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Abstract

We consider the high-dimensional het-
eroscedastic regression model, where the
mean and the log variance are modeled as
a linear combination of input variables. Ex-
isting literature on high-dimensional linear
regression models has largely ignored non-
constant error variances, even though they
commonly occur in a variety of applica-
tions ranging from biostatistics to finance.
In this paper we study a class of non-
convex penalized pseudolikelihood estimators
for both the mean and variance parame-
ters. We show that the Heteroscedastic Iter-
ative Penalized Pseudolikelihood Optimizer
(HIPPO) achieves the oracle property, that
is, we prove that the rates of convergence are
the same as if the true model was known. We
demonstrate numerical properties of the pro-
cedure on a simulation study and real world
data.

1. Introduction

High-dimensional regression models have been stud-
ied extensively in both machine learning and statisti-
cal literature. Statistical inference in high-dimensions,
where the sample size n is smaller than the ambient
dimension p, is impossible without assumptions. As
the concept of parsimony is important in many scien-
tific domains, most of the research in the area of high-
dimensional statistical inference is done under the as-
sumption that the underlying model is sparse, in the
sense that the number of relevant parameters is much
smaller than p, or that it can be well approximated by
a sparse model.
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Penalization of the empirical loss by the `1 norm has
become a popular tool for obtaining sparse models and
huge amount of literature exists on theoretical prop-
erties of estimation procedures (see,e.g., Zhao & Yu,
2006; Wainwright, 2009; Zhang, 2009; Zhang & Huang,
2008, and references therein) and on efficient algo-
rithms that numerically find estimates (see Bach et al.,
2011, for an extensive literature review). Due to limi-
tations of the `1 norm penalization, high-dimensional
inference methods based on the class of concave penal-
ties have been proposed that have better theoretical
and numerical properties (see,e.g., Fan & Li, 2001; Fan
& Lv, 2009; Lv & Fan, 2009; Zhang & Zhang, 2011).

In all of the above cited work, the main focus is on
model selection and mean parameter estimation. Only
few papers deal with estimation of the variance in high-
dimensions (Sun & Zhang, 2011; Fan et al., 2012) al-
though it is a fundamental problem in statistics. Vari-
ance appears in the confidence bounds on estimated
regression coefficients and is important for variable se-
lection as it appears in Akaike’s information criterion
(AIC) and the Bayesian information criterion (BIC).
Furthermore, it provides confidence on the predictive
performance of a forecaster.

In applied regression it is often the case that the er-
ror variance is non-constant. Although the assumption
of a constant variance can sometimes be achieved by
transforming the dependent variable, e.g., by using a
Box-Cox transformation, in many cases transforma-
tion does not produce a constant error variance (Car-
roll & Ruppert, 1988). Another approach is to ignore
the heterogeneous variance and use standard estima-
tion techniques, but such estimators are less efficient.
Aside from its use in reweighting schemes, estimat-
ing variance is important because the resulting pre-
diction intervals become more accurate and it is often
important to explore which input variables drive the
variance. In this paper, we will model the variance
directly as a parametric function of the explanatory
variables.

Heteroscedastic regression models are used in a vari-
ety of fields ranging from biostatistics to economet-
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rics, finance and quality control in manufacturing. In
this paper, we study penalized estimation in high-
dimensional heteroscedastic linear regression models,
where the mean and the log variance are modeled as
a linear combination of explanatory variables. Mod-
eling the log variance as a linear combination of the
explanatory variables is a common choice as it guar-
antees positivity and is also capable of capturing vari-
ance that may vary over several orders of magnitudes
(Carroll & Ruppert, 1988; Harvey, 1976). Main contri-
butions of this paper are as follows. First, we propose
HIPPO (Heteroscedastic Iterative Penalized Pseudo-
likelihood Optimizer) for estimation of both the mean
and variance parameters. Second, we establish the or-
acle property (in the sense of Fan & Lv (2009)) for
the estimated mean and variance parameters. Finally,
we demonstrate numerical properties of the proposed
procedure on a simulation study, where it is shown
that HIPPO outperforms other methods, and analyze
a real data set.

1.1. Problem Setup and Notation

Consider the usual heteroscedastic linear model,

yi = x′iβ + σ(xi,θ)εi, i = 1, . . . , n, (1)

where X = (x1, . . . ,xn)′ = (X1, . . . ,Xp) is an n × p
matrix of predictors with i.i.d. rows x1, . . . ,xn, y =
(y1, . . . , yn) is an n-vector of responses, the vectors
β ∈ Rp and θ ∈ Rp are p-vectors of mean and vari-
ance parameters, respectively, and ε = (ε1, . . . εn) is
an n-vector of i.i.d. random noise with mean 0 and
variance 1. We assume that the noise ε is indepen-
dent of the predictors X. The function σ(x,θ) has
a known parametric form and, for simplicity of pre-
sentation, we assume that it takes a particular form
σ(xi,θ) = exp(x′iθ/2).

Throughout the paper we use [n] to denote the set
{1, . . . , n}. For any index set S ⊆ [p], we denote βS
to be the subvector containing the components of the
vector β indexed by the set S, and XS denotes the
submatrix containing the columns of X indexed by
S. For a vector a ∈ Rn, we denote supp(a) = {j :
aj 6= 0} the support set, ||a||q, q ∈ (0,∞), the `q-
norm defined as ||a||q = (

∑
i∈[n] a

q
i )

1/q with the usual

extensions for q ∈ {0,∞}, that is, ||a||0 = |supp(a)|
and ||a||∞ = maxi∈[n] |ai|. For notational simplicity,
we denote || · || = || · ||2 the `2 norm. For a matrix A ∈
Rn×p we denote |||A|||2 the operator norm, ||A||F the
Frobenius norm, and Λmin(A) and Λmax(A) denote
the smallest and largest eigenvalue respectively.

Under the model in (1), we are interested in estimating
both β and θ. In high-dimensions, when p � n, it is

common to assume that the support β is small, that
is, S = supp(β) and |S| � n. Similarly, we assume
that the support T = supp(θ) is small.

1.2. Related Work

Consider the model (1) with constant variance, i.e.,
σ(x,θ) ≡ σ0. Most of the existing high-dimensional
literature is focused on estimation of the mean param-
eter β in this homoscedastic regression model. Under
a variety of assumptions and regularity conditions, any
penalized estimation procedure mentioned in introduc-
tion can, in theory, select the correct sparse model with
probability tending to 1. Literature on variance esti-
mation is not as developed. Fan et al. (2012) proposed
a two step procedure for estimation of the unknown
variance σ0, while (Sun & Zhang, 2011) proposed an
estimation procedure that jointly estimates the model
and the variance.

Problem of estimation in the heteroscedastic linear re-
gression models have been studied extensively in the
classical setting with p fixed, however, the problem of
estimation under the model (1) when p � n has not
been adequately studied. Jia et al. (2010) assume that
σ(x,θ) = |x′β| and show that Lasso is sign consistent
for the mean parameter β under certain conditions.
Their study shows limitations of lasso, for which many
highly scalable solvers exist. However, no new method-
ology is developed, as the authors acknowledge that
the log-likelihood function is highly non-convex. Dette
& Wagener (2011) study the adaptive lasso under the
model in (1). Under certain regularity conditions, they
show that the adaptive lasso is consistent, with sub-
optimal asymptotic variance. However, the weighted
adaptive lasso is both consistent and achieves optimal
asymptotic variance, under the assumption that the
variance function is consistently estimated. However,
they do not discuss how to obtain an estimator of the
variance function in a principled way and resort to
an ad-hoc fitting of the residuals. Daye et al. (2011)
develop HHR procedure that optimizes the penalized
log-likelihood under (1) with the `1-norm penalty on
both the mean and variance parameters. As the ob-
jective is not convex, HHR estimates β with θ fixed
and then estimates θ with β fixed, until convergence.
Since the objective is biconvex, HHR converges to a
stationary point. However, no theory is provided for
the final estimates.

2. Methodology

In this paper, we propose HIPPO (Heteroscedastic It-
erative Penalized Pseudolikelihood Optimizer) for es-
timating β and θ under model (1).
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In the first step, HIPPO finds the penalized pseudo-
likelihood maximizer of β by solving the following ob-
jective

β̂ = arg min
β∈Rp

||y −Xβ||2 + 2n
∑
j∈[p]

ρλS
(|βj |), (2)

where ρλS
is the penalty function and the tuning pa-

rameter λS controls the sparsity of the solution β̂.

In the second step, HIPPO forms the penalized pseu-
dolikelihood estimate for θ by solving

θ̂ = arg min
θ∈Rp

∑
i∈[n]

x′iθ +
∑
i∈[n]

η̂2i exp(−x′iθ)

+ 4n
∑
j∈[p]

ρλT
(|θj |)

(3)

where η̂ = y −Xβ̂ is the vector of residuals.

Finally, HIPPO computes the reweighted estimator of
the mean by solving

β̂w = arg min
β∈Rp

∑
i∈[n]

(yi − x′iβ)2

σ̂i
+ 2n

∑
j∈[p]

ρλS
(|βj |)

(4)

where σ̂i = exp(x′iθ̂/2) are the weights.

In classical literature, estimation under heteroscedas-
tic models is achieved by employing a pseudolikelihood
objective. The pseudolikelihood maximization princi-
ple prescribes the scientist to maximize a surrogate
likelihood, i.e. one that is believed to be similar to the
likelihood with the true unknown fixed variances (or
means alternatively). In classical theory, central limit
theorems are derived for many pseudo-maximum like-
lihood (PML) estimators using generalized estimating
equations (Ziegler, 2011). HIPPO fits neatly into the
pseudolikelihood framework because the first step is a
regularized PML where only the mean structure needs
to be correctly specified. The second step and third
steps may be similarly cast as PML estimators. In-
deed, all our theoretical results are due to the fact that
in each step we are optimizing a pseudolikelihood that
is similar to the true unknown likelihoods (with alter-
nating free parameters). Moreover, it is known that
if the surrogate variances in the mean PML are more
similar to the true variances then the resulting esti-
mates will be more asymptotically efficient. With this
in mind, we recommend a third reweighting procedure
with the variance estimates from the second step.

Fan & Li (2001) advocate usage of penalty functions
that result in estimates satisfying three properties: un-
biasedness, sparsity and continuity. A reasonable esti-
mator should correctly identify the support of the true

parameter with probability converging to one. Fur-
thermore, on this support, the estimated coefficients
should have the same asymptotic distribution as if an
estimator that knew the true support was used. Such
an estimator satisfies the oracle property. A number of
concave penalties result in estimates that satisfy this
property: the SCAD penalty (Fan & Li, 2001), the
MCP penalty (Zhang, 2010) and a class of folded con-
cave penalties (Lv & Fan, 2009). For concreteness, we
choose to use the SCAD penalty, which is defined by
its derivative

ρ′λ(t) = λ

[
I{t ≤ λ}+

(aλ− t)+
(a− 1)λ

I{t > λ}
]
, (5)

where often a = 3.7 is used. Note that estimates pro-
duced by the `1-norm penalty are biased, and hence
this penalty does not achieve oracle property.

HIPPO is related to the iterative HHR algorithm of
Daye et al. (2011). In particular, the first two itera-
tions of HHR are equivalent to HIPPO with the SCAD
penalty replaced with the `1 norm penalty. In prac-
tice, one can continue iterating between solving (3)
and (4), however, establishing theoretical properties
for those iterates is a non-trivial task. From our nu-
merical studies, we observe that HIPPO performs well
when stopped after the first two iterations.

2.1. Tuning Parameter Selection

As described in the previous section, HIPPO requires
selection of the tuning parameters λS and λT , which
balance the complexity of the estimated model and
the fit to data. A common approach is to form a grid
of candidate values for the tuning parameters λS and
λT and chose those that minimize the AIC or BIC
criterion

AIC(λS , λT ) =
∑
i∈[n]

`(yi,xi; β̂, θ̂) + 2d̂f , (6)

BIC(λS , λT ) =
∑
i∈[n]

`(yi,xi; β̂, θ̂) + d̂f log n (7)

where, up to constants,

`(y,x;β,θ) = x′θ + (y − x′β)2 exp(−x′θ)

is the negative log-likelihood and

d̂f = |supp(β̂)|+ |supp(θ̂)|

is the estimated degrees of freedom. In Section 4,
we compare performance of the AIC and the BIC for
HIPPO in a simulation study.
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2.2. Optimization Procedure

In this section, we describe numerical procedures used
to solve optimization problems in (2), (3) and (4). Our
procedures are based on the local linear approximation
for the SCAD penalty developed in (Zou & Li, 2008),
which gives:

ρλ(|βj |) ≈ ρλ(|β(k)
j |) + ρ′λ(|β(k)

j |)(|βj | − |β
(k)
j |),

for βj ≈ β(k)
j .

This approximation allows us to substitute the SCAD
penalty

∑
j∈[p] ρλ(|βj |) in (2), (3) and (4) with∑

j∈[p]

ρ′λ(|β̂(k)
j |)|βj |, (8)

and iteratively solve each objective until convergence
of {β̂(k)}k. We set the initial estimates β̂(0) and θ̂(0)

to be the solutions of the `1-norm penalized problems.
The convergence of these iterative approximations
follows from the convergence of the MM (minorize-
maximize) algorithms (Zou & Li, 2008).

With the approximation of the SCAD penalty given
in (8), we can solve (2) and (4) using standard lasso
solvers, e.g., we use the proximal method of Beck &
Teboulle (2009). The objective in (3) is minimized
using a coordinate descent algorithm, which is detailed
in Daye et al. (2011).

3. Theoretical Properties of HIPPO

In this section, we present theoretical properties of
HIPPO. In particular, we show that HIPPO achieves
the oracle property for estimating the mean and vari-
ance under the model (1). All the proofs are deferred
to Appendix.

We will analyze HIPPO under the following assump-
tions, which are standard in the literature on high-
dimensional statistical learning (see, e.g. Fan et al.,
2012).

Assumption 1. The matrix X = (x1, . . . ,xn)′ ∈ Rn×p
has independent rows that satisfy xi = Σ1/2zi where
{zi}i are i.i.d. subgaussian random variables with
Ezi = 0, Eziz

′
i = I and parameter K (see Appendix

for more details on subgaussian random variables).
Furthermore, there exist two constants Cmin, Cmax > 0
such that

0 < Cmin ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ Cmax <∞.

Assumption 2. The errors ε1, . . . , εn are i.i.d. subgaus-
sian with zero mean and parameter 1.

Assumption 3. There are two constants β̄ and θ̄ such
that ||β|| ≤ β̄ <∞ and ||θ|| ≤ θ̄ <∞.

Assumption 4. |S| = CSn
αS and |T | = CTn

αT for
some αS ∈ (0, 1) and αT ∈ (0, 1/3) and constants
CS , CT > 0.

The following assumption will be needed for showing
the consistency of the weighted estimator β̂w in (4).

Assumption 5. Define

DSS = n−1X′Sdiag(exp(−Xθ))XS .

There exist constants 0 ≤ Dmin, Dmax ≤ ∞ such that

lim
n→∞

P[Λmax(DSS) ≤ Dmax] = 1, and

lim
n→∞

P[Λmin(DSS) ≥ Dmin] = 1.

Furthermore, we have that

lim
n→∞

|||DSS − EDSS |||2 = oP (1).

With these assumption, we state our first result, re-
garding the estimator β̂ in (2).

Theorem 1. Suppose that the assumptions (1)-
(4) are satisfied. Furthermore, assume that λS ≥
c1

√
log(p) exp(

√
c2 log(n))/n, minj∈[S] |βj | � λS �

c3

√
log(s) exp(

√
c2 log(n))/n and log(p) = O(nα0) for

some α0 ∈ (0, 1). Then there is a strict local minimizer

β̂ = (β̂′S ,0
′
SC )′ of (2) that satisfies

||β̂S − βS ||∞ ≤ c3

√
exp(

√
c2 log(n)) log(s)

n
(9)

for some positive constants c1, c2, and c3 and suffi-
ciently large n.

In addition, if we suppose that assumption (5) is sat-
isfied, then for any fixed a ∈ Rs with ||a||2 = 1 the
following weak convergence holds

√
n

ζ
a′(β̂S − βS)

D−→ N (0, 1) (10)

where ζ2 = a′Σ−1SSEDSSΣ−1SSa.

The first result stated in Theorem 1 established that β̂
achieves the weak oracle property in the sense of (Lv
& Fan, 2009). The extra term exp(

√
log n) is subpoly-

nomial in n and appears in the bound (9) due to the
heteroscedastic nature of the errors. The second result
establishes the strong oracle property of the estimator
β̂ in the sense of (Fan & Lv, 2009), that is, we es-
tablish the asymptotic normality on the true support
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S. The asymptotic normality shows that β̂S has the
same asymptotic variance as the ordinary least squares
(OLS) estimator on the true support. However, in the
case of a heteroscedastic model the OLS estimator is
dominated by the generalized least squares estimator.
Later in this section, we will demonstrate that β̂w has
better asymptotic variance. Note that β̂ correctly se-
lects the mean model and estimates the parameters at
the correct rate. From the upper and lower bounds
on λS , we see how the rate at which p can grow and
the minimum coefficient size are related. Larger the
ambient dimension p gets, larger the size of λS , which
lower bounds the size of the minimum coefficient.

Our next result establishes correct model selection for
the variance parameter θ.

Theorem 2. Suppose that assumptions (1)-
(5) are satisfied. Suppose further that λT ≥
nαT−1/2 log(p) log(n) and minj∈[T ] |θj | ≥ λT . Then

there is a strict local minimizer θ̂ = (θ̂′T ,0
′
TC )′ with

the strong oracle property,

||n(1−αT )/2(θ̂ − θ)|| = OP(1)

Morover, for any fixed a ∈ Rt with ||a||2 = 1 the fol-
lowing weak convergence holds

√
n

ζ
a′(θ̂T − θT )

D−→ N (0, 1) (11)

where ζ2 = a′Σ−1TTa.

With the convergence result of θ̂ we can prove consis-
tency and asymptotic normality of the weighted esti-
mator β̂ in (4).

Theorem 3. Suppose that the assumptions (1)-(5) are

satisfied and that there exists an estimator θ̂ satisfy-
ing ||θ̂ − θ||2 = O(rn), for a sequence rn → 0 and

supp(θ̂) = supp(θ). Furthermore, assume that λS ≥
c1

√
log(p) exp(

√
c2 log(n))/n, minj∈[S] |βj | � λS �

c3rn exp(
√
c2 log(n)) log(n) and log(p) = O(nα0) for

some α0 ∈ (0, 1). Then there is a strict local mini-

mizer β̂w = (β̂′w,S ,0SC ) of (4) that satisfies

||β̂w,S − βS ||∞ ≤ c3rn exp(
√
c2 log(n)) log(n) (12)

for some positive constants c1, c2, and c3 and suffi-
ciently large n.

Furthermore, for any fixed a ∈ Rs with ||a||2 = 1 the
following weak convergence holds

√
n

ζw
a′(β̂ − β)

D−→ N (0, 1) (13)

where ζ2w = a′(EDSS)−1a.

||θ − θ̂||2 Preθ Recθ

ρ = 0

HHR-AIC 0.59(0.13) 0.4(0.17) 1.00(0.00)
HIPPO-AIC 0.26(0.15) 0.6(0.22) 1.00(0.00)
HHR-BIC 0.59(0.13) 0.39(0.16) 1.00(0.00)
HIPPO-BIC 0.26(0.15) 0.59(0.22) 1.00(0.00)

ρ = 0.5

HHR-AIC 0.32(0.12) 0.68(0.21) 1.00(0.00)
HIPPO-AIC 0.38(0.22) 0.69(0.25) 1.00(0.03)
HHR-BIC 0.32(0.12) 0.68(0.21) 1.00(0.00)
HIPPO-BIC 0.38(0.22) 0.69(0.25) 0.99(0.03)

Table 1. Mean (sd) performance of HHR and HIPPO under
the model in Example 1 (averaged over 100 independent
runs). The mean parameter β is assumed to be known.

Theorem 3 establishes convergence of the weighted es-
timator β̂W in (4) and the model selection consistency.
The rate of convergence depends on the rate of con-
vergence of the variance estimator, rn. From Theo-
rem 2, we show the parametric rate of convergence
for θ̂S . The second result of Theorem 3 states that
the weighted estimator β̂w,S is asymptotically normal,
with the same asymptotic variance as the generalized
least squares estimator which knows the true model
and variance function σ(x,θ).

4. Monte-Carlo Simulations

In this section, we conduct two small scale simulation
studies to demonstrate finite sample performance of
HIPPO . We compare it to the HHR procedure (Daye
et al., 2011).

Convergence of the parameters is measured in the `2
norm, ||β̂ − β|| and ||θ̂ − θ||. We measure the iden-
tification of the support of β and θ using precision
and recall. Let Ŝ denote the estimated set of non-zero
coefficients of S, then the precision is calculated as
Preβ := |Ŝ∩S|/|Ŝ| and the recall as Recβ := |Ŝ∩S|/|S|.
Similarly, we can define precision and recall for the
variance coefficients. We report results averaged over
100 independent runs.

4.1. Example 1

Assume that the data is generated iid from the fol-
lowing model Y = σ(X)ε where ε follows a standard
normal distribution and the logarithm of the variance
is given by

log σ(X)2 = X1 +X2 +X3.
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#it ||β − β̂||2 Preβ Recβ ||θ − θ̂||2 Preθ Recθ

n = 200

HHR-AIC 1st 0.78(0.52) 0.44(0.22) 1.00(0.00) 2.10(0.11) 0.25(0.10) 0.54(0.16)
2nd 0.31(0.13) 0.88(0.15) 1.00(0.00) 1.80(0.16) 0.29(0.07) 0.71(0.14)

HIPPO-AIC 1st 0.66(0.84) 0.75(0.29) 1.00(0.02) 2.00(0.16) 0.20(0.10) 0.52(0.16)
2nd 0.08(0.07) 0.84(0.24) 1.00(0.00) 1.50(0.30) 0.30(0.11) 0.75(0.12)

HHR-BIC 1st 0.77(0.48) 0.58(0.17) 1.00(0.00) 2.10(0.10) 0.41(0.18) 0.45(0.14)
2nd 0.31(0.13) 0.89(0.13) 1.00(0.00) 1.90(0.16) 0.38(0.15) 0.65(0.17)

HIPPO-BIC 1st 0.70(0.83) 0.80(0.25) 0.99(0.03) 2.00(0.14) 0.39(0.18) 0.50(0.17)
2nd 0.08(0.06) 0.97(0.07) 1.00(0.00) 1.60(0.28) 0.44(0.16) 0.72(0.14)

n = 400

HHR-AIC 1st 0.59(0.37) 0.58(0.26) 1.00(0.00) 1.90(0.11) 0.36(0.14) 0.72(0.18)
2nd 0.30(0.24) 0.98(0.06) 1.00(0.00) 1.70(0.16) 0.43(0.13) 0.81(0.16)

HIPPO-AIC 1st 0.44(0.54) 0.87(0.22) 1.00(0.00) 1.80(0.18) 0.28(0.10) 0.67(0.15)
2nd 0.06(0.29) 0.97(0.12) 1.00(0.02) 1.00(0.31) 0.56(0.18) 0.93(0.09)

HHR-BIC 1st 0.59(0.37) 0.66(0.20) 1.00(0.00) 1.90(0.11) 0.46(0.18) 0.66(0.20)
2nd 0.30(0.23) 0.98(0.06) 1.00(0.00) 1.70(0.17) 0.46(0.13) 0.80(0.17)

HIPPO-BIC 1st 0.46(0.58) 0.89(0.19) 1.00(0.01) 1.80(0.18) 0.39(0.17) 0.65(0.17)
2nd 0.06(0.29) 0.99(0.06) 1.00(0.02) 1.00(0.31) 0.63(0.20) 0.92(0.09)

Table 2. Mean (sd) performance of HHR and HIPPO under the model in Example 2 (averaged over 100 independent
runs). We report estimated models after the first and second iteration.

The covariates associated with the variance are jointly
normal with equal correlation ρ, and marginally
N (0, 1). The remaining covariates, X4, . . . , Xp are iid
random variables following the standard Normal dis-
tribution and are independent from (X1, X2, X3). We
set (n, p) = (200, 2000) and use ρ = 0 and ρ = 0.5.
Estimation procedures know that β = 0 and we only
estimate the variance parameter θ. This example is
provided to illustrate performance of the penalized
pseudolikelihood estimators in an idealized situation.
When the mean parameter needs to be estimated as
well, we expect the performance of the procedures only
to get worse. Since the mean is known, both HHR and
HIPPO only solve the optimization procedure in (3),
HHR with the `1-norm penalty and HIPPO with the
SCAD penalty, without iterating between (4) and (3).

Table 1 summarizes the results. Under this toy model,
we observe that HIPPO performs better than HHR
when the correlation between the relevant predictors
is ρ = 0. However, we do not observe the difference
between the two procedures when ρ = 0.5. The dif-
ference between the AIC and BIC is already visible in
this example when ρ = 0. The AIC tends to pick more
complex models, while the BIC is more conservative
and selects a model with fewer variables.

4.2. Example 2

The following non-trivial model is borrowed from Daye
et al. (2011). The response variable Y satisfies

Y = β0 +
∑
j∈[p]

Xjβj + exp(θ0 +
∑
j∈[p]

Xjθj)ε

with p = 600, β0 = 2, θ0 = 1,

β[12] = (3, 3, 3, 1.5, 1.5, 1.5, 0, 0, 0, 2, 2, 2)′,

θ[15] = (1, 1, 1, 0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0, 0.75, 0.75, 0.75)′,

and the remainder of the coefficients are 0. The co-
variates are jointly Normal with cov(Xi, Xj) = 0.5|i−j|

and the error ε follows the standard Normal distribu-
tion. This is a more realistic model than the one de-
scribed in the previous example. We set p = 600 and
the number of samples n = 200 and n = 400.

Table 2 summarizes results of the simulation. We ob-
serve that HIPPO consistently outperforms HHR in
all scenarios. Again, a general observation is that the
AIC selects more complex models although the differ-
ence is less pronounced when the sample size n = 400.
Furthermore, we note that the estimation error signif-
icantly reduces after the first iteration, which demon-
strates final sample benefits of estimating the variance.
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Recall that Theorem 1 proves that the estimate β̂ con-
sistently estimates the true parameter β. However, it
is important to estimate the variance parameter θ well,
both in theory (see Theorem 3) and practice.

5. Real Data Application

Forecasting the gross domestic product (GDP) of a
country based on macroeconomic indicators is of sig-
nificant interest to the economic community. We ob-
tain both the country GDP figures (specifically we use
the GDP per capita using current prices in units of
a ‘national currency’) and macroeconomic variables
from the International Monetary Fund’s World Eco-
nomic Outlook (WEO) database. The WEO database
contains records for macroeconomic variables from
1980 to 2016 (with forecasts).

To form our response variable, yi,t, we form log-
returns of the GDP for each country (i) for each time
point (t) after records began and before the forecast-
ing commenced (each country had a different year at
which forecasting began). After removing missing val-
ues, we obtained 31 variables that can be grouped into
a few broad categories: balance of payments, govern-
ment finance and debt, inflation, and demographics.
We apply various transformations, including lagging
and logarithms forming the vectors xi,t. We fit the
heteroscedastic AR(1) model with HIPPO.

yi,t = x′i,t−1β + exp(x′i,t−1θ)εi,t

In order to initially assess the heteroscedasticity of the
data, we form the LASSO estimator with the LARS
package in R selecting with BIC. It is common practice
when diagnosing heteroscedasticity to plot the studen-
tized residuals against the fitted values. We bin the
bulk of the samples into three groups by fitted val-
ues, and observe the box-plot of each bin by residuals
(Figure 2). It is apparent that there is a difference of
variances between these bins, which is corroborated by
performing a F-test of equal variances across the sec-
ond and third bins (p-value of 4 × 10−6). We further
observe differences of variance between country GDP
log returns. We analyzed the distribution of responses
separated by countries: Canada, Finland, Greece and
Italy. The p-value from the F-test for equality of
variances between the countries Canada and Greece
is 0.008, which is below even the pairwise Bonferroni
correction of 0.0083 at 0.05 significance level. This
demonstrates heteroscedasticity in the WEO dataset,
and we are justified in fitting non-constant variance.

We compare the results from HIPPO and HHR when
applied to the WEO data set. The tuning parame-
ters were selected with BIC over a grid for λS and

HIPPO HHR

MSE 0.0089 0.0091

−`(y,X; β̂, θ̂) 0.4953 0.6783

|Ŝ| 5.4 8.9

|T̂ | 8.2 5.1

Table 3. Performance of HIPPO and HHR on WEO data
averaged over 10 folds.

λT . The metrics used to compare the algorithms are
mean square error (MSE) defined by 1

n

∑
i(yi,t− ŷi,t)2,

the partial prediction score defined as the average of
the negative log likelihoods, and the number of se-
lected mean parameters and variance parameters. We
perform 10-fold cross validation to obtain unbiased es-
timates of these metrics. In Table 3 we observe that
HIPPO outperforms HHR in terms of MSE and partial
prediction score.

6. Discussion

We have addressed the problem of statistical infer-
ence in high-dimensional linear regression models with
heteroscedastic errors. Heteroscedastic errors arise in
many applications and industrial settings, including
biostatistics, finance and quality control in manufac-
turing. We have proposed HIPPO for model selection
and estimation of both the mean and variance param-
eters under a heteroscedastic model. HIPPO can be
deployed naturally into an existing data analysis work-
flow. Specifically, as a first step, a statistician performs
penalized estimation of the mean parameters and then,
as a second step, tests for heteroscedasticity by run-
ning the second step of HIPPO. If heteroscedasticity
is discovered, HIPPO can then be used to solve penal-
ized generalized least squares objective. Furthermore,
HIPPO is well motivated from the penalized pseudo-
likelihood maximization perspective and achieves the
oracle property in high-dimensional problems.

Throughout the paper, we focus on a specific para-
metric form of the variance function for simplicity of
presentation. Our method can be extended to any
parametric form, however, the assumptions will be-
come more cumbersome and the particular numerical
procedure would change. It is of interest to develop
general unified framework for estimation of arbitrary
parametric form of the variance function. Another
open research direction includes non-parametric esti-
mation of the variance function in high-dimensions,
which could be achieved with sparse additive models
(see Ravikumar et al., 2009).
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Figure 1. A box-plot of the GDP log-returns for the 4 coun-
tries with the most observed time points (Canada, Finland,
Greece, and Italy).

Figure 2. A box-plot of the studentized residuals binned
by LASSO predicted yi,t. Only the segment of the pre-
dicted response with the bulk of the samples was binned;
the breaks in the bins are at 0.04, 0.06, 0.08, and 0.1.
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