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Abstract

We study the problem of multivariate regres-
sion where the data are naturally grouped,
and a regression matrix is to be estimated
for each group. We propose an approach
in which a dictionary of low rank parame-
ter matrices is estimated across groups, and
a sparse linear combination of the dictionary
elements is estimated to form a model within
each group. We refer to the method as condi-

tional sparse coding since it is a coding proce-
dure for the response vectors Y conditioned
on the covariate vectors X. This approach
captures the shared information across the
groups while adapting to the structure within
each group. It exploits the same intuition
behind sparse coding that has been success-
fully developed in computer vision and com-
putational neuroscience. We propose an algo-
rithm for conditional sparse coding, analyze
its theoretical properties in terms of predic-
tive accuracy, and present the results of sim-
ulation and brain imaging experiments that
compare the new technique to reduced rank
regression.

1. Introduction

Sparse coding, also called dictionary learning, is an
approach to approximating a collection of signals by
sparse linear combinations of a codewords chosen from
a shared, learned dictionary. The method was pro-
posed by Olshausen & Field (1996) for encoding nat-
ural images, with the motivation of developing a sim-
ple computational model of neural coding in the visual
cortex. Through the use of sparsity and a large learned
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dictionary of codewords, sparse coding is able to effi-
ciently capture a rich collection of features that are
common to a population of signals. Variants of sparse
coding have enjoyed considerable success in computer
vision (Elad & Aharon, 2006; Lee et al., 2007; Mairal
et al., 2009; Yang et al., 2009; Zhou et al., 2010; Bengio
et al., 2009).

In this paper we apply the intuition behind sparse
coding to design a new procedure for multivariate re-
gression with data that fall into possibly overlapping
groups or tasks. In traditional multivariate regres-
sion, the data consist of a set of response vectors
Y ∈ R

q, and for each Y , a corresponding covariate
vector X ∈ R

p. In a vector autoregressive time se-
ries model, for instance, Y = Zt is a vector at time t,
and X = Zt−1 is the vector at the previous step. In
predicting brain activation patterns in neuroscience, Y

might be the neural activations in different regions of
the brain with X a vector of external stimuli. Under
a linear model, Y = BX + ǫ, where B ∈ R

q×p is a
matrix of parameters and ǫ ∈ R

q is a random, mean
zero error vector.

In many applications, the data naturally occur in
groups or tasks, and assuming the same model Y =
BX + ǫ for each group may be unjustified. For in-
stance, in a non-stationary time series, the distribu-
tion of Y = Zt varies over time. In the neuroscience
example, different people may have different neuronal
activation patterns. In both cases it may be natural to
place the data into possibly overlapping groups. More
generally, the groups could be determined by any fac-
tor in the data or experimental design.

In settings where the input and output dimensions p

and q are high, the number of parameters in B may
be be too large to estimate accurately from limited
data. One approach to estimating reduced complexity
models is to perform a least squares regression with
a rank constraint on the coefficient matrix B. The
nuclear norm serves as a convex surrogate for low rank
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constraints, and has be recently studied in the context
of multivariate regression (Yuan et al., 2007; Negahban
& Wainwright, 2011). For grouped data, a different
model could be estimated for each group using this
approach; however, carrying out separate regressions
ignores commonality between the groups, and worsens
the problem of limited data.

Our approach is to estimate the parameter matrices as

B̂(g) =
K∑

k=1

α
(g)
k Dk

where each dictionary entry Dk is a low rank matrix,

and α(g) = (α
(g)
1 , . . . , α

(g)
K ) is a sparse vector; both

{Dk} and {α(g)} are learned from data. The coef-

ficients α
(g)
k are estimated for each group g, but the

“codewords” or “dictionary elements” Dk are shared
across groups. This exploits the same intuition behind
sparse coding for image analysis. Sparsity allows the
dictionary entries Dk to specialize and capture predic-
tive aspects of the data shared by many groups, while
the coefficients α(g) tailor the model to the specific
group g. Allowing the size K of the dictionary to be
large enables a rich class of parameter matrices to be
modeled, while a low rank condition on the individual
codeword matrices Dk allows them to be estimated
from limited data.

We perform both a “pessimistic” and “optimistic”
analysis of our method. In the pessimistic analysis,
the model may not be correct; that is, we do not
assume any underlying common structure among the
groups. In this case the model cannot achieve lower
risk than the alternative of separate low rank regres-
sions within each group. However, our analysis shows
that the method suffers little excess risk relative to
separate regressions. In the optimistic analysis, when
the learned dictionary has captured common structure
between the groups, the method produces an accurate
estimator with much lower sample complexity than re-
quired by low rank regression. In both analyses, we
measure statistical accuracy through non-asymptotic
bounds on the excess risk R(D,α(g)) − R(B∗). We
show that the new procedure is effective and practical
with experiments on simulated data and brain imaging
data, reported in Section 6.

2. Related Work

Mairal et al. (2010) have studied a different way of
using dictionary learning for supervised tasks; in this
approach one first encodes data X and then uses the
encoding to perform classification or regression. Our
work is more related to multi-task learning (Caruana,
1997; Evgeniou & Pontil, 2004) and is in particular a

generalization of a model by Argyriou et al. (2006).
They require that all α(g) have the same sparsity pat-
tern, so that all groups use the same small subset of
dictionary elements. By allowing different groups to
use different subsets of the dictionary, our model is
much more flexible, though at the cost of requiring
a non-convex optimization. Kang et al. (2011) used
mixed integer programming to generalize the model of
Argyriou et al. (2006) although our formulation is still
more flexible and our optimization simpler. The ap-
proach of Liu et al. (2010) could be adapted to our set-
ting, although their notion of task-relatedness is very
different from ours.

Existing approaches to theoretical analysis of multi-
task learning differ significantly from our analysis by
focusing on PAC-learnability with respect to a more
abstract notion of task-relatedness (Maurer, 2006;
Ben-David & Schuller, 2003). Theoretical analy-
sis of sparse coding is rather limited. Some work
studies the generalization error of dictionary learning
(Vainsencher et al., 2010; Maurer & Pontil, 2010) and
the local correctness of the non-convex objective for
dictionary learning (Geng et al., 2011). Jeong & Kim
(2009) consider sparse approximability and prove an
information theoretic lower bound on sparse approx-
imability of general p-dimensional vectors. They fur-
ther show, non-constructively, that the lower bound
can be achieved via an optimally constructed dictio-
nary. We instead consider sparse approximability of
a variety of structured spaces with respect to a dic-
tionary that could plausibly be learned by a practical
procedure.

3. Problem Formulation

In this work we focus on problems where the data are
naturally grouped. Suppose we have G groups, in-

dexed by g = 1, . . . , G. Let X
(g)
i ∈ R

p, Y
(g)
i ∈ R

q

denote the explanatory and response variables for
the ith sample in group g. For each group, we let
B∗(g) = arg minB(g) R(B(g)) be the oracle regression
matrix where we define

R(B(g)) = EX(g),Y (g)‖Y (g) − B(g)X(g)‖2
F .

For convenience, we will assume the sample size n is
the same for all groups, noting that more generally

it will vary with g. Let X(g) = (X
(g)
1 , . . . ,X

(g)
n ) ∈

R
p×n and Y (g) = (Y

(g)
1 , . . . , Y

(g)
n ) ∈ R

q×n, with the n

samples of group g arranged as matrix columns.

Our goal is to estimate B∗(g). We consider estimates

of the form B̂(g) =
∑K

k=1 α̂
(g)
k Dk where each Dk is

a low rank matrix, and α̂(g) = (α̂
(g)
1 , . . . , α̂

(g)
K ) is an
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estimated sparse vector. The codewords, or dictionary
entries, Dk are themselves estimated from data using
nuclear norm regularization from data pooled across
groups, as described in Section 4.

4. Conditional Sparse Coding

The basic idea underlying conditional sparse coding is
to learn a collection of low rank matrices {D1, ...,DK}
(a dictionary) and estimate B̂(g) as a sparse linear
combination of the dictionary entries. We optimize
the overall objective function f(α,D) defined by

f(α,D) =

1

G

G∑

g=1

{
1

n

∥∥Y (g) −
( K∑

k=1

α
(g)
k Dk

)
X(g)

∥∥2

F
+ λ‖α(g)‖1

}

where the optimization minα minD∈CD(τ) f(α,D) is
carried out over the set

CD(τ) =
{
D ∈ R

q×p : ‖D‖∗ ≤ τ and ‖D‖2 ≤ 1
}

.

The ℓ1 norm penalty induces sparsity on the α vectors
and the nuclear-norm restriction forces the matrices
Dk to be low rank. The spectral norm constraint en-
sures no particular dictionary entry can be too large,
and serves as an identifiability constraint; a similar
constraint in sparse coding requires that all dictionary
vectors must have norm no larger than one.

The objective function is biconvex but not jointly con-
vex in α and D. Thus, we follow the standard sparse
coding approach and alternately optimize over {α(g)}
with fixed {Dk}, and optimize over {Dk} with fixed
{α(g)}. We refer to the algorithm as conditional sparse

coding (CSC) since it is a coding procedure for the re-
sponse vectors Y conditioned on the covariate vectors
X.

Algorithm 1 Conditional Sparse Coding (CSC)

Input: Data {(Y (g),X(g)}g=1,...,G, regularization pa-
rameters λ and τ .

1. Initialize dictionary {D1, ...,DK} as random rank
one matrices.

2. Alternate between the following steps until con-
vergence of f(α,D):

a. Encoding step: {α(g)} ← argminα(g) f(α,D)

b. Learning step:
{Dk} ← argminDk∈CD(τ) f(α,D)

The encoding step is equivalent to an independent ℓ1-
constrained least squares fit, or lasso optimization, for

each group g:

min
α(g)∈RK

1

n

n∑

i=1

∥∥∥Y
(g)
i −

G∑

g=1

α
(g)
k (DkX

(g)
i )

∥∥∥
2

2
+ λ‖α(g)‖1.

(4.1)
A variety of algorithms are available to solve the lasso
efficiently, notably iterative soft thresholding, a form
of coordinate descent (Friedman et al., 2007).

For optimizing the dictionary entries, we designed
both a projected gradient descent algorithm and a
fast iterative shrinkage and thresholding algorithm
(FISTA) following Beck & Teboulle (2009). A com-
plication is that since the constraint set CD(λ) is an
intersection of nuclear norm and spectral norm balls,
the projection needs to be done with care. We leave
details of the optimization algorithms and the projec-
tion procedure to the appendix.

Remarks on implementation details

Although learning the dictionary is computationally
intensive, fitting the coefficients to the dictionary is
very fast due to efficient lasso optimization algorithms.
Thus, an easy way to speed up CSC is to learn the dic-
tionary with a smaller number of groups. The CSC op-
timization, being non-convex, is sensitive to initializa-
tion. We suggest random initialization both because
our theoretical guarantees assume random initializa-
tion and because it works well in practice.

In sparse coding, one never picks a dictionary size K

equal to or greater than number of vectors to encode
to avoid the trivial solution of letting each vector be
a dictionary element itself. In CSC however, one can
choose K > G because of the nuclear-norm constraint
on the dictionary entries. Based both on theory and
experimental results, we recommend that τ is held to a
constant between 1 and 0.5, and that λ is then chosen
with cross-validation.

5. Theoretical Analysis

To get a more complete understanding of CSC, we
perform both a pessimistic analysis and an optimistic
analysis. In the pessimistic analysis, we do not as-
sume that our model is correct, and we do not as-
sume any underlying common structure among the
the groups. It is obvious that, under the general pes-
simistic setting, we cannot achieve higher statistical
accuracy with CSC than with the alternative of es-
timating separate low-rank matrices for each group.
Our pessimistic analysis provides a simple rule for de-
termining, in the worst case, how much worse CSC is
than the alternative.

In the optimistic analysis, we focus on a very specific
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setting where we only have to fit the coefficients to
a pre-existing set of learned dictionary entries. We
assume that the learned dictionary has thus captured
common structure that exists among the groups. We
show that in this setting CSC can produce an accurate
estimator with fewer samples than the alternative of
estimating separate matrices.

In all of our analyses, we measure statistical accu-
racy through non-asymptotic bounds on the excess risk
R(D,α(g)) − R(B∗). For clarity of presentation, we
will use same symbols c and C to represent possibly
different, generic constants in the theorem statements.

Before beginning the analysis, we enumerate and jus-
tify the underlying assumptions.

A1. For all groups g, X(g) and Y (g) are zero
mean Gaussian random vectors. Let Σ be
the (p + q) × (p + q) covariance matrix Σ =
E[(X(g), Y (g))(X(g), Y (g))T]. Then the spectral
norm ‖Σ‖2 is a constant independent of n.

A2. For all groups g, ‖B∗(g)‖∗ ≤ L and B∗(g) is of
rank at most r.

A3. The sample size satisfies n ≥ (p + q).

We make assumption A1 only to leverage results on
concentration of measure; we do not use any other
properties of the Gaussian distribution. Our analy-
sis will thus easily extend to subgaussian random vec-
tors. Assumption A2 is merely notation, allowing us
to state our bounds in terms of L and r. Assumption
A3 is made so that many of the results in our pes-
simistic analysis can be stated more compactly; we do
not make this assumption in our optimistic analysis.

It should be emphasized that since we are carrying out
an excess risk analysis, we do not require incoherence

conditions on our samples X
(g)
1 , . . . ,X

(g)
n , as are of-

ten assumed in high-dimensional statistical analysis of
sparsity.

Because we will repeatedly compare the excess risk
rate of CSC against estimating separate matrices, we
first prove an excess risk bound for using nuclear-norm
regularization in each group.

Theorem 5.1. Suppose that assumptions A1, A2, A3

hold. Let

B̂(g) = argmin
{B : ‖B‖∗≤L}

1

n

n∑

i=1

‖Y (g)
i − BX

(g)
i ‖2

2.

Then with probability at least 1 − exp(−cp), we have

that

max
g=1,...,G

R(B̂(g)) − R(B∗(g)) ≤ CL2

√
(p + q) log(nG)

n

where c, C are constants depending only on ‖Σ‖2 as

defined in A1.

We provide proof sketches of all theorems in Sec-
tion 5.3.

5.1. Pessimistic Analysis

Let Dlearn, α
learn(g)
λ be the dictionary and coefficients

output by Conditional Sparse Coding. The results
of this section establish bounds on the excess risk
R(Dlearn, α

learn(g)
λ ) − R(B∗(g)). We stress that we do

not assume Dlearn, α
learn(g)
λ is the global minimizer of

the non-convex CSC objective f(α,D). We use only
the fact that the learned dictionary and coefficients
achieve a lower objective than the random initial dic-
tionary.

Before we state our main theorem, it is instructive to
first consider the excess risk bound we would obtain if
using only the random initial dictionary entries with
oracle coefficients, with no additional dictionary learn-
ing.

Proposition 5.1. Suppose that assumptions A1, A2,

A3 hold. For a given sparsity level s, define

α
init(g)
oracle

= argmin
{α(g):‖α(g)‖0≤s,‖α(g)‖1≤L

√
s}

R(Dinit, α(g)).

Let K ≥ max(n, r(p + q)), and λ ≤
√

log K
n . Suppose

s ≤ r(p + q). Then with probability at least 1 − 1
K ,

max
g=1,...,G

R(Dinit, α
init(g)
oracle

) − R(B∗(g))

≤ CL2

(
(p + q) log(GK)

n

)s/r(p+q)

where C is a constant depending only on ‖Σ‖2 as de-

fined in A1.

Setting s = r(p+q)
2 , we observe that a large enough

dictionary of random rank one matrices with the
(non-sparse) oracle coefficients yields an excess risk
bound that, up to multiplicative constants, matches
the bound in Theorem 5.1—the best we can hope

for. But because the oracle coefficients α
init(g)
oracle are not

sparse, the learned coefficients α
init(g)
λ will be a poor

estimate of the oracle coefficients, and the resulting
excess risk may be significantly larger.

Proposition 5.1 and the preceding discussion motivate
the need for learning the dictionary—we may improve
statistical accuracy if we can customize the dictionary,
allowing reconstruction of B∗(g) from the dictionary
using sparse coefficients. Our main theorem in this
subsection formalizes this intuition.
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Theorem 5.2. Suppose assumptions A1, A2, A3

hold. Suppose K ≥ max(n, r(p + q)), λ ≤
√

log K
n ,

and τ ≤ 1. Then with probability at least 1 − 1
K ,

max
g=1,...,G

R(Dlearn, αlearn

λ ) − R(B∗(g))

≤ C max(L2, ‖αlearn

λ ‖2
1)

√
(p + q) log(GK)

n
.

This result implies that if the learned coefficients are

sparse, that is, if ‖αlearn(g)
λ ‖1 ≤ L, then the excess risk

of conditional sparse coding is, up to a multiplicative
constant factor, no greater that the excess risk for esti-
mating separate low-rank matrices within each group.

Of course, the excess risk can be worse if ‖αlearn(g)
λ ‖1

increases with (p + q) or n; we cannot rule out this
possibility because the dictionary learning optimiza-
tion is nonconvex and does not admit a direct anal-
ysis. We note in our experimental section, however,

that α
learn(g)
λ is very sparse in our simulations. We

note also that our proof uses critically the fact that
our algorithm places a nuclear-norm constraint on the
dictionary entries, thus showing that the constraint is
necessary to reduce overfitting when learning the dic-
tionary.

Theorem 5.2 and Proposition 5.1 suggest a rule of
thumb in applying conditional sparse coding. If the
sparsity levels of the coefficients do not decrease with
the iterations of dictionary learning, then the resulting
statistical accuracy may be poor.

5.2. Optimistic Analysis

For our optimistic analysis, we consider the specific
setting where the dictionary is already learned and we
analyze the excess risk incurred when we fit the coeffi-
cients from data that were not used in the dictionary
learning process.

A4. The learned dictionary {Dlearn
1 , ...,Dlearn

K } is in-

dependent of the data X
(g)
i for all groups g and

items i = 1, ..., n.

With the dictionary fixed, we let

α
learn(g)
oracle ≡ argmin

{α(g):‖α(g)‖1≤L}
R(Dlearn, α(g))

be the sparse coefficients that minimize the true
risk. We can then interpret the oracle excess risk

R(Dlearn, α
learn(g)
oracle )−R(B∗(g)) as a measure of the ex-

tent to which the oracle regression matrices B∗(g) share
structure, and the learned dictionary has captured this
structure.

Theorem 5.3. Suppose assumptions A1, A2, A4

hold. Suppose λ ≤
√

log K
n . Then with probability at

least 1 − 1
n ,

max
g=1,...,G

R(Dlearn, α
learn(g)
λ ) − R(B∗(g)) ≤

C max(L2, ‖αlearn(g)
λ ‖2

1)

√
log(npKG)

n

+ R(Dlearn, α
learn(g)
oracle

) − R(B∗(g))

where C is some constant depending only on ‖Σ‖2 as

defined in A1.

Under the optimistic assumption that the excess risk

R(Dlearn, α
learn(g)
oracle ) − R(B∗(g)) is small, that is, that

the dictionary has effectively learned the common in-
formation among the groups, then we require on the
order of

√
p + q times fewer samples here to achieve

the same excess risk as in Theorem 5.2. If we further
assume that ‖αlearn(g)

λ ‖1 does not increase with p and
q, meaning that the oracle coefficients are sparse, then
the excess risk in the optimistic setting is also lower
than the bound in Theorem 5.1.

5.3. Proof Sketches

Proof sketch of Theorem 5.1. The crux of our ar-
gument is the following uniform generalization error
bound.

Lemma 5.1. With probability at least 1 − exp(−cp),
for all matrices B(g) such that ‖B(g)‖∗ ≤ L, R(B(g))−
R̂(B(g)) ≤ CL2

√
(p+q) log(Gn)

n + Ru, where c, C are

constants depending only on ‖Σ‖2 as defined in A1,

and Ru is a term that does not depend on B(g).

We prove Lemma 5.1 by combining the technique of
Greenshtein & Ritov (2004) with a concentration re-
sult from random matrix theory which states that for
independent subgaussian random vectors Z1, ..., Zn,
‖ 1

n

∑n
i=1 ZiZ

T

i − ΣZ‖2 ≤ C
√

p
n with probability at

least 1−exp−cp for some constants c, C. Theorem 5.1
then follows from a standard argument.

Proof sketch of Proposition 5.1. The proof is construc-
tive. It uses a theoretical procedure, similar to orthog-
onal matching pursuit, but infeasible to implement, to
produce a α(g) with sparsity level s for the random
rank 1 dictionary entries so that the reconstruction

error ‖B∗(g) − ∑K
k=1 Dinitα

(g)
k ‖F and the associated

excess risk would be sufficiently low. Since αinit
oracle is

the optimal set of s-sparse coefficients, we can upper
bound its risk with the risk of our constructed coef-
ficients. We do not prove that our bound is tight,
but analysis by Jeong & Kim (2009) suggests that our
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bound cannot be significantly improved. We discuss
this point further in the appendix.

Proof sketch of Theorem 5.2. We first rewrite the ex-
cess risk as

R(Dlearn, α
learn(g)
λ ) − R(B∗(g))

= R(Dlearn, α
learn(g)
λ ) − R̂(Dlearn, α

learn(g)
λ ) (5.1)

+ R̂(Dlearn, α
learn(g)
λ ) − R̂(Dinit, α

init(g)
oracle ) (5.2)

+ R̂(Dinit, α
init(g)
oracle ) − R(Dinit, α

init(g)
oracle ) (5.3)

+ R(Dinit, α
init(g)
oracle ) − R(B∗(g)) (5.4)

where α
init(g)
oracle is as defined in Proposition 5.1 with s

set to r(p+q)
2 .

We then bound (5.1) using Lemma 5.1. To control
(5.2), we observe that although the dictionary learn-
ing procedure is nonconvex, it is guaranteed to im-
prove the objective. Thus, we have immediately that

(5.2) is at most λ‖αinit(g)
oracle ‖1. A bound on (5.4) follows

from Proposition 5.1. Term (5.3) requires the follow-
ing lemma concerning uniform generalization error of
learning coefficients for a fixed dictionary.

Lemma 5.2. Let D1, ...,DK be a fixed set of

dictionary entries with ‖Dk‖∗ ≤ 1. We have

that with probability at least 1 − 1
n , for all co-

efficients α(g), maxg R(D,α(g)) − R̂(D,α(g)) ≤
C‖α(g)‖2

1

√
log(GKpn)

n + Ru where C is a constant de-

pending only on ‖Σ‖2 as defined in A1 and Ru is a

term that does not depend on α(g)

Proof sketch of Theorem 5.3. The proof is straightfor-
ward by combining Assumption A4, Theorem 5.3, and
Lemma 5.2.

6. Experiments

The main purpose of our experiments is to compare
conditional sparse coding against reduced-rank regres-
sion. The experiments also illustrate that the coeffi-
cients estimated by CSC are indeed sparse and that
the dictionary entries are low rank.

6.1. Simulation Data

We generate data using a linear model Y (g) =
B∗(g)X(g)+ǫ(g) where ǫ(g) ∼ N(0, σ2Iq) and each B∗(g)

is a p × p square matrix. We build a random design

matrix X(g) by drawing each sample X
(g)
i ∼ N(0, Ip).

We consider three different settings:

1. In the structured case, we construct each B∗(g)

as a random 3-sparse linear combination of a set

of 30 rank one dictionary matrices. Groups con-
structed by this method will share considerable
common information; but, of course, the estima-
tor has no knowledge of the true dictionary.

2. In the unstructured case, we construct each
B∗(g) as simply a random rank 3 matrix.

3. The structured same design case is the same as
the structured case except that every group shares
the same design X(g). We study this case because
real-world data can have overlapping groups.
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(b) Unstructured n = 100
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(c) Same design n = 60

Figure 1. Comparison of CSC to reduced rank regression.

We measure performance of the algorithms in terms
of both estimation error 1

G

∑G
g=1 ‖B∗(g) − B̂(g)‖F and

prediction error R̂test(B̂
(g)), which is computed from

a large test set of (X(g), Y (g)) pairs. We compare CSC
against performing separate reduced rank regressions
for each group using nuclear norm-regularization.

It can be seen from Figure 6.1 that when the parameter
matrices {B∗(g)} have significant common structure,
CSC easily outperforms separate regressions with ei-
ther different or the same design for each group. CSC
performs worse in the unstructured case, as expected,
but is still competitive with separate regressions.

In Figure 6.1, we show the sparsity of the coefficients
together with the ranks of the learned dictionary en-
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tries, as a function of iterations of alternation in the
algorithm. It is seen that (1) CSC does not require
many iterations to converge, (2) the coefficients be-
come increasingly sparse, and (3) although the ranks
of the dictionary entries may increase, the learned dic-
tionary entries are still relatively low rank.
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(a) Structured (p = 20, n = 40)
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(b) Unstructured (p = 20, n = 100)

Figure 2. Variation in sparsity and dictionary rank with it-
erations of alternation in CSC dictionary learning, on sim-
ulated data. Each line represents one group or one dictio-
nary entry; the dashed black line is the average.

We note that in Section 8 of the Appendix, we also
perform simulations with overlapping groups.

6.2. fMRI Data

The dataset, gathered by Mitchell et al. (2008), com-
prises the brain activity patterns of 9 human sub-
jects when presented with a single concrete English
noun. We down-sample the original neural signal by
retaining only one measurement in every 4 × 3 × 4
voxel region of the brain. More precisely, we have X

as a design matrix of neural signals with dimension
(p = 434) × (n = 60) and Y as the response matrix
with dimension (q = 192) × (n = 60) of semantic fea-
tures of the 60 nouns being shown to the subjects. We
let each subject be a group and hence we have that
G = 9.

The goal is to predict the semantic features of the noun
being shown to the subject, based only on the neural
signal of the subject’s brain. The predicted semantic
features can then be used to guess which word the sub-
ject was viewing and thus “read the subject’s mind.”

Following Mitchell et al. (2008), we use hold-two-out
cross-validation for evaluation. In each run of the ex-
periment, we hold out two words, using the remaining

58 words for training, and then compute three eval-
uation metrics: 2 vs. 2 classification, 1 vs. 2 clas-
sification, and squared error. Let y1, y2 be the se-
mantic feature vectors of the heldout words. Let
ŷ1, ŷ2 be the predicted semantic feature vectors. We
say that we correctly made a 2 vs. 2 classification
if d(y1, ŷ1) + d(y2, ŷ2) < d(y1, ŷ2) + d(y2, ŷ1) and we
say that we correctly made a 1 vs. 2 classification if
both d(y1, ŷ1) < d(y1, ŷ2) and d(y2, ŷ2) < d(y2, ŷ1).
If we make random predictions, then the expected 1
vs. 2 classification accuracy is 0.25 and the expected
2 vs. 2 classification accuracy is 0.5. Our parameters
are tuned by separate cross-validation trials. We used
K = 20 dictionary entries.

In Figure 3, we compare the performance of CSC to
separate trace-norm-regularized regressions for each
subject. CSC often shows significant improvement
in both 2 vs. 2 and 1 vs. 2 classification tasks, with
very few cases of significant degradation. In terms of
squared error, CSC shows improvement for most sub-
jects, although on average, the improvement is statis-
tically insignificant.

Although there is indeed sharing of dictionary entries
across the various groups (subjects), it is important
to mention that the pattern of sharing is unstable
from trial to trial. Figure 6.2 shows two patterns of
group-dictionary utilization derived from the α(g) co-
efficients. We see that in the first trial, subject 3 shares
significantly with subject 7, while subject 1 shares with
no other subjects; in the second trial, subject 3 shares
with subject 5 and subject 1 shares with subjects 6
and 9. The instability is possibly due to the low sam-
ple size. As a result of this instability, we cannot de-
duce subject-subject similarities from the dictionary
utilization patterns.
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Figure 4. Coefficients α(g) interpreted as dictionary utiliza-
tion per group for two runs of the experiment. Lighter color
indicates greater utilization.
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Subj A B C D E F G H I
Dictionary 0.8833 0.8667 0.9000 0.9333 0.8333 0.7500 0.9000 0.7833 0.6667

Separate 0.9500 0.7000 0.9167 0.8167 0.8167 0.7667 0.8000 0.6667 0.6333
Confidence 0.6- 0.92+ 0.05- 0.86+ 0.03+ 0.02- 0.70+ 0.65+ 0.07-

Subj A B C D E F G H I
Dictionary 0.7000 0.5333 0.6667 0.7667 0.4833 0.3667 0.6000 0.4333 0.3000

Separate 0.7000 0.3833 0.6667 0.6333 0.5000 0.5000 0.5333 0.3167 0.2333
Confidence 0 0.75+ 0 0.72+ 0.01- 0.67- 0.24+ 0.58+ 0.29+

Subj A B C D E F G H I
Dictionary 243.25 276.95 256.10 247.48 291.48 310.12 282.77 329.08 327.27
Separate 255.00 290.94 270.30 253.73 299.84 322.59 272.45 314.69 303.41

Figure 3. fMRI data analysis. From top to bottom: 2v2 classification accuracy, 1v2 classification accuracy, and squared
error from 60 cross-validation trials. Last row shows confidence in either improvement (+) or degradation (-).
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