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Abstract

The paper introduces a penalized matrix esti-
mation procedure aiming at solutions which
are sparse and low-rank at the same time.
Such structures arise in the context of social
networks or protein interactions where under-
lying graphs have adjacency matrices which
are block-diagonal in the appropriate basis.
We introduce a convex mixed penalty which
involves `1-norm and trace norm simultane-
ously. We obtain an oracle inequality which
indicates how the two effects interact accord-
ing to the nature of the target matrix. We
bound generalization error in the link pre-
diction problem. We also develop proximal
descent strategies to solve the optimization
problem efficiently and evaluate performance
on synthetic and real data sets.

1. Introduction

Matrix estimation is at the center of many modern
applications and theoretical advances in the field of
high dimensional statistics. The key element which
differentiates this problem from standard high dimen-
sional vector estimation lies in the structural assump-
tions which are formulated in this context. Indeed,
the notion of sparsity assumption has been transposed
into the concept of low-rank matrices and opened the
way to numerous achievements (see for instance (Sre-
bro, 2004; Cai et al., 2008)). In this paper, we argue
that being low-rank is not only an equivalent of spar-
sity for matrices but that being low-rank and sparse
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can actually be seen as two orthogonal concepts. The
underlying structure we have in mind is that of a
block diagonal matrix. This situation occurs for in-
stance in covariance matrix estimation in the case of
groups of highly correlated variables or when denois-
ing/clustering social graphs.

Efficient procedures developed in the context of sparse
model estimation mostly rely on the use of `1-norm
regularization (Tibshirani, 1996). Natural extensions
include cases where subsets of related variables are
known to be active simultaneously (Yuan & Lin, 2006).
These methods are readily adapted to matrix valued
data and have been applied to covariance estimation
(El Karoui, 2009; Bien & Tibshirani, 2010) and graph-
ical model structure learning (Banerjee et al., 2007;
Friedman et al., 2008). In the low-rank matrix comple-
tion problem, the standard relaxation approach leads
to the use of the trace norm as the main regular-
izer within the optimization procedures (Srebro et al.,
2005; Koltchinskii et al., 2011) and their resolution
can either be obtained in closed form (loss measured
in terms of Frobenius norm) or through iterative prox-
imal solutions (Combettes & Pesquet, 2011; Beck &
Teboulle, 2009) (for general classes of losses). How-
ever, solutions of low-rank estimation problems are in
general not sparse at all, while denoising and variable
selection on matrix-valued data are blind to the global
structure of the matrix and process each variable in-
dependently.

In this paper, we study the benefits of using the sum
of `1 and trace-norms as regularizer. This sum of
penalties on the same object allows to benefit from
the virtues of both of them, in the same way as the
elastic-net (Zou & Hastie, 2005) combines the sparsity-
inducing property of the `1 norm with the smoothness
of the quadratic regularizer. Trace norm and `1 penal-
ties have already been combined in a different context.
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In Robust PCA (Candes et al., 2009) and related lit-
erature, the signal S is assumed to have an additive
decomposition S = X + Y where X is sparse and Y
low-rank. Note that S is not in general sparse nor low-
rank and that this decomposition is subject to identi-
fiability issues, as analyzed, e.g., in (Chandrasekaran
et al., 2011). The decomposition is recovered by using
`1-norm regularization over X and trace norm regu-
larization over Y . This technique has been success-
fully applied to background substraction in image se-
quences, to graph clustering (Jalali et al., 2011) and
covariance estimation (Luo, 2011).

Here, we consider the different situation where the ma-
trix S is sparse and low-rank at the same time. We
demonstrate the applicability of our mixed penalty
on different problems. We develop proximal methods
to solve these convex optimization problems and we
provide numerical evidence as well as theoretical ar-
guments which illustrate the trade-off which can be
achieved with the suggested method.

The remainder of the paper is organized as follows. In
Section 2, we present the setup and motivations. Sec-
tions 3 and 4 are devoted to theoretical results on the
interplay between sparse and low-rank effects. Sec-
tion 5 presents algorithms used for resolution of the
optimization problem and Section 6 is devoted to nu-
merical experiments. The last Section explores related
topics.

2. Setup and motivations

2.1. Problem formulation and notations

We first set some notations. For a matrix S = (Si,j)i,j ,
we set the following matrix norms: ‖S‖1 =

∑
i,j |Si,j |

and ‖S‖∗ =
∑rank(S)
i=1 σi, where σi are the singular

values of S and rank(S) is the rank of S. We consider
the following setup. Let A ∈ Rn×n be a fixed matrix
and ` a loss function over matrices. We introduce the
following optimization problem:

arg min
S∈S

{`(S,A) + γ‖S‖1 + τ‖S‖∗}

for some convex admissible set S ⊂ Rn×n and nonneg-
ative regularization parameters γ, τ .

In the sequel, the projection of a matrix Z onto S is
denoted by PS(Z). The matrix (M)+ is the compo-
nentwise positive part of the matrix M, and sgn(M)
is the sign matrix associated to M with the conven-
tion sgn(0) = 0. The component wise product of
matrices is denoted by ◦. The class S+

n of matri-
ces is the convex cone of positive semidefinite matri-
ces in Rn×n. The sparsity index of M is ||M ||0 =

|{Mi,j 6= 0}| and the Frobenius norm of a matrix
M is defined by ‖M‖2F =

∑
i,jM

2
i,j . In Section 3,

we shall also use ‖M‖op = supx : ‖x‖2=1 ‖Mx‖2 and
‖M‖∞ = max |Mi,j |.

2.2. Main examples

The underlying assumption in this work is that the
unknown matrix to be recovered has a block-diagonal
structure. We now describe the main modeling choices
through the following motivating examples:

• Covariance matrix estimation - the matrix A rep-
resents a noisy estimate of the true covariance
matrix obtained for instance with very few ob-
servations; the search space is S = S+

n the class
of positive semidefinite matrices; for the loss, we
consider the squared norm `(S,A) = ‖S −A‖2F .

• Graph denoising - the matrix A is the adjacency
matrix of a noisy graph with both irrelevant and
missing edges; the search space is all of S =
Rn×n and the coefficients of a candidate matrix
estimate S are interpreted as signed scores for
adding/removing edges from the original matrix
A; again, we use `(S,A) = ‖S −A‖2F .

• Link prediction - the matrix A is the adjacency
matrix of a partially observed graph: entries are 0
for both not-existing and undiscovered links. The
search space is unrestricted as before and the ma-
trix S contains the scores for link prediction; the
ideal loss function is the empirical average of the
zero-one loss for each coefficient

`E(S,A) =
1

|E|
∑

(i,j)∈E

1{(Ai,j − 1/2) · Si,j ≤ 0} ,

where E is the set of edges in A. However, as in
classification theory, practical algorithms should
use a convex surrogate (e.g., the hinge loss).

3. Oracle inequality

The next result shows how matrix recovery is governed
by the trade-off between the rank and the sparsity in-
dex of the unknown target matrix, or by their convex
surrogates: the trace norm and the `1-norm.

Proposition 1. Let S0 ∈ Rn×n and A = S0 + ε
with ε ∈ Rn×n having i.i.d. entries with zero mean.
Assume for some α ∈ [0; 1] that τ ≥ 2α‖ε‖op and
γ ≥ 2(1− α)‖ε‖∞. Let

L(S) = ‖S −A‖2F + τ‖S‖∗ + γ‖S‖1 ,
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and Ŝ = arg minS∈S L(S) . Then

‖Ŝ − S0‖2F ≤ inf
S∈S

{
‖S − S0‖2F + 2τ‖S‖∗ + 2γ‖S‖1

}
and

‖Ŝ − S0‖2F ≤min

{
2τ‖S0‖∗ + 2γ‖S0‖1,(

τ
√

rank(S0)

√
2 + 1

2
+ γ
√
‖S0‖0

)2}
.

The techniques used in the proof (see the Appendix)
are very similar to those introduced in (Koltchinskii
et al., 2011). Note that the upper bound interpolates
between the results known for trace-norm penalization
and Lasso. In fact, for α = 0, τ can be set to zero,
and we get a sharp bound for Lasso, while the trace-
norm regression bounds of (Koltchinskii et al., 2011)
are obtained for α = 1.

4. Generalization error in link
prediction

We dwell for a moment on the task of link prediction
in order to illustrate how rank and sparsity constraints
can help in this setting. Given a subset E of observed
edges from a graph adjacency matrix A ∈ {0, 1}n×n,
we set out to predict unobserved links by finding a
sparse rank r predictor S ∈ Rn×n with small zero-one
loss

`(S,A) =
1

n2

∑
(i,j)∈{1,...,n}2

1{(Ai,j − 1/2) · Si,j ≤ 0}

by minimizing the empirical zero-one loss

`E(S,A) =
1

|E|
∑

(i,j)∈E

1{(Ai,j − 1/2) · Si,j ≤ 0} .

The objective of a generalization bound is to relate
`(S,A) with `E(S,A). In the case of the sole rank
constraint, (Srebro, 2004) remarked that all low-rank
matrices with the same sign pattern are equivalent in
terms of loss and applied a standard argument for gen-
eralization in classes of finite cardinality. In the work
of Srebro, a beautiful argument is used to upper bound
the number of distinct sign configurations for predic-
tors of rank r

slr(n, r) = |{sgn(S) |S ∈ Rn×n, rank(S) ≤ r}|

leading to the following generalization performance:
for δ > 0, A ∈ {0, 1}n×n and with probability 1−δ over
choosing a subset E of entries in {1, . . . , n}2 uniformly

among all subsets of |E| entries, we have for any matrix

S of rank at most r and ∆(n, r) =
(
8en
r

)2nr
`(S,A) < `E(S,A) +

√
log ∆(n, r)− log δ

2|E|
. (1)

We consider the class of sparse rank r predictors

M(n, r, s) = {UV T |U, V ∈ Rn×r, ||U ||0 + ||V ||0 ≤ s}

and let ssplr(n, r, s) be the number of sign configura-
tions for the set M(n, r, s). By upper bounding the
number of sign configurations for a fixed sparsity pat-
tern in (U, V ) using an argument similar to (Srebro,
2004), a union bound gives

ssplr(n, r, s) ≤ Γ(n, r, s) =

(
16en2

s

)s(
2nr

s

)
.

Using the same notations as previously, we deduce
from this result the following generalization bound:
with probability 1− δ and for all S ∈M(n, r, s),

`(S,A) < `E(S,A) +

√
log Γ(n, r, s)− log δ

2|E|
. (2)

In general, bound (2) is tighter than (1) for sufficiently
large values of n as shown in the next proposition.
The two bounds coincide when s = 2nr, that is, when
(U, V ) is dense and there is no sparsity constraint.

Proposition 2. For rn = nβ with β ∈]0, 1] and sn =
nα with α ≤ 2β,

∆(n, rn)

Γ(n, rn, sn)
= Ω

([
8en(βn− α)

(βn)2

]2n2β
)
,

which diverges when n goes to infinity.

Proof. The result follows from the application of Stir-
ling’s formula.

By considering a predictor class of lower complexity
than low-rank matrices, we can thus achieve better
generalization performances.

5. Algorithms

We now present how to solve the optimization problem
with mixed penalties presented in Section 2. We con-
sider a loss function `(S,A) convex and differentiable
in S, and assume that its gradient is Lipschitz with
constant L and can be efficiently computed. This is,
in particular, the case for the squared Frobenius norm
previously mentioned and for other classical choices
such as the hinge loss.
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5.1. Proximal operators

We encode the presence of a constraint set S using the
indicator function 1S(S) that is zero when S ∈ S and
+∞ otherwise, leading to

Ŝ = arg min
S∈Rn×n

{`(S,A) + γ||S||∗ + τ ||S||1 + 1S(S)} .

This formulation involves a sum of a convex differen-
tiable loss and of convex non differentiable regularizers
which renders the problem non trivial. A string of al-
gorithms have been developed for the case where the
optimal solution is easy to compute when each regu-
larizer is considered in isolation. Formally, this corre-
sponds to cases where the proximal operator defined
for a convex regularizer R : Rn×n → R at a point Z
by

proxR(Z) = arg min
S∈Rn×n

1

2
||S − Z||2F +R(S) .

is easy to compute for each regularizer taken sepa-
rately. See (Combettes & Pesquet, 2011) for a broad
overview of proximal methods.

The proximal operator of the indicator function is sim-
ply the projection onto S, which justifies the alter-
nate denomination of generalized projection operator
for proxR. The proximal operator for the trace norm
is given by the shrinkage operation as follows (Beck &
Teboulle, 2009). If Z = U diag(σ1, · · · , σn)V T is the
singular value decomposition of Z,

SHRτ (Z) := proxτ ||.||∗(Z) = U diag((σi − τ)+)iV
T .

Similarly, the proximal operator for the `1-norm is the
soft thresholding operator

STγ(Z) := proxγ||.||1 = sgn(Z) ◦ (|Z| − γ)+ .

5.2. Generalized Forward-Backward splitting

The family of Forward-Backward splitting methods are
iterative algorithms applicable when there is only one
non differentiable regularizer. These methods alter-
nate a gradient step and and a proximal step, leading
to updates of the form

Sk+1 = proxθR(Sk − θ gradS `(S,A)) .

In particular, this corresponds to projected gradient
descent when R is the indicator function of a convex
set. On the other hand, Douglas-Rachford splitting
tackles the case of q ≥ 2 terms but does not ben-
efits from differentiability. A generalization of these
two setups has been recently proposed in (Raguet

et al., 2011) under the name of Generalized Forward-
Backward, which we specialize to our problem in Al-
gorithm 1. The proximal operators are applied in par-
allel, and the resulting (Z1, Z2, Z3) is projected onto
the constraint that Z1 = Z2 = Z3 which is given by
the mean. The auxiliary variable Z3 can be simply
dropped when S = Rn×n. The algorithm converges
under very mild conditions when the step size θ is
smaller than 2

L .

Algorithm 1 Generalized Forward-Backward

Initialize S,Z1, Z2, Z3 = A, q = 3
repeat

Compute G = ∇S`(S,A).
Compute Z1 = proxqθτ ||.||∗(2S − Z1 − θG)
Compute Z2 = proxqθγ||.||1(2S − Z2 − θG)
Compute Z3 = PS(2S − Z3 − θG)
Set S = 1

q

∑q
k=1 Zk

until convergence
return S

5.3. Incremental Proximal Descent

Although Algorithm 1 performs well in practice, the
O(n2) memory footprint with a large leading constant
due to the parallel updates can be a drawback in some
cases. As a consequence, we mention a matching se-
rial algorithm (Algorithm 2) introduced in (Bertsekas,
2011) that has a flavor similar to multi-pass stochas-
tic gradient descent. We present here a version where
updates are performed according to a cyclic order, al-
though random selection of the order of the updates is
also possible.

Algorithm 2 Incremental Proximal Descent

Initialize S = A
repeat

Set S = S − θ∇S`(S,A)
Set S = proxθτ ||.||∗(S)
Set S = proxθγ||.||1(S)
Set S = PS(S)

until convergence
return S

5.4. PSD constraint

For any positive semidefinite matrix, we have ||Z||∗ =
Tr(Z). The simple form of the trace norm allows
to take into account the positive semidefinite con-
straint at no additional cost, as the shrinkage oper-
ation and the projection onto the convex cone of posi-
tive semidefinite matrices can be combined into a sin-
gle operation.
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Lemma 1. For τ ≥ 0 and S ∈ Rn×n,

proxτ ||.||∗+1
S
+
n

(S) = arg min
Z�0

1

2
||Z − S||2F + τ ||Z||∗

= PS+
n

(S − τIn) .

6. Numerical experiments

We present numerical experiments to highlight the
benefits of our method. For efficiency reasons, we use
the serial proximal descent algorithm (Algorithm 2).

6.1. Synthetic data

Covariance matrix estimation. We draw N vectors
xi ∼ N (0,Σ) for a block diagonal covariance matrix
Σ ∈ Rn×n. We use r blocks of random sizes and of the
form vv> where the entries of v are drawn i.i.d. from
the uniform distribution on [−1, 1]. Finally, we add
gaussian noise N (0, σ2) on each entry. In our experi-
ments r = 5, N = 20, n = 100, σ = 0.6. We apply our
method (SPLR), as well as trace norm regularization
(LR) and `1 norm regularization (SP) to the empirical
covariance matrix, and report average results over ten
runs. Figure 1 shows the RMSE normalized by the
norm of Σ for different values of τ and γ. Note that
the effect of the mixed penalty is visible as the min-
imum RMSE is reached inside the (τ, γ) region. We
perform, on the same data, separate cross-validations
on (τ, γ) for SPLR, on τ for LR and on γ for SP. We
show in Figure 2 the supports recovered by each al-
gorithm, the output matrix of LR being thresholded
in absolute value. The support recovery demonstrates
how our approach discovers the underlying patterns
despite the noise and the small number of observa-
tions.

Figure 1. Covariance estimation. Cross-validation: nor-
malized RMSE scores (SPLR)

True cov. n =20 ,N =100 ,σ = 0.6 Sparse  RMSE=0.6

Low−Rank  RMSE=0.685 SP&LR  RMSE=0.549

Figure 2. Covariance estimation. Support of Σ (top left),
and of the estimates given by SP (top right), LR (bottom
left), and SPLR (bottom right)

6.2. Real data sets

Protein Interactions. We use data from (Hu et al.,
2009), in which protein interactions in Escherichia coli
bacteria are scored by strength in [0, 2]. The data
is, by nature, sparse. In addition to this, it is often
suggested that interactions between two proteins are
governed by a small set of factors, such as surface ac-
cessible amino acid side chains (Bock & Gough, 2001),
which motivates the estimation of a low-rank represen-
tation. Representing the data as a weighted graph, we
filter to retain only the 10% of all 4394 proteins that
exhibit the most interactions as measured by weighted
degree. We corrupt 10% of entries of the adjacency
matrix selected uniformly at random by uniform noise
in [0, η]. Parameters are selected by cross-validation
and algorithms are evaluated using mean RMSE be-
tween estimated and original adjacency matrices over
25 runs. RMSE scores are shown in Table 1 and show
the empirical superiority of our approach (SPLR).

η SPLR LR SP
0.1 0.0854 ±0.012 0.1487 ±0.02 0.1023 ±0.02
0.2 0.2073 ± 0.03 0.2673 ± 0.3 0.2484 ± 0.03
0.3 0.3105 ± 0.03 0.3728 ± 0.03 0.3104 ± 0.02

Table 1. Prediction of interactions in Escherichia coli.
Mean normalized RMSE and standard deviations.

Social Networks. We have performed experiments with
the Facebook100 data set analyzed by (Traud et al.,
2011). The data set comprises all friendship relations
between students affiliated to a specific university, for
a selection of one hundred universities. We select a
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single university with 41554 users and filter as in the
previous case to keep only the 10% users with highest
degrees. In this case, entries are corrupted by impulse
noise: a fixed fraction σ of randomly chosen edges are
flipped, thus introducing noisy friendship relations and
masking some existing relations. The task is to dis-
cover the noisy relations and recover masked relations.
We compare our method to standard baselines in link
prediction (Liben-Nowell & Kleinberg, 2007). Near-
est Neighbors (NN) relies on the number of common
friends between each pair of users, which is given by A2

when A is the noisy graph adjacency matrix. Katz’s
coefficient connects a pair of nodes according to a score
based on the number of paths connecting them, em-
phasizing short paths. Results are reported in Table
2 using the area under the ROC curve (AUC). SPLR
outperforms LR but also NN and Katz which do not
directly seek a low-rank representation.

σ SPLR LR NN Katz
5 % 0.9293 0.9291 0.7680 0.9298
10 % 0.9221 0.9174 0.7620 0.9189
15 % 0.9117 0.9024 0.7555 0.9068
20 % 0.8997 0.8853 0.7482 0.8941

Table 2. Facebook denoising data. Mean AUC over 10
simulation runs. All standard deviations are lower than
3 · 10−4.

7. Discussion

Other loss functions. The methods presented in this
paper can be seamlessly extended to non-square ma-
trices, which can arise, for instance, from adjacency
matrices of bipartite graphs. Our work also applies to
a wide range of other losses. A useful example that
links our work to the matrix completion framework
is when linear measurements of the target matrix or
graph are available, or can be predicted as in (Richard
et al., 2010). In this case, the loss can be defined
in the feature space. Due to the low-rank assump-
tion, our method does not directly apply to the esti-
mation of precision matrices often used for gaussian
graphical model structure learning (Friedman et al.,
2008), and the applications of conditional indepen-
dence structures generated by low-rank and possibly
sparse models is to be discussed. Note that the trace
norm constraint is vacuous for some special classes of
positive semi-definite matrices. For instance, it is not
useful for estimating a correlation matrix as, in this
case, the trace is always equal to the dimension.

Matrix factorizations. A related and popular task is
finding low-rank factorizations of matrices of the form

UV T (see, e.g., (Srebro et al., 2005; Srebro, 2004)),
thus jointly optimizing in U, V ∈ Rn×r loss functions
of the form `((U, V ), A) = ||UV T −A||2F for some tar-
get maximum rank r. This implicitly encodes the low-
rank constraint which leads to efficient optimization
schemes, and allows for interpretability as estimated
(U, V ) pairs can be considered as latent factors. Non-
negative Matrix Factorization (NMF) (Lee et al., 1999)
imposes non negativity constraints on the coefficients
of U and V to enhance interpretability by allowing
only for additive effects and tends to produce sparse
factor matrices U, V , although this a rather indirect
effect. There is no strong guarantee on the sparsity
achieved by NMF nor is it easy to set the target spar-
sity and different methods for sparse NMF have been
proposed in (Hoyer, 2004; Kim & Park, 2008). Sparse
matrix factorizations have also been proposed with-
out the positivity constraint. Most work along this
line is motivated by extending the classical PCA and
finding sparse directions that maximize the variance
of the projection. Most methods give up orthogo-
nality between the components and can thus be seen
as sparse matrix factorization techniques. SPCA pro-
posed in (Zou et al., 2004) penalizes the `1 norm of the
principal components and can be reduced to solving
independent elastic-nets. A different formulation us-
ing SDP programming is introduced in (D’Aspremont
et al., 2007) with good empirical results. In spite of
good empirical performances, all these methods based
on matrix factorization suffer from a significant draw-
back. Although formulations are usually convex in U
or V, they are not in general jointly convex and opti-
mization procedures can get stuck in local minima.

Regularization parameters. We showed how to empir-
ically select using cross-validation the hyper parame-
ters τ and γ for a specific application. From a theoret-
ical point of view, Proposition 1 provides us with per-
formance guarantees when the regularization parame-
ters are large enough. We know from random matrix
theory that the operator norm of a random gaussian
matrix concentrates around

√
n which enforces a strin-

gent constraint on τ for τ ≥ 2α||ε||op to hold with
high probability. Similarly, the ∞-norm ‖ε‖∞ can be
bounded by ‖ε‖op or using the multivariate Tcheby-
cheff inequality of (Olkin & Pratt, 1958) which implies
that the condition γ ≥ 2(1 − α)‖ε‖∞ is satisfied with
probability 1 − δ when γ = Ω

(
(1− α) 2nσ

δ

)
. In prac-

tice, γ should not exceed the order of magnitude of
the entries of the matrix, as this leads to a trivial zero
solution. Asymptotically, to keep the sparsity regu-
larization parameter γ of the order of magnitude of
elements of the observation matrix A, the free param-
eter α must be chosen so that 1−αn ∼n 1

n . This gives
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the same asymptotic behavior in O(
√
n) for the lower

bound on τ as in matrix completion.

Optimization. Other optimization techniques can be
considered for future work. A trace norm constraint
alone can be taken into account without projection or
relaxation into a penalized form by casting the prob-
lem as a SDP as proposed in (Jaggi, 2011). The spe-
cial form of this SDP can be leveraged to use the ef-
ficient resolution technique from (Hazan, 2008). This
method applies to a differentiable objective whose cur-
vature determines the performances. Extending these
methods with projection onto the `1 ball or a sparsity-
inducing penalty could lead to interesting develop-
ments.

Appendix- Sketch of proof for Prop. 1

For any S in S and by optimality of Ŝ,

− 2〈Ŝ − S, S0〉 ≤ −2〈Ŝ − S, S0〉+ L(S)− L(Ŝ)

≤ 2α‖Ŝ − S‖∗‖ε‖op + 2(1− α)‖Ŝ − S‖1‖ε‖∞
+ τ(‖S‖∗ − ‖Ŝ‖∗) + γ(‖S‖1 − ‖Ŝ‖1) + ‖S‖2F − ‖Ŝ‖2F

for any α ∈ [0; 1]. The assumptions on τ, γ and trian-
gular inequality lead to the first bound.

Let r = rank(S), k = ‖S‖0, S =
∑r
j=1 σjujv

>
j the

SVD of S, S = Θ ◦ |S|, where Θ = sgn(S), and Θ⊥ ∈
{0, 1}n×n the complementary sparsity pattern. We use
PS⊥1 (resp. PS⊥2 ) to denote the projection operator

onto the orthogonal of the left (resp. right) singular
space of S. We also note PS(X) = X − PS⊥1 XPS⊥2
such that X = PS(X) + PS⊥1 XS⊥2

.

Any element V of the subgradient of the convex func-
tion S 7→ τ‖S‖∗ + γ‖S‖1 can be decomposed as

V = τ

( r∑
j=1

ujv
>
j + PS1⊥W∗PS2⊥

)
+ γ

(
Θ +W1 ◦Θ⊥

)
for W1,W∗ with ‖W∗‖op ≤ 1, ‖W1‖∞ ≤ 1, which can
be chosen such that

〈V, Ŝ − S〉 = τ〈
r∑
j=1

ujv
>
j , Ŝ − S〉+ τ‖PS1⊥ŜPS2⊥‖∗

+γ〈Θ, Ŝ − S〉+ γ‖Θ⊥ ◦ Ŝ‖1 .

By monotonicity of the subdifferential and optimality
conditions,

2〈Ŝ − S0, Ŝ − S〉

≤ 2〈ε, Ŝ − S〉 − τ〈
r∑
j=1

ujv
>
j , Ŝ − S〉

− τ‖PS⊥1 ŜPS⊥2 ‖∗ − γ〈Θ, Ŝ − S〉 − γ‖Θ
⊥ ◦ Ŝ‖1 .

Decompose

ε = α

(
PS(ε) + PS⊥1 εPS⊥2

)
+ (1− α)

(
|Θ| ◦ ε+ Θ⊥ ◦ ε

)
.

Using results on dual norms, we have

|〈M1,M2〉| ≤ ||M1||∗||M2||op
|〈M1,M2〉| ≤ ||M1||1||M2||∞

for all M1,M2 ∈ Rn×n and hence,

〈ε, Ŝ − S〉 ≤ α‖PS(ε)‖F ‖PS1
(Ŝ − S)PS2

‖F
+ α‖PS⊥1 εPS⊥2 ‖op‖PS⊥1 ŜPS⊥2 ‖∗

+ (1− α)‖Θ ◦ ε‖F ‖Θ ◦
(
Ŝ − S

)
‖F

+ (1− α)‖Θ⊥ ◦ ε‖∞‖Θ⊥ ◦ Ŝ‖1 .

Using

‖PS(ε)‖F ≤
√

2 r‖ε‖op, ‖Θ ◦ ε‖F ≤
√
k‖ε‖∞

leads for τ ≥ 2α ‖ε‖op and γ ≥ 2(1− α) ‖ε‖∞ to

‖Ŝ − S0‖2F + ‖Ŝ − S‖2F

≤ ‖S − S0‖2F +

(
τ
√
r(
√

2 + 1) + 2γ
√
k

)
‖Ŝ − S‖F .

Using βx− x2 ≤
(
β
2

)2
, we obtain

‖Ŝ − S0‖2F ≤ ‖S − S0‖2F +
1

4

(√
rτ(
√

2 + 1) + 2
√
kγ

)2

and setting S = S0 gives the result. �
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