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Abstract
Online learning aims to perform nearly as well
as the best hypothesis in hindsight. For some hy-
pothesis classes, though, even finding the best
hypothesis offline is challenging. In such of-
fline cases, local search techniques are often
employed and only local optimality guaranteed.
For online decision-making with such hypothe-
sis classes, we introduce local regret, a gener-
alization of regret that aims to perform nearly
as well as only nearby hypotheses. We then
present a general algorithm to minimize local re-
gret with arbitrary locality graphs. We also show
how the graph structure can be exploited to dras-
tically speed learning. These algorithms are then
demonstrated on a diverse set of online problems:
online disjunct learning, online Max-SAT, and
online decision tree learning.

1. Introduction
An online learning task involves repeatedly taking actions
and, after an action is chosen, observing the result of that
action. This is in contrast to offline learning where the de-
cisions are made based on a fixed batch of training data.
As a consequence offline learning typically requires i.i.d.
assumptions about how the results of actions are generated
(on the training data, and all future data). In online learn-
ing, no such assumptions are required. Instead, the met-
ric of performance used is regret: the amount of additional
utility that could have been gained if some alternative se-
quence of actions had been chosen. The set of alternative
sequences that are considered defines the notion of regret.
Regret is more than just a measure of performance, though,
it also guides algorithms. For specific notions of regret, no-
regret algorithms exist, for which the total regret is growing
Appearing in Proceedings of the 29 th International Conference
on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright
2012 by the author(s)/owner(s).

at worst sublinearly with time, hence their average regret
goes to zero. These guarantees can be made with no i.i.d.,
or equivalent assumption, on the results of the actions.

One traditional drawback of regret concepts is that the
number of alternatives considered must be finite. This is
typically achieved by assuming the number of available ac-
tions is finite, and for practical purposes, small. In offline
learning this is not at all the case: offline hypothesis classes
are usually very large, if not infinite. There have been
attempts to achieve regret guarantees for infinite action
spaces, but these have all required assumptions to be made
on the action outcomes (e.g., convexity or smoothness). In
this work, we propose new notions of regret, specifically
for very large or infinite action sets, while avoiding any sig-
nificant assumptions on the sequence of action outcomes.
Instead, the action set is assumed to come equipped with a
notion of locality, and regret is redefined to respect this no-
tion of locality. This approach allows the online paradigm
with its style of regret guarantees to be applied to previ-
ously intractable tasks and hypothesis classes.

2. Background
For t ∈ {1, 2, . . .}, let at ∈ A be the action at time t, and
ut : A→ R be the utility function over actions at time t.

Requirement 1 For all t, maxa,b∈A |ut(a)− ut(b)| ≤ ∆.

The basic building block of regret is the additional util-
ity that could have been gained if some action b was
chosen in place of action a: RT

a,b =
∑T

t=1 1(at =

a) (ut(b)− ut(a)), where 1(condition) is equal to 1 when
condition is true and 0 otherwise. We can use this building
block to define the traditional notions of regret.

RT
internal = max

a,b∈A
RT,+

a,b RT
swap =

∑
a∈A

max
b∈A

RT,+
a,b (1)

RT
external = max

b∈A

(∑
a∈AR

T
a,b

)+
(2)
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where x+ = max(x, 0) so that RT,+
a,b = max(RT

a,b, 0). In-
ternal regret (Hart & Mas-Colell, 2002) is the maximum
utility that could be gained if one action had been chosen
in place of some other action. Swap regret (Greenwald &
Jafari, 2003) is the maximum utility gained if each action
could be replaced by another. External regret (Hannan,
1957), which is the original pioneering concept of regret,
is the maximum utility gained by replacing all actions with
one particular action. This is the most relaxed of the three
concepts, and while the others must concern themselves
with |A|2 possible regret values (for all pairs of actions)
external regret only need worry about |A| regret values. So
although the guarantee is weaker, it is a simpler concept
to learn which can make it considerably more attractive.
These three regret notions have the following relationships.

RT
internal ≤ RT

swap ≤ |A|RT
internal RT

external ≤ RT
swap (3)

Infinite Action Spaces. This paper considers situations
where A is infinite. To keep the notation simple, we will
use max operations over actions to mean suprema opera-
tions and summations over actions to mean the suprema of
the sum over all finite subsets of actions. Since we will be
focused on regret over a finite time period, there will only
ever be a finite set of actually selected actions and, hence
only a finite number of non-zero regrets, RT

a,b. The sum-
mations over actions will always be thought to be restricted
to this finite set.

None of the three traditional regret concepts are well-suited
to A being infinite. Not only does |A| appear in the regret
bounds, but one can demonstrate that it is impossible to
have no regret in some infinite cases. Consider A = N
and let ut be a step function, so ut(a) = 1 if a > yt

for some yt and 0 otherwise. Imagine yt is selected so
that Pr[at > yt|u1,...,T−1, a1,...,T−1] ≤ 0.001, which is
always possible. Essentially, high utility is always just
beyond the largest action selected. Now, consider y∗ =
1 + maxt≤T y

t. In expectation 1
T

∑T
t=1 u

t(at) ≤ 0.001

while 1
T

∑T
t=1 u

t(y∗) = 1 (i.e., there is large internal and
external regret for not having played y∗,) so the average
regret cannot approach zero.

Most attempts to handle infinite action spaces have pro-
ceeded by making assumptions on bothA and u. For exam-
ple, if A is a compact, convex subset of Rn and the utilities
are convex with bounded gradient on A, then you can min-
imize regret even though A is infinite (Zinkevich, 2003).
We take an alternative approach where we make use of a
notion of locality on the set A, and modify regret concepts
to respect this locality. Different notions of locality then
result in different notions of regret. Although this typically
results in a weaker form of regret for finite sets, it breaks
all dependence of regret on the size of A and allows it to
even be applied when A is infinite and u is an arbitrary
(although still bounded) function. Wide range regret meth-

ods (Lehrer, 2003) can also bound regret with respect to
a set of (countably) infinite “alternatives”, but unlike our
results, their asymptotic bound does not apply uniformly
across the set, and uniform finite-time bounds depend upon
a finite action space (Blum & Mansour, 2007).

3. Local Regret Concepts
Let G = (V,E) be a directed graph on the set of actions,
i.e., V = A. We do not assume A is finite, but we do
assume G has bounded out-degree D = maxa∈V |{b :
(a, b) ∈ E}|. This graph can be viewed as defining a no-
tion of locality. The semantics of an edge from a to b is
that one should consider possibly taking action b in place
of action a. Or rather, if there is no edge from a to b then
one need not have any regret for not having taken action b
when a was taken. By limiting regret only to the edges in
this graph, we get the notion of local regret. Just as with
traditional regret, which we will now refer to as global re-
gret, we can define different variants of regret.

RT
localinternal = max

(a,b)∈E
RT,+

a,b (4)

RT
localswap =

∑
a∈A

max
b:(a,b)∈E

RT,+
a,b (5)

Local internal and local swap regret just involve limiting
regret to edges in G. Local external regret is more sub-
tle and requires a notion of edge lengths. For all edges
(i, j) ∈ E, let c(i, j) > 0 be the edge’s positive length.
Define d(a, b) to be the sum of the edge lengths on a short-
est path from vertex a to vertex b, and Eb = {(i, j) ∈ E :
d(i, j) = c(i, j) +d(j, b)} to be the set of edges that are on
any shortest path to vertex b.

RT
localexternal = max

b∈A

 ∑
(i,j)∈Eb

RT
i,j/D

+

(6)

Global external regret considers changing all actions to
some target action, regardless of locality or distance be-
tween the actions. In local external regret, only adjacent
actions are considered, and so actions are only replaced
with actions that take one step toward the target action. The
factor of 1/D scales the regret of any one action by the out-
degree, which is the maximum number of actions that could
be one-step along a shortest path. This keeps local external
regret on the same scale as local swap regret.

It is easy to see that these concepts hold the same relation-
ships between each other as their global counterparts.

RT
localinternal ≤ RT

localswap ≤ |A|RT
localinternal (7)

RT
localexternal ≤ RT

localswap (8)

More interestingly, in complete graphs where there is an
edge between every pair of actions (all with unit lengths)
and so everything is local, we can exactly equate global
and local regret.
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Theorem 1 IfG is a complete graph with unit edge lengths
then, RT

localinternal = RT
internal; RT

localswap = RT
swap; and

RT
localexternal = RT

external/D.

The proofs of the paper’s theorems are not included for
space reasons. When there is a useful insight, we discuss
the proof techniques and implications. The full proofs can
be found in the longer version of this work available as a
technical report (Bowling & Zinkevich, 2012).

So our concepts of local regret match up with global regret
when the graph is complete. Of course, we are not really in-
terested in complete graphs, but rather more intricate local-
ity structures with a large or infinite number of vertices, but
a small out-degree. Before going on to present algorithms
for minimizing local regret, we consider possible graphs
for three different online decision tasks to illustrate where
the graphs come from and what form they might take.

Example 1 (Online Max-3SAT) Consider an online ver-
sion of Max-3SAT. The task is to choose an assignment for
n boolean variables: A = {0, 1}n. After an assignment is
chosen a clause is observed; the utility is 1 if the clause is
satisfied by the chosen assignment, 0 otherwise. Note that
|A| = 2n which is computationally intractable for global
regret concepts if n is even moderately large. One possi-
ble locality graph for this hypothesis class is the hypercube
with an edge from a to b if and only if a and b differ on
the assignment of exactly one variable, and all edges have
unit lengths. So the out-degree D for this graph is only n.
Local regret, then, corresponds to the regret for not having
changed the assignment of just one variable. In essence,
minimizing this concept of regret is the online equivalent
of local search (e.g., WalkSAT (Selman et al., 1993)) on
the maximum satisfiability problem, an offline task where
all of the clauses are known up front.

Example 2 (Online Disjunct Learning) Consider a
boolean online classification task where input features
are boolean vectors x ∈ {0, 1}n and the target y is also
boolean. Consider A = {0, 1}n, to be the set of all
disjuncts such that a ∈ A corresponds to the disjunct
xi1 ∨ xi2 ∨ . . . ∨ xik where i1≤j≤k are all of the k indices
of a such that aij = 1. In this online task, one must repeat-
edly choose a disjunct and then observe an instance which
includes a feature vector and the correct response. There is
a utility of 1 if the chosen disjunct over the feature vector
results in the correct response; 0 otherwise. Although a
very different task, the action space A = {0, 1}n is the
same as with Online Max-SAT and we can consider the
same locality structure as that proposed for disjuncts: a
hypercube with unit length edges for adding or removing a
single variable to the disjunction. And as before |A| = 2n

while D = n.

Example 3 (Online Decision Tree Learning) Imagine
the same boolean online classification task for learning
disjuncts, but the hypothesis class is the set of all possible
decision trees. The number of possible decision trees for
n boolean variables is more than a staggering 22

n

, which
for any practical purpose is infinite. We can construct
a graph structure that mimics the way decision trees are
typically constructed offline, such as with C4.5 (Quinlan,
1993). In the graph G, add an edge from one decision
tree to another if and only if the latter can be constructed
by choosing any node (internal or leaf) of the former and
replacing the subtree rooted at the node with a decision
stump or a label. There is one exception: you cannot
replace a non-leaf subtree with a stump splitting on the
same variable as that of the root of the subtree. Edges that
replace a subtree with a label have length 1, while edges
replacing a subtree with a stump (being a more complex
change) have distance 1.1. So, we have local regret for
not having further refined a leaf or collapsing a subtree
to a simpler stump or leaf. Notice that the graph edges in
this case are not all symmetric (viz., collapsing edges).
In essence, this is the online equivalent of tree splitting
algorithms. While |A| ≥ 22

n

, the out-degree is no more
than (n + 1)2n+1. The maximum size of the out-degree
still appears disconcertingly large, and we will return to
this issue in Section 5 where we show how we can exploit
the graph structure to further simplify learning.

4. An Algorithm for Local Swap Regret
We now present an algorithm for minimizing local swap re-
gret, similar to global swap regret algorithms (Hart & Mas-
Colell, 2002; Greenwald & Jafari, 2003), but with substan-
tial differences. The algorithm essentially chooses actions
according to the stationary distribution of a Markov pro-
cess on the graph, with the transition probabilities on the
edges being proportional to the accumulated regrets. How-
ever there are two caveats that are needed for it to handle
infinite graphs: it is prevented from playing beyond a par-
ticular distance from a designated root vertex, and there is
an internal bias towards the actual actions chosen.

Formally, let root be some designated vertex. Define d1

to be the unweighted shortest path distance between two
vertices. Define the level of a vertex as its distance from
root: L(v) = d1(root, v). Note that, L(root) = 0, and
∀(i, j) ∈ E, L(j) ≤ L(i) + 1. All of the algorithms in this
paper take a parameter L, and will never choose actions at
a level greater than L. In addition, the algorithms all main-
tain values R̃t

i,j (which are biased versions ofRt
i,j) and use

these to compute πt
j , the probability of choosing action j

at time t. These probabilities are always computed accord-
ing to the following requirement, which is a generalization
of (Hart & Mas-Colell, 2002; Greenwald & Jafari, 2003).
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Requirement 2 Given a parameter L, for all t ≤ T , and
some R̃t,+

i,j let πt+1 be such that

(a)
∑

j∈V π
t+1
j = 1, and ∀j ∈ V , πt+1

j ≥ 0

(b) ∀j ∈ V such that L(j) > L, πt+1
j = 0.

(c) ∀j ∈ V such that 1 ≤ L(j) ≤ L,
πt+1
j =

∑
i:(i,j)∈E(R̃t,+

i,j /M)πt+1
i + (1−∑

k:(j,k)∈E R̃
t,+
j,k /M)πt+1

j

(d) πt+1
root =

∑
i:(i,root)∈E(R̃t,+

i,root/M)πt+1
i +∑

j:L(j)=L+1

∑
i:(i,j)∈E(R̃t,+

i,j /M)πt+1
i + (1−∑

j:(root,j)∈E R̃
t,+
root,j/M)πt+1

root

(e) If there exists j ∈ V such that πt+1
j > 0 and∑

k:(j,k)∈E R̃
t,+
j,k = 0, then for all j ∈ V where

πt+1
j > 0,

∑
k:(j,k)∈E R̃

t,+
j,k = 0, and we call such a

πt+1 degenerate.

where M = max(i,j)∈E R̃
t,+
i,j . These conditions require

πt+1 to be the stationary distribution of the transition
function whose probabilities on outgoing edges are
proportional to their biased positive regret, with the root
vertex as the starting state, and all outgoing transitions
from vertices in level L going to the root vertex instead.

Definition 2 (b, L)-regret matching is the algorithm that
initializes R̃0

i,j = 0, chooses actions at time t according
to a distribution πt that satisfies Requirement 2 and after
choosing action i and observing ut updates R̃t

i,j = R̃t−1
i,j +

(ut(j) − ut(i) − b) for all j where (i, j) ∈ E, and for all
other (k, l) ∈ E where k 6= i, R̃t

k,l = R̃t−1
k,l .

There are two distinguishing factors of our algorithm
from (Hart & Mas-Colell, 2002; Greenwald & Jafari,
2003): R̃ 6= R, and past a certain distance from the root,
we loop back. R̃ differs from R by the bias term, b. This
term can be thought of as a bias toward the action selected
by the algorithm. This is not the same as approaching the
negative orthant with a margin for error. This small amount
is only applied to the action taken, which is very different
from adding a small margin of error to every edge.

Theorem 3 For any directed graph with maximum out-
degree D and any designated vertex root, (∆/(L+ 1), L)-
regret matching, after T steps, will have expected local
swap regret no worse than,

1

T
E[RT

localswap] ≤ ∆

L+ 1
+

∆
√
D|EL|√
T

(9)

where EL = {(i, j) ∈ E|L(i) ≤ L}.

The overall structure of the proof is similar to (Blackwell,
1956; Hart & Mas-Colell, 2002; Greenwald & Jafari, 2003)

with a few significant changes. As with most algorithms
based on Blackwell, if there is an action you do not regret
taking, playing that action the next round is “safe”. If not,
the key quantity in the proof is a flow fi,j = πt+1

i R̃t,+
i,j

for each edge. On most of the graph, the incoming flow is
equal to the outgoing flow for each node in levels 1 to L.
Since all the flow out from the nodes on one level is equal
to the flow into the next, the total flow into (and out of)
each level is equal. Thus, the flow out of the last level is
only 1/(L+ 1) of the total flow on all edges since there are
L+ 1 levels, including the root.

Traditionally, we wish to show that the incoming flow of an
action times the utility minus the outgoing flow of an action
times the utility summed over all nodes is nonpositive, and
then Blackwell’s condition holds. In traditional proofs, for
any given node, the flow in and out are equal, so regard-
less of the utility, they cancel. For our problem, the flow
out of the last level is really a flow into the (L+ 1)st level,
not the zeroeth level, so the difference in utilities between
the zeroeth level and the (L+ 1)st level creates a problem.
On the other hand, because we subtract b from whatever
action we select, we get to subtract b times the total flow.
Since exactly 1/(L+1) fraction of the flow is going into the
(L+1)st level, these two discrepancies from the traditional
approach exactly cancel. The second term of Equation (9)
is a result of the traditional Blackwell approach. In the fi-
nal analysis, we must account for the amount b we subtract
from the regret each round. This means that if we get R̃ to
approach the negative orthant, we only have bT local swap
regret left. This is the first term of Equation (9).

5. Exploiting Locality Structure
The local swap regret algorithm in the previous section suc-
cessfully drops all dependence on the size of the action set
and thus can be applied even for infinite action sets. How-
ever, the appearance of |EL| in the bound in Theorem 3 is
undesirable as |EL| ∈ O(DL), and L is more likely to be
100 than 2, in order to keep the first term of the bound low.
The bound, therefore, practically provides little beyond an
asymptotic guarantee for even the simplest setting of Ex-
ample 1. In this section, we will appeal to (i) the structure
in the locality graph, and (ii) local external regret to achieve
a more practical regret bound and algorithm.

Cartesian Product Graphs. We begin by considering the
case of G having a very strong structure, where it can be
entirely decomposed into a set of product graphs. In this
case, we can show that by independently minimizing local
regret in the product graphs we can minimize local regret
in the full graph.

Theorem 4 Let G be a Cartesian product of graphs, G =
G1 ⊗ . . . ⊗ Gk. Let RT,l

localexternal be the measured external
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regret on the lth component graph, where the action at time
t is the lth component of at and regret is on the edges in
Gl that transform the lth component. Then, RT

localexternal ≤∑k
l=1R

T,l
localexternal.

The implication is that we if we apply independent regret
minimization to each factor of our product graph, we can
minimize local external regret on the full graph. For ex-
ample, consider the hypercube graphs from Example 1 and
2. By applying n independent external regret algorithms
(the component graphs in this case are 2-vertex complete
graphs), the overall local external regret for the graph is
at most n times bigger than the factors’ regrets, so under
regret matching it is bounded by n∆

√
2/
√
T . Hence, we

are able to handle an exponentially large graph (in n) with
local external regret only growing linearly (in n). If the
component graphs are not complete graphs, then we can
simply apply our local swap regret algorithm from the pre-
vious section to the graph factors, which minimizes local
external regret as well.

Color Regret. Cartesian product graphs are a powerful, but
not very general structure. We now substantially generalize
the product graph structure, which will allow us to achieve
a similar simplification for very general graphs, such as the
graph on decision trees in Example 3. The key insight of
product graphs is that for any vertex b, an edge moves to-
ward b if and only if its corresponding edge in its com-
ponent graph moves toward bl. In other words, either all
of the edges that correspond to some component edge will
be included in the external regret sum, or none of the eges
will. We can group together these edges and only worry
about the regret of the group and not its constituents. We
generalize this fact to graphs which do not have a product
structure.

Definition 5 An edge-coloring C = {Ci}i=1,2,... for an
arbitrary graph G with edge lengths is a partition of E:
Ci ⊆ E,

⋃
i Ci = E, and Ci

⋂
Cj = ∅. We say that C

is admissble if and only if for all b ∈ V , C ∈ C, and
(i, j), (i′, j′) ∈ C, d(i, b) = c(i, j) + d(i, b) ⇔ d(i′, b) =
c(i′, j′) + d(j′, b). In other words, for any arbitrary target,
all of the edges with the same color are on a shortest path,
or none of the edges are.

We now consider treating all of the edges of the same color
as a single entity for regret. This gives us the notion of local
colored regret.

RT
localcolor =

∑
C∈C

 ∑
(i,j)∈C

RT
i,j

+

(10)

Theorem 6 If C is admissible then
RT

localexternal ≤ RT
localcolor/D.

So by minimizing local colored regret, we minimize local
external regret. The natural extension of our local swap
regret algorithm from the previous section results in an al-
gorithm that can minimize local colored regret.

Definition 7 (b, L,C)-colored-regret-matching is the al-
gorithm that initializes R̃0

C = 0, for all C ∈ C, chooses
actions at time t according to a distribution πt that satis-
fies Requirement 2 with R̃t

i,j ≡ R̃t
c(i,j), and after choosing

action i and observing ut at time t for all C ∈ C updates
R̃t

C = R̃t−1
C +

∑
j:(i,j)∈C(ut(j)− ut(i)− b).

Theorem 8 For an arbitrary graph G with maximum de-
gree D, arbitrarily chosen vertex root, and edge coloring
C, (∆/(L+ 1), L,C)-colored-regret matching applied af-
ter T steps will have expected local colored regret no worse
than,

1

T
E[RT

localcolor] ≤
∆D

L+ 1
+

∆
√
D|CL|√
T

where CL = {C ∈ C|∃(i, j) ∈ C s.t. L(i) ≤ L}.

The consequence of this bound depends upon the number
of colors needed for an admissible coloring. Very small
admissible colorings are often possible. The hypercube
graph needs only 2n colors to give an admissible color-
ing, which is exponentially smaller than the total number
of edges, n2n. We can also find a reasonably tight coloring
for our decision tree graph example, despite being a com-
plex asymmetric graph.

Example 4 (Colored Decision Tree Learning)
Reconsider Example 3. Recall that an edge exists
between one decision tree and another if the latter can
be constructed from the former by replacing a subtree at
any node (internal or leaf) with a label (edge length 1) or
a stump (edge length 1.1). We will color this edge with
the pair: (i) the sequence of variable assignments that is
required to reach the node being replaced, and (ii) the
stump or label that replaces it. This coloring is admissible.
We can see this fact by considering a color: the sequence
of variable assignments and resulting stump or label. If
this color is consistent with the target decision tree (i.e.,
the sequence exists in the target decision tree, and the
variable of the added stump matches the variable split on
at that point in the target decision tree) then the color must
move you closer to the target tree.

6. Experimental Results
The previous section presented algorithms that minimize
local swap and local external regret (by minimizing local
colored regret). The regret bounds have no dependence on
the size of the graph beyond the graph’s degree, and so pro-
vide a guarantee even for infinite graphs. We now explore
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these algorithms’ practicality as well as illustrate the gen-
erality of the concepts by applying them to a diverse set of
online problems. The first two tasks we examine, online
Max-3SAT and online decision tree learning, have not pre-
viously been explored in the online setting. The final task,
online disjunct learning, has been explored previously, and
will help illustrate some drawbacks of local regret.

In all three domains we examine two algorithms. The first
minimizes local swap regret by applying (∆/(L + 1), L)-
regret matching with L chosen specifically for the problem.
This will be labeled “Local Swap”. The second focuses
on local external regret by using a tight, admissible edge-
coloring and applying (∆/(L + 1), L,C)-colored-regret
matching. This will be labeled simply “Local External”.

Online Max-3SAT. First, we consider Example 1. We ran-
domly constructed problem instances with n = 20 boolean
variables and 201 clauses each with 3 literals. On each
timestep, the algorithms selected an assignment of the vari-
ables, a clause was chosen at random from the set, and the
algorithm received a utility of 1 if the assignment satis-
fied the clause, 0 otherwise. This was repeated for 1000
timesteps. The locality graph used was the n-dimensional
hypercube from Example 1. The admissible coloring used
to minimize local external regret was the 2n coloring that
has two colors per variable (one for turning the variable on,
and one for turning the variable off). In both cases we set
L = ∞ and b = 0, since the bounds do not depend on L
once it exceeds 20. This also achieved the best performance
for both algorithms. The average results over 200 randomly
constructed sets of clauses are shown in Figure 1, with 95%
confidence bars.

Figure 1 (a) shows the time-averaged colored regret of the
two algorithms, to demonstrate how well the algorithms are
actually minimizing regret. Both are decreasing over time,
while external regret is decreasing much more rapidly. As
expected, swap regret may be a stronger concept, but it is
more difficult to minimize. The local external regret algo-
rithm after only one time step can have regret for not having
made a particular variable assignment, while local swap re-
gret has to observe regret for this assignment from every
possible assignment of the other variables to achieve the
same result. This is further demonstrated by the number of
regret values each algorithm is tracking: local external re-
gret on average had 34 non-zero regret values, while local
swap regret had 4200 non-zero regret values. In summary,
external regret provides a powerful form of generalization.
Figure 1 (b) shows the fraction of the previous 100 clauses
that were satisfied. Two baselines are also presented. A
random choice of variable assignments can satisfy 7

8 of
the clauses in expectation. We also ran WalkSAT (Selman
et al., 1993) offline on the set of 201 clauses, and on aver-
age it was able to satisfy all but 4% of the clauses, which
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Figure 1. Results for Online Max-3SAT: (a) regret, (b) fraction of
unsatisfied clauses.

gives an offline lower bound for what is possible. Both sub-
stantially outperformed random, with the external regret al-
gorithm nearing the performance of the offline WalkSat.

Online Decision Tree Learning. Second, we consider Ex-
ample 3. We took three datasets from the UCI Machine
Learning Repository (each with categorical inputs and a
large number of instances): nursery, mushroom, and king-
rook versus king-pawn (Frank & Asuncion, 2010). The
categorical attributes were transformed into boolean at-
tributes (which simplified the implementation of the local-
ity graphs) by having a separate boolean feature for each at-
tribute value.1 We made the problems online classification
tasks by sampling five instances at random (with replace-
ment) for each timestep, with the utility being the num-
ber classified correctly by the algorithm’s chosen decision
tree. This was repeated for 1000 timesteps, and so the al-
gorithms classified 5,000 instances in total. The locality
graph used was the one described in Example 3. The tight
coloring used to minimize local external regret was the one
described in Example 4. L was set to 3 for local swap re-
gret, and 100 for local external regret, as this achieved the
best performance. Even with the far larger graph, the ex-
ternal regret algorithm was observing nearly one-eighth of
the number of non-zero regret values observed by the lo-

1As a result, there were n = 28 features for nursery, 118 fea-
tures for mushroom, and 74 features for king-rook versus king-
pawn.
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Figure 2. Results for online decision tree learning on three UCI
datasets: (a) Nursery, (b) Mushroom, (c) King-Rook/King-Pawn;
and (d) a simple sequence of alternating labels.

cal swap algorithm. The average results over 50 trials are
shown in Figure 2(a)-(c) with 95% confidence bars.

The graphs show the average fraction of misclassified in-
stances over the previous 100 timesteps. Two baselines are

also plotted: the best single label (i.e., the size of the ma-
jority class) and the best decision stump. Both regret algo-
rithms substantially improved on the best label, and local
external regret was selecting trees substantially better than
the best stump. As a further baseline, we ran the batch
algorithm C4.5 in an online fashion, by retraining a deci-
sion tree after each timestep using all previously observed
examples. C4.5’s performance was impressive, learning
highly accurate trees after observing only a small fraction
of the data. However, C4.5 has no regret guarantees. As
with any offline algorithm used in an online fashion, there
is an implicit assumption that the past and future data in-
stances are i.i.d.. In our experimental setup, the instances
were i.i.d., and as a result C4.5 performed very well. To
further illustrate this point, we constructed a simple online
classification task where instances with identical attributes
were provided with alternating labels. The best label (as
well as the single best decision tree) has a 50% accuracy.
C4.5 when trained on the previously observed instances,
misclassifies every single instance. This is shown along
with local regret algorithms in Figure 2 (d).

Online Disjunct Learning. Finally, we examine online
disjunct learning as described in Example 2. This task
has received considerable attention, notably the celebrated
Winnow algorithm (Littlestone, 1988), which is guaranteed
to make a finite number of mistakes if the instances can
be perfectly classified by some disjunction. Furthermore,
the number of mistakes Winnow2 makes, when no disjunc-
tion captures the instances, can be bounded by the number
of attribute errors (i.e., the number of input attributes that
must be flipped to make the disjunction satisfy the instance)
made by the best disjunction. In these experiments we com-
pare our algorithms’ performance to that of Winnow2.

We looked at two learning tasks. In the first, we generated a
random disjunction over n = 20 boolean variables, where
a variable was independently included in the disjunction
with probability 4/n. Instances were created with uniform
random assignments to all of the variables, with a label be-
ing true if and only if the chosen disjunct is true for the
instance’s assignment. In the second case, we chose in-
stances uniformly at random from a constructed set of 21
instances: one for each variable with that variable (only)
set to true and the label being true, and one with all of
the variables assigned the value of true and the label be-
ing false. We call this task Winnow Killer. For both tasks,
the n-dimensional hypercube from Example 1 was used as
the locality graph with the 2n coloring as our admissible
coloring, and L = ∞ and b = 0. The average results over
50 trials are shown in Figure 3, with 95% confience bars.

The graphs plot error rates over the previous 100 instances.
Three baselines are plotted: randomly assigning a label
(guaranteed to get half of the instances correct on expec-



On Local Regret

(a)

0 200 400 600 800 1000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 R

at
e

Random

Best Disjunction

Local External
Local Swap
Winnow2

(b)

0 200 400 600 800 1000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
 R

at
e

Random

Best Disjunction

Local External
Local Swap
Winnow2

Figure 3. Results for online disjunct learning: (a) random dis-
junct, (b) Winnow Killer.

tation), the best disjunct (which makes no mistakes for ran-
dom disjunctions and makes 1

21 mistakes on the Winnow
Killer task), and Winnow2. Figure 3 (a) shows the results
on random disjunctions. Winnow2 is guaranteed to make a
finite number of mistakes and indeed its error rate drops to
zero quickly. The local regret concepts, though, have diffi-
culties with random disjunctions. The reason can be easily
seen for the case of local external regret. Suppose the first
instance is labeled true; the algorithm now has regret for
all of the variables that were true in that instance (some of
these will be in the target disjunction, but many will not).
These variables will now be included in the chosen dis-
junction for a very long time, as the only regret that one
can have for not removing them is if their assignment was
the sole reason for misclassifying a false instance. In other
words, the problem is that there’s no regret for not remov-
ing multiple variables simultaneously as this is not a local
change. Winnow2, though, also has issues. It performs
very poorly in the Winnow Killer task (in fact, if the in-
stances were ordered it could be made to get every instance
wrong), as shown in Figure 3 (b). Since the mistake bound
for Winnow2 is with respect to the number of attribute er-
rors, a single mistake by the best disjunction can result in
n mistakes by Winnow2. A further issue with Winnow is
that while its peformance is tied to the performance of dis-
junctions, its own hypothesis class is not disjunctions but a
thresholded linear function, whereas local regret is playing
in the same class of hypotheses that it comparing against.

7. Conclusion
We introduced a new family of regret concepts based on
restricting regret to only nearby hypotheses using a local-
ity graph. We then presented algorithms for minimizing
these concepts, even when the number of hypotheses are
infinite. Further we showed that we can exploit structure in
the graph to achieve tighter bounds and better performance.
These new regret concepts mimic local search methods,
which are common approaches to offline optimization with
intractably hard hypothesis spaces. As such, our concepts
and algorithms allows us to make online guarantees, with
a similar flavor to their offline counterparts, with these hy-
pothesis spaces.
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