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Abstract

In this paper we study output coding for
multi-label prediction. For a multi-label out-
put coding to be discriminative, it is impor-
tant that codewords for different label vectors
are significantly different from each other. In
the meantime, unlike in traditional coding
theory, codewords in output coding are to be
predicted from the input, so it is also critical
to have a predictable label encoding.

To find output codes that are both discrim-
inative and predictable, we first propose a
max-margin formulation that naturally cap-
tures these two properties. We then convert
it to a metric learning formulation, but with
an exponentially large number of constraints
as commonly encountered in structured pre-
diction problems. Without a label structure
for tractable inference, we use overgenerating
(i.e., relaxation) techniques combined with
the cutting plane method for optimization.

In our empirical study, the proposed output
coding scheme outperforms a variety of exist-
ing multi-label prediction methods for image,
text and music classification.

1. Introduction

In traditional channel coding (Cover & Thomas, 1991;
Costello & Forney, 2007), a message is encoded into an
alternative (and usually redundant) representation so
that it can be recovered accurately after being trans-
mitted through a noisy channel. Error-correcting out-
put coding (ECOC) applies the idea of channel coding
to multi-class classification (Dietterich & Bakiri, 1995;
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Allwein et al., 2001) and more recently to multi-label
prediction (Hsu et al., 2009; Tai & Lin, 2010; Zhang &
Schneider, 2011): we encode the output into a code-
word, learn models to predict the codeword, and then
recover the correct output from noisy predictions.

In this paper, we study output coding for multi-label
prediction and focus on two important issues. First,
the coding needs to be discriminative : encodings for
different outputs should be significantly different from
each other, so that the codeword for the correct output
will not be confused with incorrect ones, even under
noisy predictions. This corresponds to the concept of
code distance in coding theory and is related to good
error-correcting capabilities (Cover & Thomas, 1991).

Second, output codes should be predictable . In out-
put coding, codewords need to be predicted from the
input (instead of being actually transmitted through
a channel), so it is critical that codewords are easy
to predict. From the channel coding perspective, hav-
ing predictable codewords (and thus low prediction er-
rors) corresponds to reducing the channel error. In
multi-label prediction, finding predictable codeword-
s provides an opportunity to exploit the dependency
structure in the label space (Zhang & Schneider, 2011).

To design output codes that are both discriminative
and predictable, we propose a max-margin formulation
defined on the encoding transform. For each sample,
the prediction from the input should be close to the
encoding of the correct output, and at the same time,
the prediction should also be far away from the encod-
ing of any incorrect output. This is naturally captured
by maximizing the margin between the prediction dis-
tance to correct and incorrect encodings.

We then convert this formulation to a metric learning
problem of finding the optimal distance metric in the
label space, but with an exponentially large number
of constraints as commonly encountered in structured
prediction problems. In multi-label prediction, howev-
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er, the output space does not provide a structure for
tractable inference, and we use overgenerating (i.e., re-
laxation) techniques combined with the cutting plane
method to optimize the metric learning formulation.
The encoding and decoding operations can be derived
from the optimal distance metric in the label space.

We conduct our experiments on multi-label classifica-
tion of images, text and music. Empirical results show
that the proposed output coding scheme outperforms
a variety of recent multi-label prediction methods.

2. Multi-Label Output Codes:
Framework and Existing Methods

In this section, we introduce the general framework
for multi-label output coding. Then we review three
recently-proposed output codes (Hsu et al., 2009; Tai
& Lin, 2010; Zhang & Schneider, 2011), where the en-
coding is based on random projections, principal com-
ponent analysis and canonical correlation analysis, re-
spectively. We also argue that these existing output
coding schemes are not designed to optimize both dis-
criminability and predictability of the codewords.

2.1. Framework

An output coding scheme usually contains three parts:
encoding, prediction and decoding. Consider a set of
p input variables x ∈ X ⊆ Rp and a set of q output
variables y ∈ Y ⊆ Rq. In multi-label classification, y
will denote the label vector, and thus y ∈ Y = {0, 1}q.
We have a set of n training examples: D = (X,Y) =
{(x(i),y(i))}ni=1, where X and Y are matrices of size
n× p and n× q, respectively.

Encoding. Following previous work (Hsu et al., 2009;
Tai & Lin, 2010; Zhang & Schneider, 2011), we con-
sider linear encoding. In this case, the encoding trans-
form can be defined by a set of d linear projections

V = (v1,v2 . . . ,vd) (1)

where d is the number of projections, each vk (k =
1, 2, . . . , d) is a q × 1 vector representing a projection
direction in the label space, and V is a q × d matrix.

Given the projection vectors V, the codeword z for an
example (x,y) is defined:

z = VTy = (vT1 y, . . . ,vTd y)T (2)

where z is a d × 1 vector. Alternatively, we can also
include the q original labels y = (y1, . . . , yq) into the
codeword z, and in this case we have:

z = [Iq,V]Ty = (y1, . . . , yq,v
T
1 y, . . . ,vTd y)T (3)

where Iq is a q×q identity matrix, V is a q×d matrix,
and z is a (q + d)× 1 vector.

Prediction. After defining the encoding projections
{vk}dk=1, we then learn prediction models from train-
ing samples {(x(i),y(i))}ni=1 to predict the codeword.
For a label projection vTk y in the codeword, a regres-
sion model is usually considered:

m̂k ← learn regression({(x(i),vTk y(i))}ni=1) (4)

and for an original label yj (j = 1, 2, . . . , q), a classifier
can be learned from training samples:

p̂j ← learn classifier({(x(i), y
(i)
j )}ni=1) (5)

Given a new sample x, a regression model m̂k predicts:

m̂k(x) = E(vTk y|x) (6)

and a classifier p̂j predicts:

p̂j(x) = (p̂j0(x), p̂j1(x)) (7)

where

p̂j0(x) = P (yj = 0|x) (8)

p̂j1(x) = P (yj = 1|x) (9)

Decoding. Given a new testing sample x, the de-
coding procedure recovers the unknown label vector y
from our prediction for the codeword z. The predic-
tion contains {m̂k(x)}dk=1 and optionally {p̂j(x)}qj=1:

ŷ← decoding(x, {vk}dk=1, {m̂k(x)}dk=1, {p̂j(x)}qj=1)
(10)

The decoding is usually achieved by maximizing a
probability function or minimizing a loss function de-
fined on possible label vector y. Since y ∈ Y = {0, 1}q,
this optimization is usually combinatorial in nature
and intractable. As a result, certain approximation is
required to obtain the solution ŷ, e.g., relaxing y into
a continuous domain and then rounding the relaxed
solution (Hsu et al., 2009; Tai & Lin, 2010) or using
approximate inference (Zhang & Schneider, 2011).

2.2. Coding with compressed sensing

Multi-label compressed sensing (Hsu et al., 2009) is
one of the earliest works that formally defines a multi-
label output code. For encoding, each projection vec-
tor vk ∈ Rq (k = 1, 2, . . . , d) is randomly generat-
ed as in compressed sensing (Donoho, 2006; Candes,
2006), e.g., a vector with i.i.d. Gaussian or Bernoul-
li entries. Thus, the codeword z = (vT1 y, . . . ,vTd y)T

contains random projections of the label vector y.
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Decoding follows the sparse approximation algorithms
in compressed sensing. Two popular classes are convex
relaxation such as `1 penalized least squares (Tropp,
2006), and iterative greedy algorithms such as CoSaM-
P (Needell & Tropp, 2008). For example, an `1 penal-
ized convex relaxation solves the following problem:

ŷ← argmin
y∈Rq

1

2

d∑
k=1

(vTk y − m̂k(x))2 + λ

q∑
j=1

|yj | (11)

where {m̂k(x)}dk=1 are predictions for the codeword
z = (vT1 y, . . . ,vTd y)T , and the `1 penalty

∑q
j=1 |yj | =

||y||1 promotes the sparsity of the solution. Note that
this problem is solved in relaxed space y ∈ Rq.

Use of random projections is justified in compressed
sensing, e.g., by the restricted isometry property, that
if the true signal y is sufficiently sparse, one can recov-
er y from only a small number of random projections.
However, from the output coding perspective, random
projections do not specifically promote either discrim-
inative or predictable codewords, and thus may not be
the most effective method of output coding.

2.3. Coding with principal component analysis

Given the n training examples, principal label space
transformation (Tai & Lin, 2010) uses the top d prin-
cipal components in the label space as the encoding
projections:

{vk}dk=1 ← top d principal components(Y) (12)

which is solved by performing SVD on the label ma-
trix Y and taking the top d right singular vectors.
The codeword z = (vT1 y, . . . ,vTd y)T contains the top
d coordinates of y in the principal component space.

Given predicted codeword ẑ = (m̂1(x), . . . , m̂d(x))T

for a test sample x, decoding is performed by project-
ing ẑ back to coordinates in the original label space
and then rounding them element-wise to 0s and 1s:

ŷ← round(Vẑ) (13)

Note that coding with principal components can po-
tentially produce discriminative codewords. The top
d principal components provide a coordinate system
that keeps as much sample variance as possible by any
d-dimensional projections. Therefore, generated code-
words for training samples tend to be spread out and
far away from each other, although this does not ex-
actly maximize the minimum codeword distance.

However, coding with principal components does not
promote code predictability. Indeed, finding encoding

projections as in eq. (12) is solely based on the label
matrix Y and does not involve the input X. As a
result, this may generate codewords with large code
distance but difficult to predict from the input.

2.4. Coding with canonical correlation analysis

Predictability for multi-label output codes is addressed
in recent work (Zhang & Schneider, 2011), where out-
put projections are obtained by canonical correlation
analysis. CCA tries to find an input projection u ∈ Rp
in the feature space and an output projection v ∈ Rq
in the label space such that the projected variables
uTx and vTy are maximally correlated:

argmax
u∈Rp,v∈Rq

uTXTYv√
(uTXTXu)(vTYTYv)

(14)

This can be solved as a generalized eigenvalue prob-
lem, and the top d pairs of eigenvectors {(uk,vk)}dk=1

contain the encoding projections {vk}dk=1.

The codeword in this method is defined as z =
(y1, . . . , yq,v

T
1 y, . . . ,vTd y)T . For a new sample

x, regression predictions for label projections are
{m̂k(x)}dk=1 and classification predictions for original
labels are {p̂j0(x), p̂j1(x)}qj=1. Decoding is performed
by maximizing a joint probability function (including
d Gaussian potentials from regression and q Bernoulli
potentials from classifiers), or equivalently minimizing
the function (Zhang & Schneider, 2011):

ŷ← argmin
y∈{0,1}q

1

2

d∑
k=1

(vTk y − m̂k(x))2

σ̂2
k

+ λ

q∑
j=1

yj log(
p̂j0(x)

p̂j1(x)
) (15)

where σ̂2
k is the estimated mean squared error for re-

gression model m̂k. Since the problem is defined on the
label space y ∈ {0, 1}q, approximate inference such as
mean-field approximation is used for optimization.

Coding with canonical correlation analysis improves
the code predictability by choosing the projection di-
rections that are maximally correlated with the input.
However, this criterion does not optimize the discrim-
inability of the generated codewords. In other words,
codewords of different outputs may be close to each
other, leading to inadequate error-correcting capabili-
ties. Consequently, even a small amount of prediction
error can significantly affect the decoding result.

3. Maximum Margin Output Coding

In this section we propose a max-margin output coding
scheme where the encoding transform promotes both
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discriminability and predictability of the codewords.

3.1. A Max-Margin Formulation

As before, codewords are predicted using regression:

M̂(x) = (m̂1(x), . . . , m̂d(x))T (16)

where each m̂k() (k = 1, . . . , d) is a univariate regres-
sion function for predicting vTk y, which is learned as

in (4), and M̂() is the corresponding multivariate re-
gression function for the entire codeword VTy.

For each sample i, the codeword VTy(i) should be
both predictable and discriminative. For predictabil-
ity, we want M̂(x(i)) to be close to the correct code-
word VTy(i). For discriminability, we want the cor-
rect codeword VTy(i) to have a large distance to any
incorrect codeword VTy,∀y 6= y(i). In the contex-
t of prediction with output coding, it is even more
strightforward and effective if the prediction M̂(x(i))
itself has a large distance to any incorrect codeword
VTy,∀y 6= y(i).

Based on these goals, we propose the following max-
margin formulation on output projections V:

argmin
V∈Rq×d,{ξi}ni=1

1

2
||V||2F +

C

n

n∑
i=1

ξi (17)

s.t. ||M̂(x(i))−VTy(i)||22 +4(y(i),y)− ξi (18)

≤ ||M̂(x(i))−VTy||22, ∀y ∈ {0, 1}q,∀i
ξi ≥ 0, ∀i

where || ||F is the Frobenius norm, || ||2 is the `2 nor-
m, C is a regularization parameter, 4(y(i),y) is the
hamming distance between binary vectors, and {ξi}ni=1

are slack variables, each for a training sample. With
the help from slack variables, constraint (18) requires
that for any sample i, the prediction distance to the
correct codeword, denoted by ||M̂(x(i)) − VTy(i)||22,
must be smaller than the prediction distance to any
codeword ||M̂(x(i)) −VTy||22 by a margin of at least
4(y(i),y). Note that this constraint encourages both
small prediction distance to the correct codeword and
large prediction distance to incorrect codewords, and
hence promotes predictable and discriminative codes.

To simplify this formulation, we assume the regression
functions M̂(x) = (m̂1(x), . . . , m̂d(x))T are linear and
estimated by least squares. Then given training sam-
ples (X,Y), we define the p× q projection matrix P:

P = (XTX)−1XTY (19)

A small amount of regularization can be added to the
diagonal of XTX for numerical stability. Using P, the

regression functions can be written in closed form:

m̂k(x) = [Pvk]Tx, k = 1, 2, . . . , d (20)

and
M̂(x) = [PV]Tx (21)

Plugging eq. (21) into problem (17), we have the fol-
lowing max-margin formulation that is completely de-
fined on projections V and slack variables {ξi}ni=1:

argmin
V∈Rq×d,{ξi}ni=1

1

2
||V||2F +

C

n

n∑
i=1

ξi (22)

s.t. ||VT (PTx(i) − y(i))||22 +4(y(i),y)− ξi
≤ ||VT (PTx(i) − y)||22, ∀y ∈ {0, 1}q,∀i

ξi ≥ 0, ∀i

3.2. Metric Learning Formulation

Problem (22) is a quadratic program with quadratic
constraints, and we first convert it to a metric learning
problem. Define q × q matrix Q:

Q = VVT (23)

which is the Mahalanobis distance metric induced by
V. Also, define a set of new feature vectors:

φiy = PTx(i) − y, ∀y ∈ {0, 1}q,∀i (24)

Now we formulate the metric learning problem as:

argmin
Q∈S+

q ,{ξi}ni=1

1

2
trace(Q) +

C

n

n∑
i=1

ξi (25)

s.t. φTiy(i)Qφiy(i) +4(y(i),y)− ξi
≤ φTiyQφiy, ∀y ∈ {0, 1}q,∀i

ξi ≥ 0, ∀i

where Q ∈ S+
q is positive semidefinite. The objective

function and constraints are linear in Q and {ξi}ni=1.

We briefly show the equivalence between problem (22)
and (25) as follows. For any feasible solution V to (22),
we can define Q = VVT ∈ S+

q . Also, for any feasible
solution Q to (25), since Q is positive semidefinite and
thus has no negative eigenvalue, we can define V as:

V = Q
1
2 = UD

1
2 (26)

where the q × q matrix U contains (as columns) the
q eigenvectors of Q, and D is the diagonal matrix
of eigenvalues. Given this one-to-one mapping be-
tween V and Q, we have trace(Q) = ||V||2F and
φTiyQφiy = ||VT (PTx(i) − y)||22. Therefore, any fea-
sible (or optimal) solution to (25) gives a feasible (or
optimal) solution to (22), and vice versa.
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3.3. Incorporating Original Labels and Their
Classifiers

As shown in eq. (3), the codeword can also include q
original labels, i.e., z = (y1, . . . , yq,v

T
1 y, . . . ,vTd y)T .

Classifiers {p̂j}qj=1 can be learned to predict original
labels as in (5), and the decoding algorithm can make
use of both regression and classifier outputs, e.g., as in
eq. (15). In this case, the encoding projection should
also be aware of the original labels (y1, . . . , yq) in the
codeword, so that the projection part (vT1 y, . . . ,vTd y)
can provide complementary information.

To adapt our max-margin formulation (25) to this new
information, we assume that classifiers {p̂j}qj=1 have
already been learned, and thus for each sample x we
know the classifier output p̂j0(x) = P (yj = 0|x) and
p̂j1(x) = P (yj = 1|x). We have the new formulation:

argmin
Q∈S+

q ,{ξi}ni=1

1

2
trace(Q) +

C

n

n∑
i=1

ξi (27)

s.t. φTiy(i)Qφiy(i) − logP (y(i)|x(i)) +4(y(i),y)− ξi
≤ φTiyQφiy − logP (y|x(i)), ∀y ∈ {0, 1}q,∀i

ξi ≥ 0, ∀i

where

P (y|x(i)) =

q∏
j=1

P (yj |x(i)) =

q∏
j=1

p̂jyj (x(i)) (28)

is the joint probability of label vector y = (y1, . . . , yq)
on sample x(i) predicted by classifiers {p̂j}qj=1.

In this new formation (27), φTiyQφiy is extended in-

to φTiyQφiy − logP (y|x(i)). Recall that φTiyQφiy is e-

quivalent to ||VT (PTx(i) − y)||22 in (22), which is the
distance between the regression prediction on the ith
sample and the encoding of the label vector y. We
expect that the correct label vector y(i) should lead
to lower values on this term than other y. Similarly,
logP (y|x(i)) is the log-probability of y predicted by
classifiers on sample i, and we expect that y(i) should
give higher values on this term than other label vec-
tors y. As a result, we now use the combined term
φTiyQφiy−logP (y|x(i)) to measure the margin between
correct and incorrect outputs. The main outcome of
this new formulation is that distance metric Q will fo-
cus on the constraints where−logP (y|x(i)) alone is not
strong enough to ensure the margin. In other word-
s, the output coding concentrates on the cases where
classifiers {p̂j}qj=1 alone tend to misclassify.

3.4. Cutting Plane Method with
Overgenerating

In this section we consider how to solve problem (27).
This problem involves an exponentially large number
of constraints due to the combinatorial nature of the
label space {0, 1}q. As studied in structured predic-
tion (Tsochantaridis et al., 2004; Taskar et al., 2003),
problem (27) could be solved efficiently, e.g., by the
cutting-plane method, if a computationally tractable
separate oracle exists to determine which of the expo-
nentially many constraints is most violated (Tsochan-
taridis et al., 2004). However, without a specific struc-
ture (e.g., a chain or a tree) in the label space to enable
efficient inference, the separate oracle for problem (27)
is computationally intractable.

To address this issue, we use overgenerating (i.e., re-
laxation) (Finley & Joachims, 2008) with the cutting
plane method. To use overgenerating technique, we
need to relax ∀y ∈ {0, 1}q in the constraint of (27)
to a continuous domain, e.g., ∀y ∈ [0, 1]q. However,
4(y(i),y) and logP (y|x(i)) in (27) are only defined on
y ∈ {0, 1}q. To handle this, we redefine 4(y(i),y) as

4̃(y(i),y) = ||y(i) − y||1 =

q∑
j=1

|y(i)j − yj | (29)

Then noticing logP (y|x(i)) =
∑q
j=1 logP (yj |x(i)), we

redefine:

logP̃ (y|x(i)) =

q∑
j=1

logP̃ (yj |x(i)) (30)

where each logP̃ (yj |x(i)) is the linear interpolation of
logP (yj = 0|x(i)) and logP (yj = 1|x(i)).

Using (29) and (30), the new relaxed problem is:

argmin
Q∈S+

q ,{ξi}ni=1

1

2
trace(Q) +

C

n

n∑
i=1

ξi (31)

s.t. φTiy(i)Qφiy(i) − logP̃ (y(i)|x(i)) + 4̃(y(i),y)− ξi
≤ φTiyQφiy − logP̃ (y|x(i)), ∀y ∈ [0, 1]q,∀i

ξi ≥ 0, ∀i

where ∀y ∈ {0, 1}q in (27) is relaxed to ∀y ∈ [0, 1]q.

This new problem can be solved by the cutting plane
method, because the separate oracle (i.e., finding the
most violated constraint for each sample i) is:

argmin
y∈[0,1]q

φTiyQφiy − logP̃ (y|x(i))− 4̃(y(i),y) (32)

where logP̃ (y|x(i)) and 4̃(y(i),y) are linear in y, and
φTiyQφiy is quadratic in y given φiy defined as (24).
So (32) is a simple box-constrained quadratic program.
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3.5. Encoding and Decoding

After solving Q in (31), encoding projections are ob-
tained as (26), and one can choose d, the number of
projections, by keeping only the first d columns of V
in (26) for any d ≤ q. The codeword as in (3) includes
original labels, and decoding is performed as (15).

4. Empirical Study

Data. We perform experiments on three real-world
data sets1: an image data set (Scene), a text data
set (Medical) and a music data set (Emotions). Scene
is an image collection for outdoor scene recognition.
Each image is represented by 294 dimensional color
features and labeled as: beach, sunset, fall foliage,
field, mountain and urban. Emotions is a music clas-
sification problem. Each song is represented by 72
rhythmic and timbre features, and tagged with six e-
motions: amazed, happy, relaxed, quiet, sad and an-
gry. Medical is a clinical text collection, where each
document is represented by 1449 words and labeled
with ICD-9-CM codes. Many labels in Medical are
rare, so we select the 10 most common labels to study.

Methods. We compare the proposed max-margin
output coding scheme to several recently proposed
multi-label output codes as well as a number of other
multi-label classification methods:

• Binary relevance (BR). This baseline method learns
to classify each label independently. It is also called
one-vs-all decomposition.

• Coding with compressed sensing (CodingCS) (Hsu
et al., 2009). As reviewed in Section 2.2, this method
uses random projections for encoding and sparse
approximation for decoding. Specifically, we use
CoSaMP (Needell & Tropp, 2008) for decoding.

• Coding with PCA (CodingPCA) (Tai & Lin, 2010).
As reviewed in Section 2.3, this method uses princi-
pal components for encoding, and PCA reconstruc-
tion and rounding for decoding.

• Coding with PCA-Redundant (CodingPCA-R). Cod-
ingPCA does not include original labels into the
codeword. We also try this option to produce more
redundancy as in eq. (3). Decoding follows eq. (15).

• Coding with CCA (CodingCCA) (Zhang & Schnei-
der, 2011). As reviewed in Section 2.4, this method
uses CCA for encoding. Decoding follows eq. (15).

• Calibrated label ranking (CLR) (Fürnkranz et al.,
2008). This method combines both one-vs-one and
one-vs-all classifiers for multi-label classification. It
can also be considered as an output coding method.

1http://mulan.sourceforge.net/

Table 1. Subset accuracy on Scene data set: mean and s-
tandard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(6) 0.4238 0.0040
CodingCS (100) 0.3821 0.0047
CodingPCA(6) 0.3691 0.0075

CodingPCA-R(12) 0.4305 0.0046
CodingCCA(12) 0.4928 0.0090

CLR(21) 0.4218 0.0034
LEAD(6) 0.4547 0.0048

MaxMargin(12) 0.5448 0.0073

Table 2. Macro-F1 score on Scene data set: mean and s-
tandard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(6) 0.6209 0.0029
CodingCS (100) 0.5234 0.0050
CodingPCA(6) 0.5279 0.0096

CodingPCA-R(12) 0.6049 0.0039
CodingCCA(12) 0.6312 0.0038

CLR(21) 0.6238 0.0026
LEAD(6) 0.5958 0.0042

MaxMargin(12) 0.6462 0.0046

Table 3. Micro-F1 score on Scene data set: mean and stan-
dard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(6) 0.6117 0.0030
CodingCS (100) 0.5345 0.0041
CodingPCA(6) 0.5404 0.0076

CodingPCA-R(12) 0.6014 0.0032
CodingCCA(12) 0.6251 0.0035

CLR(21) 0.6163 0.0024
LEAD(6) 0.6002 0.0036

MaxMargin(12) 0.6382 0.0047

• Multi-label learning by exploiting label dependency
(LEAD) (Zhang & Zhang, 2010). This method
learns a Bayes network on labels and use it to cap-
ture label dependency in multi-label classification.

• Max-Margin coding (MaxMargin). Our max-margin
coding formulation where encoding is obtained by
solving (31) and (26). Decoding follows eq. (15).

Evaluation measures. We consider three evaluation
measures for multi-label classification:

• Subset accuracy: rates of correctly classifying all the
labels. It is difficult to achieve high subset accuracy.

• Macro-averaged F-1 score: calculate the F-1 score
for each label and take the average over labels. F-1
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Table 4. Subset accuracy on Medical data set: mean and
standard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(10) 0.7673 0.0039
CodingCS (100) 0.7071 0.0019
CodingPCA(10) 0.7541 0.0041

CodingPCA-R(20) 0.7803 0.0031
CodingCCA(20) 0.7824 0.0029

CLR(55) 0.7632 0.0037
LEAD(10) 0.7718 0.0038

MaxMargin(20) 0.7930 0.0042

Table 5. Macro-F1 score on Medical data set: mean and
standard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(10) 0.8626 0.0029
CodingCS (100) 0.7987 0.0026
CodingPCA(10) 0.8523 0.0032

CodingPCA-R(20) 0.8697 0.0021
CodingCCA(20) 0.8703 0.0020

CLR(55) 0.8556 0.0029
LEAD(10) 0.8550 0.0035

MaxMargin(20) 0.8710 0.0039

Table 6. Micro-F1 score on Medical data set: mean and
standard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(10) 0.8785 0.0022
CodingCS (100) 0.8333 0.0013
CodingPCA(10) 0.8780 0.0020

CodingPCA-R(20) 0.8853 0.0018
CodingCCA(20) 0.8867 0.0018

CLR(55) 0.8757 0.0022
LEAD(10) 0.8736 0.0023

MaxMargin(20) 0.8919 0.0025

score is popular since the distribution of positives
and negatives for a label is usually imbalanced.

• Micro-averaged F-1 score: aggregate true positives,
true negatives, false positives and false negatives
over labels, and then calculate an overall F-1 score.

Experimental settings. On each data set, we per-
form 30 random runs and report means and standard
errors of each evaluation measure. The number of
training samples in each random run is set to 300.

For CodingCS, the number of projections d is set to 100
to provide highly redundant codewords. For CodingP-
CA, CodingPCA-R, CodingCCA and MaxMargin, the
number of output projections is set to the maximum

Table 7. Subset accuracy on Emotions data set: mean and
standard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(6) 0.2264 0.0031
CodingCS (100) 0.1665 0.0035
CodingPCA(6) 0.2198 0.0027

CodingPCA-R(12) 0.2601 0.0024
CodingCCA(12) 0.3005 0.0040

CLR(21) 0.2266 0.0037
LEAD(6) 0.1559 0.0035

MaxMargin(12) 0.3114 0.0042

Table 8. Macro-F1 score on Emotions data set: mean and
standard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(6) 0.6248 0.0027
CodingCS (100) 0.4742 0.0043
CodingPCA(6) 0.5592 0.0041

CodingPCA-R(12) 0.6367 0.0028
CodingCCA(12) 0.6539 0.0027

CLR(21) 0.6197 0.0029
LEAD(6) 0.4512 0.0046

MaxMargin(12) 0.6609 0.0029

Table 9. Micro-F1 score on Emotions data set: mean and
standard error over 30 random runs

Method (#Base Models) Mean Standard Error

BR(6) 0.6363 0.0024
CodingCS (100) 0.5260 0.0029
CodingPCA(6) 0.5957 0.0032

CodingPCA-R(12) 0.6482 0.0026
CodingCCA(12) 0.6633 0.0025

CLR(21) 0.6331 0.0025
LEAD(6) 0.5142 0.0038

MaxMargin(12) 0.6688 0.0027

possible number: the number of original labels.

For all methods, base regression models are ridge re-
gression and base classifiers are `2-penalized logis-
tic regression, and their regularization parameters are
chosen by cross validation. For LEAD, the Bayes net
is learned using the score-based searching algorithm
in the Bayesian Net Toolbox2. For decoding that fol-
lows (15), λ is set to 1, i.e., classifiers and regression
models are equally weighted in decoding. The parame-
ter C in (31) is set to 106. Most methods need to round
their final predictions into 0/1 assignments (e.g., from
a probability forecast or a relaxed solution to the la-

2http://code.google.com/p/bnt/
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bel assignment), and in these cases we use 0.5 as the
threshold without further optimization.

Empirical Results. Results for the Scene data set
are shown in Table 1 - Table 3; results for Medical are
shown in Table 4 - Table 6; results for Emotions are
shown in Table 7 - Table 9. Each table contains one e-
valuation measure. From the results we can see:

• BR provides a solid baseline with good performance.

• CodingCS generally underperforms, indicating that
encoding with random projections is not effective.

• CodingPCA-R outperforms CodingPCA because
CodingPCA-R uses more redundant codewords.

• LEAD’s performance is not stable across data sets.
Structure learning for bayes nets is still challenging.

• CLR performs comparably to BR, despite the fact
that it is one of the most redundant methods in
terms of the number of base models used.

• CodingPCA-R, CodingCCA and MaxMargin are
most successful. Their codewords include both label
projections and original labels, and their decodings
combine both regression and classification outputs.

• MaxMargin outperforms CodingCCA and Coding-
PCA, because max-margin encoding promotes both
code discriminability and code predictability.

• CodingCCA performs better than CodingPCA-R,
showing the importance of predictable codewords.

5. Related Work

Our work follows the direction of multi-label output
coding (Hsu et al., 2009) and is motivated by the recent
success of coding with PCA (Tai & Lin, 2010) and
CCA (Zhang & Schneider, 2011) and their connections
to code distance and code predictability. Our max-
margin formulation is converted into a metric learning
problem, as in (Weinberger et al., 2006), but with a
metric defined for the label space and an exponential
number of constraints caused by label combinations.
The optimization technique developed for structured
prediction (Tsochantaridis et al., 2004; Taskar et al.,
2003), more specically the cutting plane method with
overgenerating (Finley & Joachims, 2008), is used to
solve our metric learning problem.

6. Conclusion

Discriminability and predictability are both impor-
tant for output codes. In this paper we propose a
max-margin formulation for multi-label output coding,
which promotes both discriminative and predictable
codes. We convert this formulation into a metric learn-
ing problem in the label space, and combine overgener-

ating with the cutting plane method for optimization.
Our method outperforms many existing methods on
multi-label image, text and music data sets.
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