2319–2323, 2000.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun,
Y. Large margin methods for structured and interde-
pendent output variables. Journal of Machine Learning
Research, 6(Dec):1453–1484, 2005.

Vapnik, V. The Nature of Statistical Learning Theory.
Springer New York Inc., New York, NY, USA, 1995.
ISBN 0-387-94559-8.

