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Abstract

Model-based Bayesian Reinforcement Learn-
ing (BRL) allows a sound formalization of
the problem of acting optimally while fac-
ing an unknown environment, i.e., avoiding
the exploration-exploitation dilemma. How-
ever, algorithms explicitly addressing BRL
suffer from such a combinatorial explosion
that a large body of work relies on heuris-
tic algorithms. This paper introduces bolt,
a simple and (almost) deterministic heuris-
tic algorithm for BRL which is optimistic
about the transition function. We analyze
bolt’s sample complexity, and show that un-
der certain parameters, the algorithm is near-
optimal in the Bayesian sense with high prob-
ability. Then, experimental results highlight
the key differences of this method compared
to previous work.

1. Introduction

Acting in an unknown environment requires trading
off exploration (acting so as to acquire knowledge) and
exploitation (acting so as to maximize expected re-
turn). Model-Based Bayesian Reinforcement Learning
(BRL) algorithms achieve this while maintaining and
using a probability distribution over possible models
(which requires expert knowledge under the form of a
prior).These algorithms typically fall within one of the
three following classes (Asmuth et al., 2009).

Belief-lookahead approaches try to optimally trade
off exploration and exploitation by reformulating RL
as the problem of solving a POMDP where the state is
a pair ω = (s, b), s being the observed state and b the
distribution over the possible models; yet, this problem
is intractable, allowing only computationally expensive
approximate solutions (Poupart et al., 2006).
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Optimistic approaches propose exploration mecha-
nisms that explicitly attempt to reduce the model un-
certainty (Brafman & Tennenholtz, 2003; Kolter & Ng,
2009; Sorg et al., 2010; Asmuth et al., 2009) by relying
on the principle of “optimism in the face of uncer-
tainty”.

Undirected approaches, such as ε-greedy or Boltz-
mann exploration strategies (Sutton & Barto, 1998),
perform exploration actions independent of the current
knowledge about the environment.

We focus here on optimistic approaches and, as most
research in the field and without loss of generality, we
consider uncertainty on the transition function, assum-
ing a known reward function. For some algorithms,
recent work proves that they are either PAC-MDP
(Strehl et al., 2009)—with high probability they of-
ten act as an optimal policy would do (if the MDP
model were known)—or PAC-BAMDP (Kolter & Ng,
2009)—with high probability they often act as an ideal
belief-lookahead algorithm would do.

This paper first presents background on model-based
BRL in Section 2, and on PAC-MDP and PAC-
BAMDP analysis in Section 3. Then, Section 4 intro-
duces a novel algorithm, bolt, which, (1) as boss (As-
muth et al., 2009), is optimistic about the transition
model—which is intuitively appealing since the uncer-
tainty is about the model—and, (2) as beb (Kolter &
Ng, 2009), is (almost) deterministic—which leads to a
better control over this approach. We then prove in
Section 5 that bolt is PAC-BAMDP for infinite hori-
zons, by generalizing previous results known for beb
for finite horizon. Experiments in Section 6 then give
some insight as to the practical behavior of these al-
gorithms, showing in particular that bolt seems less
sensitive to parameter tuning than beb.

2. Background

2.1. Reinforcement Learning

A Markov Decision Process (MDP) (Puterman, 1994)
is defined by a tuple 〈S,A, T,R〉 where S is a finite
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set of states, A is a finite set of actions, the transi-
tion function T is the probability to transition from
state s to state s′ when some action a is performed:
T (s, a, s′) = Pr(s′|s, a), and R(s, a, s′) is the instant
scalar reward obtained during this transition. Rein-
forcement Learning (RL) (Sutton & Barto, 1998) is
the problem of finding an optimal decision policy—
a mapping π : S 7→ A—when the model (T without
R in our case) is unknown but while interacting with
the system. A typical performance criterion is the ex-
pected discounted return

V πµ (s) = Eπ

[ ∞∑
t=0

γtR(st, at, st+1) | s0 = s, T = µ

]
,

where µ ∈ M is the unknown model and γ ∈ [0, 1] is
a discount factor. Under an optimal policy, this state
value function verifies the Bellman optimality equation
(for all s ∈ S):

V ∗µ (s) = max
a∈A

∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV ∗µ (s′)

]
,

and computing this optimal value function allows to
derive an optimal policy by behaving in a greedy man-
ner, i.e., by picking actions in arg maxa∈AQ

∗
µ(s, a),

where the state-action value function Q∗µ is defined as

Q∗µ(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV ∗µ (s′)

]
.

Typical RL algorithms either (i) directly estimate the
optimal state-action value function Q∗µ (model-free
RL), or (ii) learn T to compute V ∗µ or Q∗µ (model-based
RL). Yet, in both cases, a major difficulty is to pick
actions so as to trade off exploitation of the current
knowledge and exploration to acquire more knowledge.

2.2. Model-based Bayesian RL

We consider here model-based Bayesian Reinforcement
Learning (Strens, 2000), i.e., model-based RL where
the knowledge about the model is represented using
a probability distribution b over all possible transi-
tion models. An initial prior distribution b0 = Pr(µ)
has to be specified, which is then updated using Bayes
rule. At time t the posterior bt depends on the ini-
tial distribution b0 and the state-action history so far
ht = s0, a0, · · · , st−1, at−1, st. This update can be
applied sequentially due to the Markov assumption,
i.e., at time t + 1 we only need bt and the triplet
(st, at, st+1) to compute the new distribution:

bt+1 = Pr(µ|ht+1, b0) = Pr(µ|st, at, st+1, bt). (1)

The distribution bt is known as the belief over the
model, and summarizes the information that we have
gathered about the model at the current time step.

If we consider the belief as part of the state, the re-
sulting belief-MDP can be solved optimally in theory.
Remarkably, modelling RL problems as belief-MDPs
provides a sound way of dealing with the exploration-
exploitation dilemma, because both objectives are nat-
urally included in the same optimization criterion.

The belief-state can thus be written as ω = (s, b),
which defines a Bayes-Adaptive MDP (BAMDP)
(Duff, 2002), a special kind of belief-MDP where the
belief-state is factored into the (visible) system state
and the belief over the (hidden) model. Moreover,
due to the integration over all possible models in the
value function of the BAMDP, the transition function
T (ω, a, ω′) is given by

Pr(ω′|ω, a) = Pr(b′|b, s, a, s′)E[Pr(s′|s, a)|b],

where the first probability is 1 if b′ complies with
Eq. (1) and 0 else. The optimal Bayesian policy can
then be obtained by computing the optimal Bayesian
value function (Duff, 2002; Poupart et al., 2006):

V∗(s, b)

= max
a

[∑
s′

E[Pr(s′|s, a)|b](R(s, a, s′) + γV∗(s′, b′))

]

= max
a

[∑
s′

T (s, a, s′, b)(R(s, a, s′) + γV∗(s′, b′))

]
,

(2)

with b′ the posterior after the Bayes update with
(s, a, s′). For the finite horizon case we can use the
same reasoning, so that the optimal value can be com-
puted in theory for a finite or infinite horizon, by per-
forming Bayes updates and computing expectations.
However, in practice, computing this value function
exactly is intractable due to the large branching factor
of the tree expansion.

Here, we are interested in heuristic approaches follow-
ing the optimism in the face of uncertainty principle,
which consists in assuming a higher return on the most
uncertain transitions. Some of them solve the MDP
generated by the expected model (at some stage) with
an added exploration reward which favors transitions
with lesser known models, as in r-max (Brafman &
Tennenholtz, 2003), beb (Kolter & Ng, 2009), or with
variance based rewards (Sorg et al., 2010). Another
approach, used in boss (Asmuth et al., 2009), is to
solve, when the model has changed sufficiently, an op-
timistic estimate of the true MDP (obtained by merg-
ing multiple sampled models).
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2.3. Flat and Structured Priors

The selection of a suitable prior is an important is-
sue in BRL algorithms, because it has a direct im-
pact on the solution quality and computing time. A
naive approach is to consider one independent Dirich-
let distribution for each state-action transition, known
as Flat-Dirichlet-Multinomial prior (FDM), whose pdf
is defined as

b = f(µ;θ) =
∏
s,a

D(µs,a;θs,a),

where D(·; ·) are independent Dirichlet distributions.
FDMs can be applied to any discrete state-action
MDP, but is only appropriate under the strong as-
sumption of independence of the state-action pairs in
the transition function. However, this prior has been
broadly used because of its simplicity for computing
the Bayesian update and the expected value. Consider
that the vector of parameters θ are the counters of ob-
served transitions, then the expected value of a transi-

tion probability is E[Pr(s′|s, a)|b] =
θs,a(s

′)∑
s′′ θs,a(s

′′) , and

the Bayesian update under the evidence of a transition
(s, a, s′), is reduced only to θ′s,a(s′) = θs,a(s′) + 1.

Even though FDMs are useful to analyze and bench-
mark algorithms, in practice they are inefficient be-
cause they do not exploit structured information about
the problem. One can for example encode the fact
that multiple actions share the same model by factor-
ing multiple Dirichlet distributions, or allow the algo-
rithm to identify such structures using Dirichlet distri-
butions combined using Chinese Restaurant Processes
or Indian Buffet Processes (Asmuth et al., 2009).

3. PAC Algorithms

Probably Approximately Correct Learning (PAC) pro-
vides a way of analyzing the quality of learning algo-
rithms (Valiant, 1984). The general idea is that with
high probability 1 − δ (probably), a machine with a
low training error produces a low generalization error
bounded by ε (approximately correct). If the number
of steps needed to arrive to this condition is bounded
by a polynomial function, then the algorithm is PAC-
efficient.

3.1. PAC-MDP Analysis

In RL, the PAC-MDP property (Strehl et al., 2009)
guarantees that an algorithm generates an ε-close pol-
icy with probability 1−δ in all but a polynomial num-
ber of steps. An important result is the general PAC-
MDP Theorem 10 in Strehl et al. (2009), where three
sufficient conditions are presented to comply with the

PAC-MDP property. First, the algorithm must use
at least near optimistic values with high probability.
Also, the algorithm must guarantee with high proba-
bility that it is accurate, meaning that, for the known
parts of the model, its actual evaluation will be ε-close
to the optimal value function. Finally, the number of
non-ε-close steps (also called sample complexity) must
be bounded by a polynomial function.

In mathematical terms, PAC-MDP algorithms are
those for which, with probability 1 − δ, the evalua-
tion of a policy At, generated by algorithm A at time
t over the real underlying model µ0, is ε-close to the
optimal policy over the same model in all but a poly-
nomial number of steps:

V At
µ0

(s) ≥ V ∗µ0
(s)− ε. (3)

Several RL algorithms comply with the PAC-MDP
property, differing from one another mainly on the
tightness of the sample complexity bound. For ex-
ample, r-max and Delayed Q-Learning (Strehl et al.,
2009) are some classic RL algorithms for which this
property has been proved, whereas BOSS (Asmuth
et al., 2009) is a Bayesian RL algorithm which is also
PAC-MDP.

In PAC-MDP analysis the policy produced by an al-
gorithm should be close to the optimal policy derived
from the real underlying MDP model. This utopic
policy (Poupart et al., 2006) cannot be computed, be-
cause it is impossible to learn exactly the model with
a finite number of samples, but it is possible to reason
on the probabilistic error bounds of an approximation
to this policy.

3.2. PAC-BAMDP Analysis

An alternative to the PAC-MDP approach is to be
PAC with respect to the optimal Bayesian policy,
rather than using the optimal utopic policy. We will
call this PAC-BAMDP analysis, because its aim is
to guarantee closeness to the optimal solution of the
Bayes-Adaptive MDP. This type of analysis was first
introduced in Kolter & Ng (2009), under the name
of near-Bayesian property, where it is shown that a
modified version of beb is PAC-BAMDP for the undis-
counted finite horizon case 1.

Let us define how to evaluate a policy in the Bayesian
sense:

Definition 3.1. The Bayesian evaluation V of a pol-
icy π is the expected value given a distribution over

1However, some—rectifiable—errors have been spotted
in the proof of near-Bayesianness of beb in Kolter & Ng
(2009), as discussed with the authors.
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Figure 1. exploit-like algorithm. At each time step t, al-
gorithm performs a Bayes update of the prior, and solves
the MDP derived from the expected model of the belief.

models b:

Vπ(s, b) = Eµ[V πµ (s)|b] =

∫
M
V πµ (s)Pr(µ|b)dµ.

This definition has already been presented implicitly
by Duff (2002) , but it is very important to point out
the difference between a normal MDP evaluation over
some known MDP, and the Bayesian evaluation2. This
definition is consistent with Eq. 2, where

V∗(s, b) = max
π

∫
M
V πµ (s)Pr(µ|b)dµ

= max
a

[∑
s′

E[Pr(s′|s, a)|b](R(s, a, s′) + γV∗(s′, b′))

]
.

Let us define the PAC-BAMDP property:

Definition 3.2. We say that an algorithm is PAC-
BAMDP if, with probability 1− δ, the Bayesian evalu-
ation of a policy At generated by algorithm A at time
t is ε-close to the optimal Bayesian policy in all but a
polynomial number of steps, where the Bayesian eval-
uation is parametrized by the belief b:

VAt(s, b) ≥ V∗(s, b)− ε, (4)

with δ ∈ [0, 1) and ε > 0.

A major conceptual difference is that in PAC-BAMDP
analysis, the objective is to guarantee approximate
correctness because the optimal Bayesian policy is
hard to compute, while in PAC-MDP analysis, the ap-
proximate correctness guarantee is needed because the
optimal utopic policy is impossible to find in a finite
number of steps.

4. Optimistic BRL Algorithms

Sec. 2.2 has shown how to theoretically compute the
optimal Bayesian value function. This computation

2We use a different notation for the Bayesian evaluation,
V, to distinguish it from a normal MDP evaluation V .

being intractable, it is common to use suboptimal—
yet efficient—algorithms. A popular technique is to
maintain a posterior over the belief, select one repre-
sentative MDP based on the posterior and act accord-
ing to its value function. The baseline algorithm in
this family is called exploit (Poupart et al., 2006),
where the expected model of b is selected at each time
step. Therefore, the algorithm has to solve a different
MDP of horizon H—an algorithm parameter, not the
problem horizon— at each time step t as can be seen in
Fig. 1. We will consider for the analysis that H is the
number of iterations i that value iteration performs at
each time step t, but in practice convergence can be
reached long before the theoretically derived H for the
infinite horizon case.

beb (Kolter & Ng, 2009) follows the same idea as ex-
ploit, but adding an exploration bonus to the reward
function. In contrast, boss (Asmuth et al., 2009) does
not use the exploit approach, but samples different
models from the prior and uses them to construct an
optimistic MDP. beb has the advantage of being an
almost deterministic algorithm3 and does not rely on
sampling as boss. On the other hand, boss is opti-
mistic about the transitions, which is where the un-
certainty lies, meanwhile beb is optimistic about the
reward function, even though this function is known.

4.1. Bayesian Optimistic Local Transitions

In this section, we introduce a novel algorithm called
bolt (Bayesian Optimistic Local Transitions), which
relies on acting, at each time step t, by following the
optimal policy for an optimistic variant of the cur-
rent expected model. This variant is obtained by,
for each state-action pair, optimistically boosting the
Bayesian updates before computing the local expected
transition model. This is achieved using a new MDP
with an augmented action space A = A × S, where
the transition model for action α = (a, σ) in state
s is the local expected model derived from bt up-
dated with an artificial evidence of transitions ληs,a,σ =
{(s, a, σ), . . . , (s, a, σ)} of size η (a parameter of the al-
gorithm). In other words, we pick both an action a
plus the next state σ we would like to occur with a
higher probability. The MDP can be solved as follows:

V bolt
i (s, bt)

= max
α

∑
s′

T̂ (s, α, s′, bt)
[
R(s, a, s′) + γV bolt

i−1 (s′, bt)
]

with T̂ (s, α, s′) = E[Pr(s′|s, a)|bt, ληs,a,σ].

bolt’s value iteration neglects the evolution of bt, but
the modified transition function works as an optimistic

3In case of equal values, actions are sampled uniformly.
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approximation of the neglected Bayesian evolution.

Modifying the transition function seems to be a more
natural approach than modifying the reward function
as in beb, since the uncertainty we consider in these
problems is about the transition function, not about
the reward function.

From a computational point of view, each update in
bolt requires |S| times more computations than each
update in beb. This implies computation times mul-
tiplied by |S| when solving finite horizon problems us-
ing dynamic programming, and probably a similar in-
crease for value iteration. However, under structured
priors, not all the next states σ must be explored, but
only those which are possible transitions.

Here, the optimism is controlled by the positive param-
eter η—an integer or real-valued parameter depending
on the family of distributions—and the behaviour us-
ing different parameter values will depend on the used
family of distributions. However, for common priors
like FDMs, it can be proved that bolt is always op-
timistic with respect to the optimal Bayesian value
function.

Lemma 4.1 (bolt’s Optimism). Let (st, bt) be the
current belief-state from which we apply bolt’s value
iteration with an horizon of H and η = H. Let also
bt be a prior in the FDM family, and let VH(st, bt) be
the optimal Bayesian value function. Then, we have

V bolt
H (st, bt) ≥ VH(st, bt).

[Proof in (Araya-López et al., 2012)]

5. Analysis of BOLT

In this section we prove that bolt is PAC-BAMDP
in the discounted infinite horizon case, when using a
FDM prior. The other algorithm proved to be PAC-
BAMDP is beb, but the analysis provided in Kolter
& Ng (2009) is only for finite horizon domains with
an imposed stopping condition for the Bayes update.
Therefore, we include in (Araya-López et al., 2012) an
analysis of beb using the results of this section in order
to be able to compare these algorithms theoretically
afterwards.

By Definition 3.2, we must analyze the policy
At generated by bolt at time t, i.e., At =
argmaxπ V

bolt,π
H (st), and show that, with high prob-

ability and for all but a polynomial number of steps,
this policy is ε-close to the optimal Bayesian policy.

Theorem 5.1 (bolt is PAC-BAMDP). Let At denote
the policy followed by bolt at time t with η = H. Let
also st and bt be the corresponding state and belief at

that time. Then, with probability at least 1 − δ, bolt
is ε-close to the optimal Bayesian policy

VAt(st, bt) ≥ V∗(st, bt)− ε

for all but Õ
(
|S||A|η2
ε2(1−γ)2

)
= Õ

(
|S||A|H2

ε2(1−γ)2

)
time steps.

[Proof in Section 5.2]

In the proof we will see that H depends on ε and
γ. Therefore, the sample complexity bound and the
optimism parameter η will depend only on the de-
sired correctness (ε,δ) and the problem characteristics
(γ,|S|,|A|).

5.1. Mixed Value Function

To prove that bolt is PAC-BAMDP we introduce
some preliminary concepts and results. First, let us
assume for the analysis that we maintain a vector of
transition counters θ, even though the priors may be
different from FDMs for the specific lemma presented
in this section. As the belief is monitored, at each
step we can define a set K = {(s, a)|‖θs,a‖ ≥ m} of
known state-action pairs (Kearns & Singh, 1998), i.e.,
state-action pairs with “enough” evidence. Also, to
analyze an exploit-like algorithm A in general (like
exploit, bolt or beb) we introduce a mixed value
function Ṽ obtained by performing an exact Bayesian
update when a state-action pair is in K, and A’s up-
date when not in K. Using these concepts, we can
revisit Lemma 5 of Kolter & Ng (2009) for the dis-
counted case.

Lemma 5.2 (Induced Inequality Revisited). Let
VπH(st, bt) be the Bayesian evaluation of a policy π,
a = π(s, b) be an action from the policy. We define

Ṽπi (s, b) = (5){∑
s′ T (s, a, s′, b)(R(s, a, s′) + γṼπi−1(s′, b′)) if (s, a) ∈ K∑
s′ T̃ (s, a, s′)(R̃(s, a, s′) + γṼπi−1(s′, b′)) if (s, a) /∈ K

the mixed value function, where T̃ and R̃ can be dif-
ferent from T and R respectively. Here, b′ is the pos-
terior parameter vector after the Bayes update with
(s, a, s′). Let also AK be the event that a pair (s, a) /∈
K is generated for the first time when starting from
state st and following the policy π for H steps. Assum-
ing normalized rewards for R and a maximum reward
R̃max for R̃, then

VπH(st, bt) ≥ ṼπH(st, bt)−
(1− γH)

(1− γ)
R̃maxPr(AK),

(6)
where Pr(AK) is the probability of event AK .
[Proof in (Araya-López et al., 2012)]
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5.2. BOLT is PAC-BAMDP

Let ṼAt

H (st, bt) be the evaluation of bolt’s policy

At using a mixed value function where R̃(s, a, s′) =
R(s, a, s′) the reward function, and T̃ (s, a, s′) =
T̂ (s, α, s′, bt) = E[Pr(s′|s, a)|bt, ληs,a,σ] the bolt tran-
sition model, where a and σ are obtained from the
policy At. Note that, even though we apply bolt’s
update, we still monitor the belief at each step as pre-
sented in Eq. 5. Yet, for T̂ we consider the belief
at time t, and not the monitored belief b as in the
Bayesian update

Lemma 5.3 (bolt Mixed Bound). The difference be-
tween the optimistic value obtained by bolt and the
Bayesian value obtained by the mixed value function
under the policy At generated by bolt with η = H is
bounded by

V bolt
H (st, bt)− ṼAt

H (st, bt) ≤
(1− γH)η2

(1− γ)m
. (7)

[Proof in (Araya-López et al., 2012)]

Proof of Theorem 5.1. We start by the induced in-
equality (Lemma 5.2) with At the policy generated
by bolt at time t, and Ṽ a mixed value function using
bolt’s update when (s, a) /∈ K. As R̃max = 1, the
chain of inequalities is

VAt(st, bt) ≥ VAt

H (st, bt)

≥ ṼAt

H (st, bt)−
1− γH

1− γ
Pr(AK)

≥ V bolt
H (st, bt)−

η2(1− γH)

m(1− γ)
− 1− γH

1− γ
Pr(AK)

≥ V∗H(st, bt)−
η2(1− γH)

m(1− γ)
− 1− γH

1− γ
Pr(AK)

≥ V∗(st, bt)−
η2(1− γH)

m(1− γ)
− 1− γH

1− γ
Pr(AK)− γH

(1− γ)

where the 3rd step is due to Lemma 5.3 (accuracy) and
the 4th step to Lemma 4.1 (optimism). To simplify

the analysis, let us assume that γH

(1−γ) = ε
2 and fix

m = 4η2

ε(1−γ) .

If Pr(AK) > η2

m = ε(1−γ)
4 , by the Hoeffding4 and union

bounds we know that AK occurs no more than

O

(
|S||A|m
Pr(AK)

log
|S||A|
δ

)
= O

(
|S||A|η2

ε2(1− γ)2
log
|S||A|
δ

)
4Even though the Hoeffding bound assumes that sam-

ples are independent, which is trivially not in MDPs, it
upper bounds the case where samples are dependent. Re-
cent results shows that tighter bounds can be achieve with
a more elaborated analysis (Szita & Szepesvri, 2010).

time steps with probability 1 − δ. By neglecting log-
arithms we have the desired theorem. This bound
is derived from the fact that, if AK occurs more
than |S||A|m times, then all the state-action pairs are
known and we will never escape from K anymore.

For Pr(AK) ≤ η2

m , we have that

VAt(st, bt) ≥ V∗(st, bt)−
ε(1− γH)

4
− ε(1− γH)

4
− ε

2

≥ V∗(st, bt)−
ε

4
− ε

4
− ε

2
= V∗(st, bt)− ε

which verifies the proposed theorem.

Following Kolter & Ng (2009), optimism can be en-

sured for beb with β ≥ 2H2, with Õ
(
|S||A|H4

ε2(1−γ)2

)
non

ε-close steps (see (Araya-López et al., 2012)), which is
a worse result than bolt. Nevertheless, the bounds
used in the proofs are loose enough to expect the op-
timism property to hold for much smaller values of β
and η in practice.

6. Experiments

To illustrate the characteristics of bolt, we present
here experimental results over a number of domains.
For all the domains we have tried different parameters
for bolt and beb, but also we have used an ε-greedy
variant of exploit. However, for all the presented
problems plain exploit (ε = 0.0) outperforms the ε-
greedy variant.

Please recall that the theoretical values for parame-
ters β and η—that ensure optimism—depend on the
horizon H of the MDPs solved at each time step. In
these experiments, instead of using this horizon we re-
lied on asynchronous value iteration, stopping when
‖Vi+1 − Vi‖∞ < ε. For solving these infinite MDPs
we used γ = 0.95 and ε = 0.01, but be aware that
the performance criterion used here is averaged undis-
counted total rewards.

6.1. The Chain Problem

In the 5-state chain problem (Strens, 2000; Poupart
et al., 2006), every state is connected to state s1 by
taking action b and every state si is connected to the
next state si+1 with action a, except s5 that is con-
nected to itself. At each step, the agent may “slip”
with probability p, performing the opposite action as
intended. Staying in s5 had a reward of 1.0 while com-
ing back to s1 had a reward of 0.2. All other rewards
are 0. The priors used for these problems were Full
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(FDM), Tied, where the probability p is factored for
all transitions, and Semi, where each action has an
independent factored probability.

Algorithm Tied Semi Full
exploit (ε = 0) 366.1 354.9 230.2
beb (β = 1) 365.9 362.5 343.0
beb (β = 150) 366.5 297.5 165.2
bolt (η = 7) 367.9 367.0 289.6
bolt (η = 150) 366.6 358.3 278.7
beetle * 365.0 364.8 175.4
boss * 365.7 365.1 300.3

Table 1. Chain Problem results for different priors.
Averaged total reward over 500 trials for an horizon of
1000 with p = 0.2. The results with * come from previous
publications.

Table 1 shows that beb outperforms other algorithms
with a tuned up β value for the FDM prior as already
shown by Kolter & Ng (2009). However, for a large
value of β, this performance decreases dramatically.
bolt on the other hand produces results comparable
with boss for a tuned parameter, but does not de-
crease too much for a large value of η. Indeed, this
value corresponds to the theoretical bound that en-
sures optimism, η = H ≈ log(ε(1− γ))/ log(γ) ≈ 150.
Unsurprisingly, the results of beb and bolt with infor-
mative priors are not much different than other tech-
niques, because the problem degenerates into a easily
solvable problem. Nevertheless, bolt achieves good
results for a large η, in contrast to beb that fails to
provide a competitive result for the Semi prior with
large β.

This variability in the results depending on the param-
eters, rises the question of the sensitivity to parameter
tuning. In a RL domain, one usually cannot tune the
algorithm parameters for each problem, because the
whole model of the problem is unknown. Therefore,
a good RL algorithm must perform well for different
problems without modifying its parameters.

Fig. 2 shows how beb and bolt behave for differ-
ent parameters using a Full prior. In the low res-
olution analysis beb’s performance decays very fast,
while bolt also tends to decrease, but maintaining
good results. We have also conducted experiments for
other values of the slip probability p, the same pattern
being amplified when p is near 0, i.e., worse decay for
beb and almost constant bolt results, and obtaining
almost identical behavior when p is near 0.5. In the
high resolution results beb goes up and down near 1,
while bolt maintains a similar behaviour as in the low
resolution experiment.

Low resolution analysis β, η ∈ [1, 100]

High resolution analysis β, η ∈ [0.1, 10]

Figure 2. Chain Problem. Averaged total reward over
300 trials for an horizon of 150, and for β and η parameters
between 1 and 100, and between 0.1 and 10. As a reference,
the value obtained by exploit is also plotted. All results
are shown with a 95% confidence interval.

Low resolution Analysis β, η ∈ [1, 100]

High resolution Analysis β, η ∈ [0.1, 10]

Figure 3. Paint/Polish Problem. Averaged total reward
over 300 trials for an horizon of 150, for several values of β
and η using an structured prior. As a reference, the value
obtained by exploit is also plotted. All results are shown
with a 95% confidence interval.

6.2. Other Structured Problems

An other illustrative example is the Paint/Polish prob-
lem where the objective is to deliver several polished
and painted objects without a scratch, using several
stochastic actions with unknown probabilities. The
full description of the problem can be found in Walsh
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et al. (2009). Here, the possible outcomes of each
action are given to the agent, but the probabilities
of each outcome are not. We have used a structured
prior that encodes this information and the results are
summarized in Fig. 3, using both high and low resolu-
tion analyses. We have also performed this experiment
with an FDM prior, obtaining similar results as for
the Chain problem. Unsurprisingly, using a structured
prior provides better results than using FDMs. How-
ever, the high impact of being overoptimistic shown
in Fig. 3, does not apply to FDMs, mainly because
the learning phase is much shorter using a structured
prior. Again, the decay of beb is much stronger than
bolt, but in contrast to the Chain problem, the best
parameter of bolt beats the best parameter of beb.

The last example is the Marble Maze problem5 (As-
muth et al., 2009) where we have explicitly encoded
the 16 possible clusters in the prior, leading to lit-
tle exploration requirements. exploit provides very
good solutions for this problem, and bolt provides
similar results with several different parameters. In
contrast, for all the tested β parameters, beb behaves
much worse than exploit. For example, for the best
η = 2.0 bolt scores −0.445, while for the best β = 0.9
beb scores −2.127, while exploit scores −0.590.

In summary, it is hard to know a priori which algo-
rithm will perform better for a specific problem with a
specific prior and given certain parameters. However,
bolt generalizes well (in theory and in practice) for a
larger set of parameters, mainly because the optimism
is bounded by the probability laws and not by a free
parameter as in beb.

7. Conclusion

We have presented bolt, a novel and simple algo-
rithm that uses an optimistic boost to the Bayes up-
date, which is thus optimistic about the uncertainty
rather than just in the face of uncertainty. We showed
that bolt is strictly optimistic for certain η parame-
ters, and used this result to prove that it is also PAC-
BAMDP. The sample complexity bounds for bolt are
tighter than for beb. Experiments show that bolt
is more efficient than beb when using the theoreti-
cally derived parameters in the Chain problem, and
in general that bolt seems more robust to parame-
ter tuning. Future work includes using a dynamic η
bonus for bolt, what should be particularly appropri-
ate with finite horizons, and exploring general proofs
to guarantee the PAC-BAMDP property for a broader
family of priors than FDMs.

5Averaged over 100 trials with H = 100.
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