
Anytime Marginal Maximum a Posteriori Inference

Denis Deratani Mauá denis@idsia.ch

IDSIA, Galleria 2, Manno, Switzerland, CH 6928

Cassio Polpo de Campos cassio@idsia.ch

IDSIA, Galleria 2, Manno, Switzerland, CH 6928

Abstract

This paper presents a new anytime algorithm
for the marginal MAP problem in graphi-
cal models of bounded treewidth. We show
asymptotic convergence and theoretical error
bounds for any fixed step. Experiments show
that it compares well to a state-of-the-art sys-
tematic search algorithm.

1. Introduction

The maximum a posteriori (MAP) assignment prob-
lem consists in finding an assignment that maximizes
the posterior probability of a given set of variables.
To facilitate modeling, the model often includes la-
tent variables that are neither to be maximized nor
observed, but marginalized. It is this more general
form of the problem (a.k.a. partial or marginal MAP)
that we tackle in this paper. Moreover, we assume that
the probability distribution is represented as a discrete
graphical model, which allows for compactness.

Computationally, this is a very hard problem. It
is NPPP-hard even if all variables are binary, and
NP-hard if either the underlying graph has bounded
treewidth or there are no latent variables (Park & Dar-
wiche, 2004). Also producing a provably good approx-
imate solution is NP-hard, even if the treewidth of the
underlying graph is bounded (Park & Darwiche, 2004).
A positive result has recently been given by de Campos
(2011), which derived a fully polynomial-time approx-
imation scheme when both treewidth and number of
states per variable are bounded.

MAP assignment problems can be seen as a com-
position of two different tasks: the computation of
marginal probabilities and the combinatorial search

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

over assignments. The former is responsible for evalu-
ating the quality of a candidate assignment produced
by the latter. When the marginal probability inference
is tractable, standard combinatorial search approaches
such as branch-and-bound for exact solutions and local
search for approximate results have been used (Park &
Darwiche, 2003; Yuan et al., 2004). When it is hard,
researchers have resorted to loopy belief propagation
algorithms (Liu & Ihler, 2011; Jiang et al., 2011) and
factor decomposition (Meek & Wexler, 2011).

In this paper, we present a new anytime algorithm to
perform marginal MAP inference in graphical models
of bounded treewidth. The algorithm implements a
clique-tree propagation scheme that propagates sets of
factors instead of single factors. Efficiency is achieved
by verifying sub-optimality locally. We show empiri-
cally that the algorithm compares well to the system-
atic search algorithm of Park & Darwiche (2003). We
derive theoretical bounds for the error produced by the
algorithm within a given amount of computational re-
sources (time and memory), and show that this error
can be made arbitrarily small with enough resources.

2. Notation

A finite integer set {1, 2, . . . , n} is denoted by [n]. Ran-
dom variables are represented by capital letters, e.g.,
X, Y , Z; real-valued functions by greek letters, e.g., φ,
ψ; sets by calligraphic letters, e.g., I=[3], P={φ, ψ},
S = {I,P}; vectors in boldface, e.g., V = (X,Y, Z).
The number of elements in a set X is denoted by
|X |. We identify a variable with its sample space.
Hence, the finite set of values a variable X can as-
sume is also denoted by X. Given a vector of vari-
ables X = (X1, . . . , Xn), we write X =X1 ×· · · × Xn

to denote the space of configurations or assignments
of the variables in X, where × denotes the Cartesian
product. We also identify a vector of variables to its
joint sample space, so that the notation x ∈ X is well-
defined, and |X| denotes the number of assignments x

Anytime Marginal MAP Inference

to X and not the number of variables in the vector.
For X = (X1, . . . , Xn) and I ⊆ [n], the notation XI
denotes the vector (Xi)i∈I . We write xI to denote the
vector (xi)i∈I obtained by projecting x ∈ X onto XI .

A factor φ over a vector of variables X=(X1, . . . , Xn)
is a |X|-dimensional vector of non-negative real val-
ues. The value of the factor corresponding to a par-
ticular assignment x ∈ X is denoted by φ(x). Given
an assignment z for a vector of variables X, the indi-
cator factor δz assigns value one for x=z and zero for
all others. Product and sum-marginalization of fac-
tors are defined as usual: (φψ)(x) = φ(xI)ψ(xJ), for
X=(X1, . . . , Xn), I∪J =[n], φ defined over XI and ψ
defined over XJ ;

(∑
XI

φ
)

(y)=
∑

x∈X φ(x)δy(xI) for
φ defined over X=(X1, . . . , Xn), I ⊆ [n] and y ∈ XI .

Given a tree T over [n] and a root node r ∈ [n], we
say that a node p is the parent of a neighboring node
i if p is closer to r than i, in which case, we say that i
is a child of p. The parent and the children of a node
i are denoted by pa(i) and ch(i), respectively. The
set of descendants of i (i.e., its children, the children
of its children, and so on) is denoted by de(i). Nodes
containing no children are called leaves, and nodes con-
taining at least one child are called internal.

3. Graphical Models

Let X = (X1, . . . , Xn) be a vector of discrete random
variables, J1, . . . ,Jm be a collection of index sets sat-
isfying J1 ∪· · · ∪ Jm=[n], and P={φ1, . . . , φm} be a
set of factors over vectors XJ1

, . . . ,XJm
, respectively.

We call P a graphical model if it specifies a joint prob-
ability distribution over assignments x ∈ X by

Pr(X=x) =
1

Z

∏
i∈[m]

φi(xJi
) ,

where Z =
∑

X

∏
φ∈P φ is a normalizing constant

known as the partition function. The graph in the
left-hand side of Figure 1 depicts a graphical model.

Let D and H be index sets partitioning the variables
into decision and latent variables, respectively. The
MAP assignment problem consists in finding

d∗ = argmax
d∈XD

Pr(XD=d)

= argmax
d∈XD

∑
h∈XH

Pr(XD=d,XH=h)

= argmax
d∈XD

∑
X

∏
i∈[m]

φi
∏
j∈D

δdj . (1)

For each fixed assignment d, we can represent the fac-
torization in (1) by a new graphical model Pd =P ∪

φ1 φ2

φ3φ4

φ5

φ6

φ7

φ8

X1 X2

X3X4

7:X3, X4

6:X2, X3, X4 3:X3

5:X1, X2, X4

8:X1, X4

1:X1 4:X4

2:X2

Figure 1. A simple graphical model represented as a factor
graph (on the left) and a suitable clique tree (on the right).
Each factor φi, i = 1, . . . , 8, is defined over the variables in
neighboring nodes and assigned to the clique tree node i.

⋃
j∈D{δdj

}. The partition function of this new model
satisfies Zd =

∑
X

∏
i∈[m] φi

∏
j∈D δdj

. This way, we
can re-state the MAP assignment problem as a search
over graphical models Pd. Assume without loss of gen-
erality that D={1, . . . , d} and H={d+ 1, . . . , n}, and
define Ki = {φi} for i = 1, . . . ,m, and Ki+m = {δxi :
xi ∈ Xi} for each decision i ∈ D. Each combination of
factors φ1, . . . , φm+d from sets K1, . . . ,Km+d, respec-
tively, specifies the graphical model Pd corresponding
to an assignment d. Let M= {{φ1, . . . , φm+d} : φi ∈
Ki} denote all graphical models obtained in such a
way. Finding a MAP assignment is equivalent to find-
ing a graphical model P∗= argmaxP∈M

∑
X

∏
φ∈P φ.

An assignment d∗ is a MAP assignment iff it satisfies
d∗=argmaxd∈XD

∏m+d
i=m+1 φi(di) for some optimal P∗.

Example 1. Consider the graphical model in Fig-
ure 1, and assume that variables are binary, D={1, 2}
and H= {3, 4}. We denote the values a binary vari-
able Xi can assume by xi and x̃i, and reformulate
this MAP assignment problem as a search over graph-
ical models as follows. Let K1 = {φ1}, K2 = {φ2},
K3 = {φ3}, K4 = {φ4}, K5 = {φ5}, K6 = {φ6},
K7 = {φ7}, K8 = {φ8}, K9 = {δx1 , δx̃1} and K10 =
{δx2 , δx̃2}. Each combination of factors φ1, . . . , φ10 ∈
K1, . . . ,K10 corresponds to the graphical model in-
duced by the assignment d = argmaxx φ9(x1)φ10(x2).
Suppose that P∗ = {φ1, . . . , φ8, δx1

, δx̃2
} is a solution

to argmaxP∈M
∑
X1,X2,X3,X4

∏
i∈[10] φi. Then d∗ =

(x1, x̃2) = argmaxd δx1
(d1)δx̃2

(d2) is a MAP assign-
ment.

4. Clique-Tree Computation

Let T be a tree over [m], I1, . . . , Im be a collection
of index sets satisfying I1 ∪ · · · ∪ Im = [n] for some
positive integer n. We call T a clique tree if for i =
1, . . . , n the subgraph obtained by removing from T all
nodes j such that i /∈ Ij remains a tree. Clique trees

Anytime Marginal MAP Inference

are so called because the index sets usually represent
the cliques in the triangulated underlying graph of a
graphical model. Let P be a graphical model whose
factors φ1, . . . , φk are defined over sets XJ1

, . . . ,XJk
,

respectively, and J1∪· · ·∪Jk=[n]. We say that T is a
clique tree for P if for i = 1, . . . , k there is 1 ≤ j ≤ m
such that Ji ⊆ Ij . In the following, we assume for
ease of exposition and without loss of generality that
if T is a clique tree for P then m = k and Ji ⊆ Ii
for all i, which allows us to unambiguously associate
each factor φi to the clique tree node i. The tree on
the right-hand side in Figure 1 is a clique tree for the
graphical model on the left.

The width of a clique tree is the cardinality of the
largest index set minus one. For example, the width
of the tree in Figure 1 is two. Since the complexity of
algorithms that operate on clique trees is (at least) ex-
ponential in the tree width, one usually seeks to obtain
a clique tree of low width. Finding a minimum-width
clique tree for a given graphical model is an NP-hard
problem, and one usually resorts to heuristics to obtain
low-width trees.

The basic computation scheme with clique trees is
the factor-elimination procedure in Algorithm 1,
which computes the partition function of a graphical
model P = {φ1, . . . , φm} associated to a clique tree T
over [m].1 In the algorithm, we assume that each fac-
tor φi is assigned to node i in the clique tree (hence
its associated index set Ji ⊆ Ii). In a nutshell, the
algorithm roots the tree in an arbitrary node r, and
then propagates messages from the leaves towards the
root. For ease of exposition, we assume in line 5 that
Ipa(r) =∅. The propagation of messages halts when the
root receives a message from every child, in which case
the partition function is obtained by Z =µr. The al-
gorithm runs in O(msw+1) time, where s= maxi |Xi|
is the maximum number of values a variable in the
model can assume, and w=maxi |Ii| − 1 is the width
of the clique tree. Thus when the width w is bounded,
the computations take polynomial time.

Let h(i) =
⋃
j∈de(i)∪{i} Ij \ Ipa(i). It can be

shown that for i = 1, . . . ,m the factor µi satisfies
µi =

∑
Xh(i)

φi
∏
j∈de(i) φj (Koller & Friedman, 2009).

Since h(r) = [n] by definition of clique trees, the cor-
rectness of the computations follows easily by applying
this result to the root: Z=µr=

∑
X

∏
i∈[m] φi. Hence,

we can evaluate the quality of a candidate solution d
to the MAP assignment problem by building a clique
tree T for the corresponding graphical model Pd and
then running factor-elimination, which produces

1The name collect algorithm has also been used to
describe the same algorithm.

Algorithm 1 factor-elimination

Require: A clique tree T over a graphical model P
Ensure: Z=

∑
X

∏
φ∈P φ

1: select a node r as root
2: label all nodes as inactive
3: while there is an inactive node i do
4: select an inactive node i with all children active
5: compute µi=

∑
XIi\Ipa(i)

φi
∏
j∈ch(i) µj

6: label i as active
7: end while
8: Z=µr

Zd =
∑

X

∏
φ∈Pd

φ. Note that the same clique tree
can be used to evaluate different candidates.

Example 2. Consider the graphical model and clique
tree in Figure 1 and assume again that variables are
binary D = {1, 2} and H = {3, 4}. We can evaluate
the assignment d = (x1, x̃2) to (X1, X2) by replacing
φ1 and φ2 with φ′1 = φ1δx1 and φ′2 = φ2δx̃2 , respec-
tively, and then running factor-elimination, which
obtains Z(x1,x̃2) =

∑
X1,X2,X3,X4

∏8
i=1 φiδx1

δx̃2
∝

Pr(X1 =x1, X2 = x̃2).

The algorithm can be straightforwardly modified to
find a MAP assignment when there are no latent vari-
ables (i.e., when H = ∅) by substituting sums with
maximizations in the computation of factors µi (Koller
& Friedman, 2009). This naturally suggests an ap-
proach to the computation of MAP assignments in
the presence of latent variables (i.e., when H 6= ∅),
which consists in redefining the factors µi so that la-
tent variables are summed out while decision vari-
ables are maximized. A factor-max-elimination
version of the algorithm thus obtains factors µi =
maxXDi

∑
XHi

φi
∏
j∈ch(i) µj , where Di = (Ii ∩ D) \

Ipa(i) and Hi=(Ii ∩ H) \ Ipa(i). Variants of this pro-
cedure have recently been justified as an approxima-
tion by variational inference (Liu & Ihler, 2011; Jiang
et al., 2011). These approaches retain the efficiency
of message-passing algorithms, but produce only an
upper bound to the real value, unless the root node
r contains all decision variables. Enforcing the clique
tree to contain a node over all decision variables results
in an exponential complexity in the number of decision
variables (Park & Darwiche, 2004), unless the factors
in the root node are factorized (Meek & Wexler, 2011).

Another simple but often effective approach to the
MAP assignment problem is to perform a search
over the space of assignments, and to use factor-
elimination to evaluate candidate solutions. An up-
per bound for any partial assignment can be obtained
by running factor-max-elimination, which poten-

Anytime Marginal MAP Inference

Algorithm 2 factor-set-elimination

Require: A clique tree T over the sets of factors
K1, . . . ,Km and positive integers k1, . . . , km

Ensure: Zl ≤ Z∗ ≤ Zu
1: select a node r as root and let σ be an empty

dictionary
2: for all leaf node i do
3: let Mi be an empty set
4: for all φi ∈ Ki do
5: add µi=

∑
XIi\Ipa(i)

φi to Mi

6: set σ(µi)← µi
7: end for
8: Li=prune(Mi, σi, ki)
9: end for

10: label leaves as active and internal nodes as inactive
11: while there is an inactive node do
12: select an inactive node i whose children are all

active
13: let Mi be empty sets
14: for all φi ∈ Ki, µj ∈ Lj , j ∈ ch(i) do
15: add µi=

∑
XIi\Ipa(i)

φi
∏
j∈ch(i) µj to Mi

16: set σ(µi)←
∑

XIi\Ipa(i)

φi
∏
j∈ch(i) σ(µj)

17: end for
18: Li=prune(Mi, σ, ki)
19: label i as active
20: end while
21: Zl=max{µr : µr ∈ Lr}
22: Zu=max{σ(µr) : µr ∈ Lr}

tially narrows the search space. The algorithm of Park
& Darwiche (2003), against which we compare the al-
gorithm we devise here, builds on this idea.

5. Propagating Sets

Recall from the previous section that we can compare
the quality of different candidate solutions to the MAP
assignment problem by running factor-elimination
with the same clique tree structure but different in-
dicator factors. More generally, let K1, . . . ,Km be
a collection of sets of factors such that each P =
{φ1, . . . , φm} obtained by selecting a factor φi from Ki,
i = 1, . . . ,m, is a graphical model. Let P be a graphi-
cal model obtained in this way, and let T be a clique
tree for this model. Then T is also a clique tree for any
other graphical model induced byK1, . . . ,Km. This in-
sight is the base of the factor-set-elimination pro-
cedure in Algorithm 2, which performs a search over
the space of assignments while it propagates sets of
factors over the clique tree.

The algorithm resembles factor-elimination, but

instead of propagating factors µi, it propagates sets
of factors Li ⊆Mi={

∑
XIi\Ipa(i)

φi
∏
j∈ch(i) µj : φi ∈

Ki, µj ∈ Lj}. The elements σ(µi) obtained in lines 6
and 16 are local upper bounds which we discuss later
on. The pruning operations in lines 8 and 18 return a
subset Li ⊆ Mi of cardinality ki and recompute the
upper bounds σ(µi) to account for the discarded ele-
ments. So, if ki ≥ |Mi|, then the pruning operation
returns Li=Mi. The algorithm outputs lower and up-
per bounds Zl and Zu, respectively, to the maximum
partition function Z∗= max{

∑
X

∏
i∈[m] φi : φi ∈ Ki}

of a graphical model induced by the sets in the input.
The following result shows the correspondence of fac-
tors µi computed by this algorithm to those computed
with factor-elimination.

Theorem 1. For i = 1, . . . ,m, any µi ∈ Li satis-
fies µi =

∑
Xh(i)

φi
∏
j∈de(i) φj for some combination

of φi ∈ Ki and φj ∈ Kj for all j ∈ de(i).

Proof. First, note that the definition of µi in factor-
set-elimination is identical to the definition in
factor-elimination. Assume the prunining opera-
tions are not performed, that is, that prune(Mi, σi, ki)
returns Mi. Then it is not difficult to see that µi
matches the computation in factor-elimination for
some graphical model induced by K1, . . . ,Km. But
since the pruning operation returns a subset of Mi,
this holds also for any µi ∈ Li.

The following result follows immediately from the
above theorem.

Corollary 1. Zl =
∑

X

∏
i∈[m] φi for some combina-

tion of factors (φ1, . . . , φm) ∈ K1 × · · · × Km.

If the algorithm is run with factor sets K1, . . . ,Km
that induce graphical models corresponding to differ-
ent assignments to decision variables as explained in
Section 3, the numbers Zl and Zu returned are lower
and upper bounds for the MAP assignment probabil-
ity Z∗=maxd Pr(XD=d). In fact, if ki= |Mi| for all
i = 1, . . . ,m, the algorithm is equivalent to an exhaus-
tive search over the space of assignments, and thus
returns Zl = Z∗. Moreover, the value of Zl is actu-
ally achieved by some assignment, and hence denotes
the value of a feasible solution. The assignment corre-
sponding to Zl can be obtained by tracking back the
indicator factors δi, i ∈ D, that were propagated to
generate the number µr=Zl.

The complexity of the algorithm is determined by the
number of additions and multiplications needed to
compute each factor µi in a set Mi plus the complex-
ity of the pruning operation. Similarly to factor-
elimination, the complexity of computing each µi

Anytime Marginal MAP Inference

is O(msw+1). Let k be the maximum of k1, . . . , km
and |K1|, . . . , |Km|. By design, each set Mi contains
|Ki|

∏
j∈ch(i) |Lj | = |Ki|

∏
j∈ch(i) kj ≤ kc elements,

where c is the maximum number of neighbors of a
node. Hence, the algorithm runs in O(kcmsw). If the
clique tree given as input contains a bounded number
of children for each node and bounded width, the algo-
rithm runs in time polynomial in the inputs k1, . . . , km
and K1, . . . ,Km. Note that for any given any graphi-
cal model of bounded treewidth we can obtain a clique
tree of bounded width and bounded number of children
per node (e.g., a binary clique tree).

5.1. Pruning

The pruning operations are responsible for reducing
the size of the propagated sets, enabling efficient infer-
ence. The trade-off between the quality of the solution
and the computation time is determined by the pa-
rameters k1, . . . , km in the input. In the following, we
discuss how the pruning operations are implemented.

Consider a set of factors µ
(1)
i , . . . , µ

(k)
i which we wish

to discard to reduce the size of a set Mi produced
during factor-set-elimination. Our first insight is
that convex combinations can be safely removed, as
they are certainly outperformed by some extrema.

A factor µ
(1)
i is a convex combination of factors µ

(2)
i

and µ
(3)
i if there is a real 0 ≤ λ ≤ 1 such that µ

(1)
i =

λµ
(2)
i + (1 − λ)µ

(3)
i . Given a set of factors Mi, we

say that µi ∈ Mi is an extreme if it is not a convex
combination of any two other elements in the set. Non-
extreme factors can be safely removed fromMi, as the
following result shows.

Theorem 2. Let µ
(1)
i , µ

(2)
i and µ

(3)
i be three different

factors in a set Mi such that µ
(1)
i is a convex combi-

nation of µ
(2)
i and µ

(3)
i . Then any solution value µ

(1)
r

different from µ
(2)
r and µ

(3)
r , where µ

(`)
r is obtained by

propagating µ
(`)
i up to the root, is not an optimal so-

lution.

Proof. Let µ
(1)
j =

∑
XIj\Ip

φjµ
(1)
i

∏
k∈ch(j)\{i} µk,

µ
(2)
j =

∑
XIj\Ip

φjµ
(2)
i

∏
k∈ch(j)\{i} µk and µ

(3)
j =∑

XIj\Ip
φjµ

(3)
i

∏
k∈ch(j)\{i} µk be factors in Mj ,

where j = pa(i) and p = pa(j). Then µ
(1)
j is a con-

vex combination of µ
(2)
j and µ

(3)
j . By induction in

the nodes of the clique tree, we find that any number

µ
(1)
r ∈Mr obtained by propagating µ

(1)
i up to the root

is a convex combination of numbers µ
(2)
r and µ

(3)
r ob-

tained by propagating µ
(2)
i and µ

(3)
i , respectively, up

to the root. Hence, µ
(1)
r is necessarily (strictly) less

than max{µ(2)
r , µ

(3)
r }, which is less than or equal to

the optimal solution Z∗.

There is also another condition between factors which
if verified allows us to safely discard a factor from

Mi. Let µ
(1)
i and µ

(2)
i be two factors in Mi. We say

that µ
(2)
i (weakly Pareto-)dominates µ

(1)
i , and write

µ
(2)
i ≥ µ

(1)
i , if µ

(2)
i (x) ≥ µ

(1)
i (x) for all x ∈ XIi∩Ipa(i)

.
As the following result shows, we can safely remove
dominated factors.

Theorem 3. Let µ
(1)
i and µ

(2)
i be two different factors

in a set Mi such that µ
(2)
i ≥ µ

(1)
i . Then any solution

µ
(1)
r 6=µ

(2)
r , where µ

(`)
r is obtained by propagating µ

(`)
i

up to the root, is not an optimal solution.

Proof. Let µ
(1)
j =

∑
XIj\Ip

φjµ
(1)
i

∏
k∈ch(j)\{i} µk and

µ
(2)
j =

∑
XIj\Ip

φjµ
(2)
i

∏
k∈ch(j)\{i} µk be factors in

Mj , where j = pa(i) and p = pa(j). Since the fac-
tors contain only nonnegative values, it follows that

µ
(2)
j ≥ µ

(1)
j . By induction in the nodes of the clique

tree, we find that any number µ
(1)
r ∈ Mr generated

by propagating µ
(1)
i up to the root is dominated by a

number µ
(2)
r obtained by propagating µ

(2)
i , and there-

fore (strictly) less than the optimal solution Z∗.

The pruning operation prune(Mi, σ, ki) first discards
non-extreme and dominated factors from Mi. Albeit
accurate, these operations are seldom enough to pro-
duce a set Li whose cardinality is less than the de-
sired ki. To be able to meet the cardinality constraint,
we partition the remaining factors in Mi (after non-
extreme and dominated elements have been removed)

in ki clusters C(1)i . . . , C(ki)i , and obtain Li by select-

ing one representative factor µ(`)
i

in each cluster C(`)i .
These representatives are valid solutions in that they
can be produced from combination of factors from
the input sets. Hence, they provide attainable lower
bounds for the optimal solution. To account for the
(worst-case) errors introduced by the pruning opera-
tions we introduce upper bound factors σ(µi) for each

discarded factor µi ∈ C(`)i \ {µ(`)
i
}. We first discuss

how to obtain upper bounds for discarded factors.

Consider a set of factors µ
(1)
i , . . . , µ

(k)
i which we intend

to discard, and let µi be a factor such that µi(x) =

max{µ(1)
i (x), . . . , µ

(k)
i (x)} for all x ∈ XIi∩Ipa(i)

. Then

µi ≥ µ
(`)
i for ` = 1, . . . , k, and it follows from Theo-

rem 3 that any value µr obtained by propagating µi
up to the root is greater than or equal to a solution

Anytime Marginal MAP Inference

σ(µ(1)

i
)

σ(µ(2)

i
)

µ
(1)
i

µ
(2)
i

µ
(3)
i

µ
(4)
i
µ
(5)
i

Figure 2. A clustering of factors C(1)
i = {µ(1)

i , µ
(2)
i } and

C(2)
i ={µ(3)

i , µ
(4)
i , µ

(5)
i } with representatives µ(1)

i
= µ

(1)
i and

µ(2)

i
= µ

(4)
i , and induced upper bounds σ(µ(1)

i
) and σ(µ(2)

i
).

µ
(`)
r obtained by propagating µ

(`)
i up to the root, for

` = 1, . . . , k. Thus, we can use the factor µi as an
upper bound of the factors we wish to discard. We
could introduce one upper bound for each discarded
factor, but this would cause the propagation of an
exponential number of upper bounds (therefore more
than the limit ki). On the other extreme, we might
produce a single upper bound for all factors discarded
fromMi, but this would create too loose a bound. In-
stead, we generate and propagate one upper bound for
each cluster. Let µ(`)

i
be the representative of a clus-

ter C(`)i . To account for the removal of the elements in
the cluster, we update the upper bound σ(µ(`)

i
) to be

max{σ(µi) : µi ∈ C(`)i }. Figure 2 depicts the pruning

of a set Mi = {µ(1)
i , µ

(2)
i , µ

(3)
i , µ

(4)
i , µ

(5)
i }, and the in-

duced upper bounds. Let µ
(`)
r be a solution obtained

by propagating the representative µ(`)
i

of cluster C(`)i ,

and let σ(µ
(`)
r) be the corresponding propagated up-

per bound. Then it follows that µ
(`)
r ≤ Z∗ ≤ σ(µ

(`)
r),

where Z∗ is the optimal solution of the problem.

There still remains to decide how to select good rep-
resentatives. To this end, we define the following

divergence metric 〈µ(1)
i , µ

(2)
i 〉 that assesses the qual-

ity of “representing” a factor µ
(1)
i by a factor µ

(2)
i as

〈µ(1)
i , µ

(2)
i 〉=max{µ(1)

i (x)/µ
(2)
i (x) : x ∈ X}. The met-

ric matches the worst-case (multiplicative) error in dis-

carding µ
(1)
i while selecting µ

(2)
i as representative, that

is µ
(1)
i ≤ µ

(2)
i 〈µ

(1)
i , µ

(2)
i 〉. Note that the divergence is

asymmetric, and that it is greater than one if and only

if µ
(1)
i is not dominated by µ

(2)
i .

Given a set of representatives Vi={µ(1)
i
, . . . , µ(ki)

i
} in

Mi, we assign each factor µi ∈ Mi to a cluster C(`)i
such that 〈µi, µ(`)

i
〉 = minl∈[ki]〈µi, µ(`)

i
〉. The overall

performance of the clustering can be conservatively
measured by the largest divergence within a cluster:

ε(Vi) = max
`∈[ki]

max{〈µi, µ(`)
i
〉 : µi ∈ C(`)i } . (2)

Ideally, we would like to find a set Vi ⊆ Mi of ki
representatives that obtains the minimum ε(Vi) over
all sets. However, this would add an extra complexity
to the computations. Instead, we use a greedy search
that at each step attempts to replace a factor inMi\Vi
with a factor in Vi such that ε(Vi) is decreased.

The following result shows that the the solution found
by the algorithm improves monotonically by improving
the clusterings at any node of the clique tree.

Theorem 4. The outputs Zl and Zu satisfy Zu ≤
Zl
∏
i∈[m] ε(Vi).

Proof. Consider some inactive node i whose children
j are all active, and assume by inductive hypothesis
that for any µj ∈ Lj it holds that σ(µj) ≤ µjej ,
where ej is defined as ε(Vj)

∏
k∈de(j) ε(Vk). Then any

µi ∈ Mi satisfies σ(µi)=
∑

XIi\Ip
φj
∏
j∈ch(i) σ(µj) ≤∏

k∈de(i) ε(Vk)[
∑

XIi\Ip
φj
∏
j∈ch(i) µj] = µiei/ε(Vi),

where p = pa(i) and µj ∈ Lj . Let µ
i

be the repre-
sentative of a cluster Ci ⊆ Mi, with σ(µ

i
) = max{µi :

µi ∈ Ci}. It follows from (2) that σ(µ
i
) ≤ ε(Vi)µi.

After the clustering, the new upper bound assigned to
µ
i

is (by design) given by µi = max{σ(µi) : µi ∈ Ci},
which satisfies µi ≤ σ(µ

i
)ei/ε(Vi) ≤ eiµi.

The above result guarantees that the algorithm finds
lower and upper bounds whose ratio is not worse
than the product of the clustering quality measures∏
i∈[m] ε(Vi). The quality of each cluster ε(Vi) can be

improved by increasing the maximum allowed num-
ber of elements ki in the set. Since each set cannot
have more than |K1|· · · |Km| elements, the algorithm is
guaranteed to converge to the optimum in finite time.
In fact, each maximum set size ki needs only to be
as high as the number of extrema and non-dominated
factors in Mi, since these are shown to lead to exact
computations. These remarks lead naturally to the
anytime algorithm we present in the next section.

6. Anytime Inference

An anytime algorithm is a procedure that can be inter-
rupted at any time with a meaningful solution whose
quality is a monotonic function of runtime. Hence,
anytime algorithms allow a trade-off between compu-
tation time and quality of solutions.

We can easily transform factor-set-elimination
into an anytime algorithm that continuously improve
the lower and upper bounds by increasing the maxi-
mum set cardinalities k1, . . . , km. The procedure is de-
scribed in Algorithm 3. The anytime algorithm starts
by running factor-set-elimination with all maxi-

Anytime Marginal MAP Inference

Algorithm 3 anytime-inference

Require: A clique tree T over sets K1, . . . ,Km and
integer c

1: let k
(0)
1 = 1, . . . , k

(0)
m = 1, Z

(0)
l =0 and Z

(0)
u =1

2: set t← 0
3: while Z

(t)
l < Z

(t)
u and not interrupted do

4: find the node i with highest ε(Vi)
5: run factor-set-elimination with

k
(t)
1 , . . . , k

(t)
m and let (Zl, Zu) be its output

6: set Z
(t+1)
l = max{Zl, Z(t)

l }, Z
(t+1)
u =

min{Zu, Z(t)
u } and k

(t+1)
i =k

(t)
i + c, i = 1, . . . ,m

7: set t← t+ 1
8: end while

mum set cardinalities k
(0)
1 , . . . , k

(0)
m set to one. This

produces an arbitrary (but feasible) lower bound Z
(0)
l ,

and an upper bound Z
(0)
u that matches the value re-

turned by factor-max-elimination. Then, for each
time step, the algorithm increases the maximum set
cardinality ki of the node i with poorest clustering
quality ε(Vi) by a given constant c. In principle, even
if we improve the clustering quality we might obtain
a worse solution, as the metric that evaluates cluster-
ing quality optimizes worst case. This can be circum-
vented by enlarging each set Li incrementally.

7. Experiments

We performed experiments with three groups of graph-
ical models, which range from simple to very chal-
lenging problems. The first group, which appears in
the top five lines of Table 1, consists of benchmark
Bayesian networks used in real applications.2 In these
networks, the MAP inference asks for optimum assign-
ments of the root nodes given some evidence on every
leaf. This creates MAP problems where every variable
in the network is relevant to the solution and obtain-
ing an exact solution by factor-max-elimination
would take time (at least) exponential in the number
of decision variables. The second group (lines 6–8 of
the table) contains graphical models designed to solve
multiple knapsack problems with three bags and vary-
ing number of items (20, 50 and 100). The graphs
are structured in a chain of latent variables with root
decision nodes as parents. Besides the importance of
the multiple knapsack itself, this group allows us to
evaluate the performance of the methods when the
search space is large but the treewidth is low. Fi-
nally, the third group (last seven lines of the table)
consists of grid-structured graphical models whose pa-

2At the time of this submission, they were available at
http://www.cs.huji.ac.il/site/labs/compbio/Repository/.

Net n d SI AFSE Z/Z∗

Insurance 27 2 0.2s 0.9s 1
Alarm 37 12 0.1s 0.2s 1
Barley 48 10 10s >1h 0.1

Hailfinder 56 17 0.5s 1.4s 1
Pigs 441 145 6m 5m 1

KS-3-20 42 20 2.2s 0.1s 1
KS-3-50 102 50 >1h 0.4s 1
KS-3-100 202 100 >1h 11m 1

Grid-4-10-2 80 40 >1h 7m 0.96
Grid-4-25-2 200 100 >1h 22m 0.73
Grid-4-30-2 240 120 >5h 2.6h 0.55
Grid-6-6-1 36 20 1.1s 0.1s 1

Grid-10-10-1 100 36 1.8s 7s 1
Grid-16-16-1 256 60 48s 12m 1
Grid-18-18-1 324 68 – 2.9h –

Table 1. Performance of Anytime Factor-Set-Elimination
algorithm (AFSE) and SamIam (SI) on real and synthetic
models.

rameters were uniformly sampled. Each Grid-x-y-z
model contains x rows, y columns and z planes. For
z = 2, variables are quaternary and the grid has two
planes: one is the grid itself and the other is formed
by decision variables that are linked to grid variables
in a one-to-one correspondence; for z= 1, the models
are usual planar binary grids, with all border variables
chosen as decision variables. These experiments allow
us to better evaluate how the performance is affected
by the treewidth and the size of the search space.

We compare our algorithm against SamIam’s imple-
mentation of the systematic search algorithm of Park
& Darwiche (2003), which we refer to as SI. We chose
SI because (i) it is a state-of-the-art algorithm, (ii) its
implementation is publicly available, (iii) it is an any-
time procedure, and (iv) it returns feasible solutions.

Table 1 shows the results of the experiments, compar-
ing the proposed method (named AFSE for short) and
SI. The table presents names, total number of vari-
ables, number of decision variables, amount of time
that SI and AFSE, respectively, spent to solve the in-
stances, and errors of the obtained solution (in case
one of the methods was unable to solve the instances
in a reasonable amount of time and memory). The er-
ror corresponds to the worst of the two methods and it
was obtained by calculating the ratio of the returned
value and the optimum (the worst of the two methods
can be identified in the columns corresponding to the
time they spent, indicated by a “> t”, where t is the
time-limit used for the given method).

Some results from Table 1 deserve an additional dis-
cussion. Firstly, models in the second group and the
two-plane grids of the third group of experiments in-

Anytime Marginal MAP Inference

dicate that AFSE is by far faster when treewidth is
small. Still, SI was able to find the best solution in
the models of the second group (even though it was
not aware of it, so the search have not stopped), but
clearly degrades in the two-plane grids, as can be seen
in the error column of the table, which reaches 55%
in Grid-4-30-2. This means that not only the algo-
rithm did not finish but the best solution found was
far from the optimum. Such situation justifies the use
of methods that can provide anytime lower and upper
bounds for the solution. Secondly, AFSE performed
similarly to SI in (real) Bayesian networks, with the
largest differences in the Barley and Pigs networks (the
former favorable to SI, the latter favorable to AFSE).
We see on the squared grids of the third group that SI
can handle better the increase of treewidth, indeed a
known characteristic of SI. The exception is Grid-18-
18-1, where SI exhausted the 8 GB of memory granted
without being able to produce a (candidate) solution.
Finally, the time-accuracy trade-off of the algorithms
can be seen in Figure 3, which shows the accuracy of
AFSE and SI on models Grid-4-30-2 and Grid-4-25-2
as a function of time. Lower and upper bounds con-
verge to the optimal solution, and while SI starts with
a better lower bound, it gets stuck in the search and
does not converge within the allowed time.

8. Conclusion

We present a new anytime algorithm for the marginal
MAP assignment problem in graphical models. We
show theoretically that the algorithm produces feasible
solutions whose quality are a function of the amount
of computational resources granted. The convergence
and error bounds are analyzed.

By performing experiments with real and synthetic
graphical models, we show that the proposed algo-
rithm is competitive against the systematic search of
Park & Darwiche (2003). In particular, our algorithm
compares favorably when the problems exhibit mod-
erate treewidth but large search space. Unfortunately,
as the treewidth increases, the bounds returned by the
algorithm become too loose. This could be mitigated
by decomposing the propagated factors into smaller
domains, as in the work of Meek & Wexler (2011).

Understanding how the numerical parameters of the
input affect the complexity of the algorithm is an im-
portant question that remains open. Finally, in the
spirit of the result by de Campos (2011) it is possi-
ble to show that the anytime algorithm is also a fully
polynomial-time approximation scheme for graphical
models if we assume that both the treewidth and the
number of values a variable can assume are bounded.

0 0.5 1 1.5 2

·104

−402

−400

−398

lo
g
Z

AFSE Zl AFSE Zu SI

0 500 1,000 1,500 2,000 2,500
−332

−331

−330

−329

−328

Time (s)

lo
g
Z

AFSE Zl AFSE Zu SI

Figure 3. Quality of the solutions of AFSE and SI on the
Grid-4-30-2 and Grid-4-25-2 models by running time.

Acknowledgments

This work was partially supported by the Swiss NSF
grants no. 200020 134759/1 and 200020 132252.

References

de Campos, C.P. New complexity results for MAP in
Bayesian networks. In IJCAI ’11, pp. 2100–2106,
2011.

Jiang, J., Rai, P., and III, H. Daume. Message-passing
for approximate MAP inference with latent vari-
ables. In NIPS ’11, pp. 1197–1205. 2011.

Koller, D. and Friedman, N. Probabilistic Graphical
Models: Principles and Techniques. 2009.

Liu, Q. and Ihler, A. Variational algorithms for
marginal MAP. In UAI ’11, pp. 453–462, 2011.

Meek, C. and Wexler, Y. Approximating max-sum-
product problems using multiplicative error bounds.
Bayesian Statistics, (9):439–472, 2011.

Park, J.D. and Darwiche, A. Solving MAP exactly
using systematic search. In UAI ’03, pp. 459–468,
2003.

Park, J.D. and Darwiche, A. Complexity results
and approximation strategies for MAP explanations.
JAIR, 21:101–133, 2004.

Yuan, C., Lu, T.-C., and Druzdzel, M. J. Annealed
MAP. In UAI ’04, pp. 628–635, 2004.

