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Abstract

As data sets grow in size, the ability of learn-
ing methods to find structure in them is in-
creasingly hampered by the time needed to
search the large spaces of possibilities and
generate a score for each that takes all of
the observed data into account. For in-
stance, Bayesian networks, the model cho-
sen in this paper, have a super-exponentially
large search space for a fixed number of vari-
ables. One possible method to alleviate this
problem is to use a proxy, such as a Gaussian
Process regressor, in place of the true scoring
function, training it on a selection of sampled
networks. We prove here that the use of such
a proxy is well-founded, as we can bound the
smoothness of a commonly-used scoring func-
tion for Bayesian network structure learning.
We show here that, compared to an identi-
cal search strategy using the network’s exact
scores, our proxy-based search is able to get
equivalent or better scores on a number of
data sets in a fraction of the time.

1. Introduction

Probabilistic graphical models such as Bayesian net-
works (Koller & Friedman, 2009), which explain pat-
terns in data through dependence relations among
variables, are a useful tool because of the visibility and
ease of interpretation of the models and because of the
ability to estimate distributions given known values.
However, generating these models from observed data
runs into problems in a number of ways. If the data set
has too many variables, the number of possible mod-
els grows exponentially, and if there are too many data
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points, it becomes more time-intensive to analyze the
relationships between them. Although this growth is
only linear in the number of data points, modern data
sets run into the gigabytes or larger. What is needed
is a way to separate the size of the data set from the
search process, and this is the purpose of the proxy.
By training a function approximator on exact scores
of a random sample of networks, we can then use that
proxy in the search without ever needing to go back to
the original data.

We prove here that the BDe scoring function is rea-
sonably smooth over a properly chosen topology, and
this fact motivates the use of a Gaussian process re-
gressor as a proxy to the exact function. Once the
proxy is built, the original data set need never be
touched again, and the search itself can proceed ex-
tremely quickly. As our results show, even taking into
account the additional time needed to score the train-
ing samples and generate the proxy from them, we are
often able to generate better-scoring models than an
exact-scoring search in a smaller amount of time.

2. Background

2.1. Bayesian networks

A Bayesian network (Heckerman et al., 1995) is a sta-
tistical model used to represent probabilistic relation-
ships among a set of variables as a directed acyclic
graph, where the distribution of a single variable is de-
fined in terms of the values of that variable’s parents
in the graph. Bayesian networks are commonly used
to infer distributions over unobserved or query vari-
ables given known values for others (for instance, spam
classification (Sebastiani & Ramoni, 2001) or disease
diagnosis (Burge et al., 2009)). The process of learn-
ing a Bayesian network given a set of observed data
is difficult, and is in fact NP-complete in the case of
finding an exact optimum (Chickering, 1996; Chicker-
ing et al., 1995); most techniques are still limited in
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practice in the number of variables they can handle
at once. One key component of many of these algo-
rithms is a score function which, given a fixed data
set, maps individual graphs onto real numbers; the
optimal network is the one whose graph has the high-
est score. In other words, the function sc(G|D) maps
the space of directed acyclic graphs Gn on n nodes,
one for each variable x1 . . . xn, along with a data set
D ∈ Nm×n with m i.i.d. observations of those vari-
ables, and the desired output of the search process is
arg maxG sc(G|D).

2.2. The BDe score

There are many Bayesian network scoring functions
one could use as a basis for a search, but the BDe
score (Heckerman et al., 1995), has several desired
properties. First, it is decomposable, meaning that
it can be expressed as a function of independent com-
ponents, one for each node in the graph. Second, it
is a Bayesian formulation that allows us to enforce a
prior belief over graph structures independent of the
data itself. Finally, the structure of the BDe score is
straightforward, requiring only counts of queries over
the data (which can be made easier using an ADTree
(Anderson & Moore, 1998), as described below) and
the log-Gamma function, which itself is easily approx-
imated numerically. The form of the BDe score is:

sc(G|D) =

n∏
i=1

∏
j∈C(xi)

Γ(λij)

Γ(λij +Nij)

∏
k∈Vi

Γ(λijk +Nijk)

Γ(λijk)

(1)

Here, the variable i ranges over all of the n nodes of the
graph, j ranges over all configurations of the parents
of xi, and k over all possible values of xi, which I
denote the set Vi. The set C(xi) which j ranges over
is defined as a Cartesian product, C(xi) =

∏
Pa(xi)

Vi.
Nijk is the count of all data instances where xi = k and
the parents of xi are in state j, while Nij =

∑
kNijk.

Similarly, λijk is a hyperparameter called a pseudo-
count, the set of which defines the effect of our prior
on the score when the network parameters (the CPTs)
are integrated out, and λij =

∑
k λijk.

2.3. Gaussian process regression

In previous work (Yackley et al., 2008), we showed that
a spline-based regression model could be used to esti-
mate the BDe score of a network. However, this par-
ticular model turned out to be unsuitable for search;
while the values it returned were very close to the ex-
act ones, the gradients (i.e. the differences between
the scores of graphs differing in one edge) were mostly
wrong. Motivated by this failure, we tried a different

approach. Gaussian process regression is both math-
ematically simpler than the previous model and gets
the gradients mostly correct.

The form of Gaussian process regressor (Rasmussen,
2004) we use is known as simple kriging, and takes the
form:

ŷ = K(g, ĝ)K(g, g)−1y (2)

In this equation, g ⊆ X = {G1, G2, . . . , Gns} is a set
of ns training objects (graphs defining Bayesian net-
works, in our case) with all of the ys being their corre-
sponding real-valued scores. K is a function that pro-
duces a kernel matrix such that [K(g, h)]ij = k(gi, hj),
where the positive-definite kernel function k : X×X→
R maps pairs of objects to a value which can be seen
as a generalized inner product; the more alike the two
objects are, the higher this value will be. ĝ is the new
graph (or set of graphs) we are trying to approximate a
score for, and ŷ is that resulting score. Once the train-
ing data is scored, the matrix K(g, g)−1 need only be
calculated once; from then on, finding an approximate
score for any previously-unseen graph is just a mat-
ter of calculating K(g, ĝ) and performing the matrix
multiplications.

Finding a proper kernel function on a given set X is,
in general, not a trivial task. However, because our
objects are graphs which will always be on the same
ordered collection of nodes, we can compare each of
the

(
n
2

)
possible edges directly between the two graphs.

The form our kernel function takes is:

k(G1, G2) =
∑
e

weI[e ∈ G1 ∧ e ∈ G2] (3)

The sum runs over all possible edges of the graph,
adding a weight we to the kernel’s value if that edge
is present in both graphs. The weights are tuned us-
ing the marginal likelihood gradient 1; although this
process involves repeatedly taking a matrix inverse un-
til the values converge, the size of this matrix is only
ns × ns, and thus, with a small number of training
samples, this is relatively fast.

3. Motivation

To do fast structure learning, we want to create a
proxy to the exact score function, and this proxy must
have two key traits - it must be quick to evaluate,
and it must be a good approximation to the true func-
tion. Using a Gaussian process regressor gets us the
first; once trained, its calculation is a simple matrix

1See (Rasmussen, 2004), Equation 5.9
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product. To get the second, however, we need to know
that the true function we are approximating is smooth
enough for a Gaussian process to model. This requires,
in turn, that we define some topology over the set of
directed graphs over which we can say the function is
smooth.

The topology we use here, which we call the meta-
graph (Yackley et al., 2008), is defined as the graph of
some relation over a set of combinatorial objects. In
this case, the objects are themselves directed graphs,
and the relation between them is that of differing in
exactly one edge. It has two desired properties that
make it attractive as a topology over which to search.
First, the edges correspond to the search operations we
perform - addition and deletion of edges of the target
graph. Second, the structure is highly symmetric, tak-
ing the form of a hypercube with dimension equal to
the possible number of edges of the target. Note that,
although they are not valid as Bayesian networks, the
metagraph nevertheless includes graphs which contain
loops. This is not a problem for an approximator;
none of the training structures will contain loops, and
a search will still be constrained to that part of the
space with no loops.

Furthermore, there is no danger of the approximator
being asked to score a graph with cycles (even though
the approximation would work mathematically, the
answer it returned would be meaningless). Between
any two acyclic graphs, a path must exist which never
encounters a graph with a cycle; this is trivially proven
by considering the process of removing every edge from
the first target graph, resulting in a graph with no
edges, and then adding back all edges in the second.
In general, a shorter path will exist, but this serves as a
proof that the region of the metagraph corresponding
only to acyclic graphs is fully connected.

4. Analysis of smoothness of BDe score

4.1. Notation

Let the data set D ∈ Nm×n denote a data matrix of
discrete values consisting of m i.i.d. observations of
n variables. Denote a Bayesian network over these
variables as having the graph G and parameters Θ,
where G =< X,E > and X, the set of variables equals
{x1, x2, . . . xn}. A score function sc(G|D) maps graphs
onto real numbers given a fixed data set, with the con-
vention that a higher score denotes a graph modeling
a better explanation of the data. Each variable xi has
a corresponding finite set of possible values Vi and a
possibly-empty set of parents in the graph Pa(xi). The
set of parent configurations Ci for node xi is given by

the Cartesian product Ci =
∏
xj∈Pa(xi)

Vj . The no-
tation Nijk denotes the count across the entire data
set of the number of instances where xi = k and each
variable in Pa(xi) takes on a value as given by config-
uration j ∈ Ci. Also, Nij =

∑
k∈Vi

Nijk.

The hyperparameter λijk, needed for the BDe func-
tion below, indicates the strength of prior beliefs on
the score of a network, needed for a proper Bayesian
formulation. As with the Ns, λij =

∑
k∈Vi

λijk.

4.2. Basic Definitions

Consider the standard definition of the BDe score, as
given in equation 1. In practice, we are more concerned
with its logarithm:

log sc(G|D) =
∑
i

∑
j∈Ci

(
log Γ(λij)− log Γ(λij +Nij)

+
∑
k∈Vi

(log Γ(λijk +Nijk)− log Γ(λijk))

)
(4)

We assume here that the form of the prior is such that
λijk is equal for all k given a fixed i and j, and that
this value is inversely proportional to the cardinality
of Ci. In other words, λij =

∑
k λijk = #(Vi)λijk.

Assuming that all nodes are binary, then we simply
have λij = 2λijk for all i and j, and all subscripted
λs are proportional to some base λ. Note also that
if all nodes are binary, then #(Vi) = 2 for all i, and
#(Ci) = 2#(Pa(xi)).

In order to prove smoothness, we wish to find upper
and lower bounds on the magnitude of the change in
score given the addition or deletion of an edge in the
graph. Without loss of generality, assume that we add
an edge. Call the graph before addition G, and the
graph after addition G′, with scores sc and sc′ given
the same data set D. Because the score takes the form
of a sum over all nodes of the graph, the difference be-
tween sc and sc′ can be captured solely by a single
term of the outermost sum, representing the node the
new arc points to – call this node x∆. We can therefore
drop the i subscripts in the formula itself, and repre-
sent the one differing term of the two sums using sc∆
and sc′∆ respectively. Because all other terms of the
sum remain unchanged, sc − sc′ = sc∆ − sc′∆. Also,
the range of the initial j variable, C∆, now splits into
two sets, C0 and C1, where the subscript indicates the
value of the newly added parent. For each element of
C∆, there is a corresponding element both in C0 and
C1, and #(C∆) = #(C0) = #(C1).
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4.3. Form of the bound on sc∆ − sc′∆
From the above, we have:

sc∆ =
∑
j∈C∆

(
log Γ(λj)− log Γ(λj +Nj)+

∑
k∈V

(log Γ(λjk +Njk)− log Γ(λjk))

)

=
∑
j∈C∆

(
log Γ(λj)− log Γ(λj +Nj) + log Γ(λj0 +Nj0)

− log Γ(λj0) + log Γ(λj1 +Nj1)− log Γ(λj1)
)

Since λj0 = λj1 = λj/2 and Nj = Nj0 + Nj1, we can
simplify this to:

sc∆ =
∑
j∈C∆

(α− log Γ(λj +Nj0 +Nj1)+

log Γ(
λj
2

+Nj0) + log Γ(
λj
2

+Nj1)),

(5)

where α = log Γ(λij) − 2 log Γ(λij/2). The only dif-
ference between sc∆ and sc′∆ is the set over which
j ranges; if we abbreviate the preceding sum as
sc∆ =

∑
j∈C f(j), then sc′∆ =

∑
j∈C0∪C1

f(j) =∑
j∈C0

f(j)+
∑
j∈C1

f(j). Note, however, that the two
addends each take the same form as the expression for
sc∆, and that the sets C0 and C1 have the same size as
C, with all elements in a one-to-one correspondence.
With some relabeling of variables, we have:

sc∆ − sc′∆ =
∑
j∈C

f(j)−
∑
j0∈C0

f(j0)−
∑
j1∈C1

f(j1)

=
∑
j∈C∆

(f(j)− f(j0)− f(j1))

Some notation abuse takes place in the second equa-
tion; j0 and j1 are the corresponding configurations
in C0 and C1 to j in C∆, with the value in the ad-
ditional parent being 0 or 1 respectively. Because
of this, Nj0k + Nj1k = Njk for any k, and likewise
Nj0 + Nj1 = Nj . Also, we have λj0 = λj1 = λj/2.
Corresponding to the above definition of α, let β =
log Γ(λij/2) − 2 log Γ(λij/4). Even making these sim-
plifications, the full expression for sc∆ − sc′∆ expands
to a cumbersome form; to simplify it further, we in-
troduce an auxiliary function denoted as γ.

4.4. The function γ(a, b)

Let the function γ(a, b) be defined as follows2:

γ(a, b) = log Γ(a+ b)− log Γ(a)− log Γ(b) (6)

2This function is related to the standard Beta function;
γ(a, b) = − log B(a, b)

Using Stirling’s approximation for the log-gamma
function (Abramowitz & Stegun, 1964) (lnx! =
x lnx + x − Θ(x)), we obtain a result which will be
important later:

γ(a, a) = 2a log(2a)− 2a+ Θ(log 2a)

−2(a log a− a+ Θ(log a))

= (2 log 2)a+ Θ(log a) (7)

Now, we can use γ to simplify the equation for sc∆ −
sc′∆, given that Nj00 +Nj10 = Nj0 and Nj01 +Nj11 =
Nj1. We also split out the term inside the sum and
call it t, for reasons given below.

t = γ(
λj
4

+Nj00,
λj
4

+Nj10)

+ γ(
λj
4

+Nj01,
λj
4

+Nj11)

− γ(
λj
2

+Nj00 +Nj01,
λj
2

+Nj10 +Nj11)

(8)

sc∆ − sc′∆ = 2#(Pa(xi))(α− 2β) +
∑
j∈C∆

t (9)

4.5. Getting to the extrema

We seek upper and lower bounds on sc∆ − sc′∆ given
fixed λj (and therefore fixed α and β as well). We
therefore differentiate the equation with respect to the
four Ns and set the four derivatives all equal to zero.
Because the sum over j ∈ Ci is irrelevant (a sum over
any number of worst cases will produce a worst case,
and likewise for best cases), we only need to calculate
bounds for t, which we will accomplish by taking its
derivative with respect to the four Npq variables to find
its minimum and maximum.

Because t is defined in terms of γ, which is itself de-
fined in terms of the log Γ function, the results will
involve the ψ function3. For space reasons, we abbre-
viate expressions of the form ψ(

λj

2 + Njab + Njcd) as

ψab,cd. ψab stands for ψ(
λj

4 +Njab), and ψ alone stands
for ψ(λj +Nj00 +Nj01 +Nj10 +Nj11). Using these ab-
breviations, the derivative of t with respect to some
Nab is:

dt

dNjab
= −ψab + ψa0,a1 + ψ0b,1b − ψ (10)

Taking the four derivatives of t and setting them equal
to zero, we obtain the system of equations:

ψ00 + ψ = ψ00,01 + ψ00,10

ψ01 + ψ = ψ00,01 + ψ01,11

ψ10 + ψ = ψ10,11 + ψ00,10

ψ11 + ψ = ψ10,11 + ψ01,11

(11)

3Defined the standard way as ψ(x) = d
dx

log Γ(x)
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By subtracting pairs of equations, we obtain:
ψ00 − ψ01 = ψ00,10 − ψ01,11

ψ00 − ψ10 = ψ00,01 − ψ10,11

ψ01 − ψ11 = ψ00,01 − ψ10,11

ψ10 − ψ11 = ψ00,10 − ψ01,11

(12)

One solution is apparent from inspection. If we set
Nj00 = Nj10 = Nj01 = Nj11, then all four equations
reduce to 0 = 0. One of our extrema, therefore, oc-
curs there, corresponding to the case where we add an
edge to split apart data which is already uniformly dis-
tributed in both variables corresponding to the edge’s
endpoints. In other words, this edge has no reason
to exist in a Bayesian network, and should logically
decrease the score by the most; this is a maximum.

max sc∆ − sc′∆ = 2#(Pa(xi))(α− 2β)

+
∑
j∈Ci

(
2γ(

λj
4

+Nj00,
λj
4

+Nj00)

−γ(
λj
2

+ 2Nj00,
λj
2

+ 2Nj00)

) (13)

Since we are only concerned with the asymptotic be-
havior of this function, we can drop the constant terms
as well as the summation (which is over a constant
number of terms independent of the value of any of
the Ns).

max sc∆ − sc′∆ = O

(
2γ(

λj
4

+N,
λj
4

+N)

−γ(
λj
2

+ 2N,
λj
2

+ 2N)

) (14)

From equation 7, we obtain:

max sc∆ − sc′∆ = O ((4 log 2)(λj/4 +N)

−Θ(logN)− (2 log 2)(λj/2 + 2N) + Θ(logN))

= O((log 2)(λj + 4N)− (log 2)(λj + 4N) + Θ(logN))

= O(logN)

This indicates that, in cases where adding an edge low-
ers the score, the worst it can lower it by is only loga-
rithmic in the number of data points.

The other solutions to the system occur where Nj10 =
Nj01 = 0 or Nj00 = Nj11 = 0, representing data which
(in our binary-variable case) is perfectly aligned in
such a way that both the marginal of the node and
its new parent seem uniform, but adding the edge re-
veals their values to be in perfect correspondence with
one another. The reasoning behind is is as follows.

j = 0 j = 1
k = 0 0.5 0
k = 1 0 0.5

t = γ(
λj

4 + N
2 ,

λj

4 )+γ(
λj

4 ,
λj

4 + N
2 )−γ(

λj

2 + N
2 ,

λj

2 + N
2 )

j = 0 j = 1
k = 0 0.25 0.25
k = 1 0.25 0.25

t = 2γ(
λj

4 + N
4 ,

λj

4 + N
4 )− γ(

λj

2 + N
2 ,

λj

2 + N
2 )

Figure 1. Illustrations of the best and worst cases for sc∆−
sc′∆, in the form of joint probability tables

Consider our expression for t above. The minimum
value occurs when the first two (positive) terms of
the sum are minimized and the negative term is max-
imized. Because we know from section 4.4 that the γ
function is maximized when the arguments are equal
and minimized when they are farthest apart, we can
force this to happen by setting Nj10 = Nj01 = 0 or
Nj00 = Nj11 = 0 and the other two variables equal
to one another. This case corresponds to having a
marginal distribution over both variables which is uni-
form, but where the joint indicates a perfect corre-
spondence between the two. This is exactly the sort
of situation where an edge ought to be added.

min sc∆ − sc′∆ = O

(
γ(
λj
4

+N,
λj
4

)

+γ(
λj
4
,
λj
4

+N)− γ(
λj
2

+N,
λj
2

+N)

)

Because γ(a, b) is maximized for a fixed a + b when
a = b, we can say that γ(λj/4 +N,λj/4) < γ(λj/4 +
N/2, λj/4 +N/2), and so

minsc∆ − sc′∆ < O

(
2γ(

λj
4

+
N

2
,
λj
4

+
N

2
)

−γ(
λj
2

+N,
λj
2

+N)

)
=O((4 log 2)(λj/4 +N/2)

− (2 log 2)(λj/2 +N) + Θ(logN))

=O((log 2)(λj + 2N)

− (log 2)(λj + 2N) + Θ(logN))

=O(logN)

Both the minimum and maximum score jumps, then,
are simply logarithmic in the number of data points,
showing that, with respect to a topology derived from
addition and deletion of edges, the BDe score is Lips-
chitz smooth with a constant of K = O(logN).
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4.6. Implications

As one would expect, the worst case scenario is to
add an edge that provides no information at all. If
the joint distribution between xi and its new parent is
uniform, the model gains nothing by putting the edge
there, while the score (as it should) penalizes the ad-
dition. The best case, meanwhile, is for the new edge
to link xi to a parent that perfectly matches its val-
ues (or at least a permutation of them) in all cases,
while the marginals of the joint distribution are en-
tirely uniform and uninformative. These fit our intu-
itions of how edges in a Bayesian network should be
interpreted. Also, because the worst possible changes
to the score are merely logarithmic in the size of the
data set, the search landscape is sufficiently smooth
that a Gaussian Process regressor is an appropriate
choice to represent it.

The Gaussian process regressor is a good choice for
another reason – the fact that it is based on a kernel
function means that its complexity is not based on the
size of the training set or the size of the graphs (or, for
that matter, the size of the original data set), but the
VC dimension of the kernel space (Schölkopf & Smola,
2001).

Note also that, once the training set is scored, there
is no longer a need to keep around the original data
set – all of the information we need to search has been
encapsulated into the proxy. This is a clear win in
the case where the data set has a large number of in-
stances; instead of needing to count up values for Nijk
across perhaps millions of data points every time we
take a search step, we can simply refer to the proxy.

4.7. Other score functions

It is an open question, and one we hope to address
in the future, whether the same kind of smoothness
bound can be proven for other Bayesian network score
functions. For example, the BIC score (Schwarz, 1978)
is defined as follows, in terms of a log-likelihood score
and a penalty term.

scBIC(G|D) =

n∑
i=1

∑
j∈Ci

∑
k∈Vi

Nijk log

(
Nijk
Nij

)
− 1

2
log(m)|B|

(15)

|B| =
∑n
i=1(#Vi − 1)#Ci is the number of degrees

of freedom across the parameter set Θ. In this form,
adding an edge to a network will split the set of parent
configurations, as before, by adding another term to
the product which defines Ci. However, it will also
alter the value of the penalty term |B|.

5. Proxy-Accelerated Search Results

To compare the effects of the proxy to an exact-scoring
search, we selected six data sets on which to build
Bayesian networks. Three of these, Adult1, Adult2,
and Adult3, came from the original paper that intro-
duced the ADTree (Anderson & Moore, 1998), where
they were used as examples of data sets an ADTree
could be built on. The ADTree is a structure which
provides a caching mechanism to accelerate the process
of scoring; it trades off an initial tree-build time and
the memory needed to store the structure to achieve
much faster speed at the kind of Nijk counts neces-
sary to compute a BDe score. The results for those
three data sets show that, even with ADTree-based
acceleration, we are able to find comparable scores
in much less time using the proxy. The proxy-based
search was performed 5 times with randomly selected
training samples each time; the results shown here are
the mean and standard deviation. The algorithm was
a standard greedy search, chosen to be a reasonable
baseline. It should be mentioned, though, that the
benefit of using a proxy would extend, in theory, to
any search algorithm that uses a scoring function.

The scores of the graphs as reported in the table are
exact, not derived from the proxy. Although the val-
ues that the proxy returns are often very far off from
exact, the gradients remain intact, and this is why we
can count on the proxy to drive a search in the right
direction. The values for ns reported in Table 5 are
those for which our proxy performed best; experiments
were conducted for a small range of different values for
ns.

The other three data sets are taken from the UCI
Data Repository (Frank & Asuncion, 2010); they
are Census-Income, Tic2000, and Musk. All of
these are too large for an ADTree to fit in memory,
and so the scores were calculated using the Bayes
Net Toolkit (Murphy, 2001) and its accompanying
Structure Learning Package (Leray & Francois, 2004).
The proxy-based searches on Census-Income and
Tic2000 were performed five times, as above, while
the Musk data set was large enough that it was only
practical to perform a single search for each differing
number of training samples. The algorithms were im-
plemented in Matlab, on a Linux server running at
2.2 GHz with 32 gigabytes of RAM.

5.1. Discussion

The effects of the proxy are clear; in all but one case,
the networks found by the proxy-based search were
either comparable to or significantly better than those
found by the exact-scoring version, and always in a
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n m ns
Adult1 15 15060 250
Adult2 15 30162 250
Adult3 15 45222 100
Cens-Inc 42 95130 250
Tic2000 86 9822 25
Musk 168 6598 60

Table 1. Data set properties and numbers of samples used
to train the approximator in each case.

time (std.) time (GPR)
Adult1 91.32 22.70± 1.36
Adult2 149.75 34.90± 2.27
Adult3 209.59 18.00± 0.20
Cens-Inc 733.4 501.4± 41.3
Tic2000 45.2 23.24± 0.83
Musk 3907 666.5

Table 2. Time summary. All times are in seconds.

shorter time. At present, we don’t know what property
of the Census-Income data set made it perform so
poorly.

In every other case, however, the advantage of the
smoothing induced by the proxy is clear, and this is
most dramatic in the case of the Musk data set. With
a relatively tiny number samples across the immense
space of networks on 168 nodes, the proxy was never-
theless able to find a network with a greatly improved
score. The reason for this — and the reason smooth-
ness is so important — is shown in Figure 5.1. These
lines are the search trajectories, with search step on the
x axis and score on the y axis. The thick line is the
trajectory taken by the exact-scoring search, while the
thinner blue lines are the ones taken by five runs of the
proxy with different sets of 50 training samples. The
exact search stops partway through, having encoun-
tered a local maximum. However, the proxy will tend
to smooth these local features out, letting the search
process continue to greater heights. In fact, too many
training samples can in fact hamper the proxy’s even-

score (std.) score (GPR)
Adult1 −1.219 −1.265± 0.028
Adult2 −3.059 −2.964± 0.104
Adult3 −4.879 −4.679± 0.169
Cens-Inc −8.205 −9.614± 0.66
Tic2000 −3.498 −3.050± 0.09
Musk −7.659 −5.579

Table 3. Score summary. Scores are ×105.
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Figure 3. Time as a function of score, Musk data set

tual score. Figure 5.1 plots each of the proxy’s runs
with a different value of ns as a bubble in a time-score
graph, with the size of the oval being one standard de-
viation in either dimension. The lowest value, ns = 5,
is at the bottom left, having taken a very short over-
all time but producing a relatively bad network. The
bubbles continue up and to the right, with both time
and score growing, until we reach the farthest-right
point on the graph when ns = 60. From there, the
time continues to increase, but the score worsens. We
believe that this is due to the proxy starting to learn
the space too well, capturing the finer features of the
score landscape while losing sight of the bigger picture.

6. Future Work

We are currently working on extending the proxy to
other score-based search strategies, such as simulated



Smoothness and Structure Learning by Proxy

annealing (Kirkpatrick et al., 1983), as well as to other
combinatorial objects such as general 0-1 matrices and
permutations. The success of these rests, it would
seem, on finding a proper form for a kernel function on
these objects, thus defining the topology of the space
both traversed by the search method and used by the
approximator.

Another direction we wish to extend this in is to imple-
ment the training phase on a massively parallel system,
which would greatly reduce the time taken to train the
proxy. This would also require the implementation of a
way to combine the training results; a block-matrix in-
version technique will be useful here, as well as adding
the potential to add more training data in the middle
of an ongoing search. This way, the space around an
apparent local maximum could be examined in greater
detail and refined.

7. Conclusion

As data sets increase in size, it becomes more nec-
essary to develop algorithms which can search for and
identify models of them in reasonable amounts of time.
However, the larger the data set gets, the more time
this takes, and the larger the search space, the more
chance there is of a search running into a local maxi-
mum instead of the desired global. A proxy function
will alleviate both of these problems; in particular, we
showed that the BDe score considered over a search
space of single-edge additions and deletions is smooth
enough to make a proxy-based search viable, and the
results bear this out.

This process, building a proxy function from a set of
random samples and then using it to drive a search,
is readily applicable to any search algorithm that de-
pends on calculating a series of scores, from a sim-
ple greedy search to more sophisticated ones such as
Markov Chain Monte Carlo. These new accelerated
forms of algorithms will allow researchers in fields as
diverse as astronomy (Kent, 1994), biology (Roy et al.,
2007), and linguistics (Davies, 2009) to better analyze
data and create hypotheses given their often stagger-
ingly large data sets. Through the use of the proxy-
based search accelerator, we will be able to find pat-
terns in more complex data than had previously been
feasible.
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