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Abstract

We consider the problem of rank loss mini-
mization in the setting of multilabel classi-
fication, which is usually tackled by means
of convex surrogate losses defined on pairs
of labels. Very recently, this approach was
put into question by a negative result show-
ing that commonly used pairwise surrogate
losses, such as exponential and logistic losses,
are inconsistent. In this paper, we show a
positive result which is arguably surprising in
light of the previous one: the simpler univari-
ate variants of exponential and logistic surro-
gates (i.e., defined on single labels) are con-
sistent for rank loss minimization. Instead of
directly proving convergence, we give a much
stronger result by deriving regret bounds and
convergence rates. The proposed losses sug-
gest efficient and scalable algorithms, which
are tested experimentally.

1. Introduction

The problem of multilabel classification (MLC) has
received increasing attention in machine learning re-
search in recent years (Schapire & Singer, 2000; Elis-
seeff & Weston, 2001; Dekel et al., 2003; Dembczyński
et al., 2010). In contrast to conventional (single-label)
classification, where each instance is associated with
a unique class label, MLC allows an instance to be-
long to several classes simultaneously. In other words,
the “ground truth” is now a subset of positive labels
instead of a single label. Correspondingly, more com-
plex models need to be trained for predictive purposes,

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

and their predictions need to be evaluated in terms of
generalized loss functions.

Instead of producing predictions in terms of label sub-
sets, one often prefers a multilabel ranking, that is,
a ranking of labels from most likely positive to most
likely negative. A prediction of that kind is commonly
evaluated in terms of the rank loss, namely the fraction
of incorrectly ordered label pairs; a positive and a neg-
ative label are incorrectly ordered if, in the predicted
ranking, the former does not precede the latter—as it
actually should do.

Many methods for MLC are based on the direct min-
imization of the number of conflicts, that is, pairwise
ranking errors; more specifically, since the rank loss is
highly discontinuous, such methods typically seek to
minimize a convex surrogate. Interestingly, this ap-
proach has recently been called into question by Gao
& Zhou (2011) (following the earlier results of Duchi
et al. (2010)), who showed that the most commonly
used convex surrogates of that kind are inconsistent.

In this paper, we complement this negative result by
a positive one. More specifically, we prove that com-
mon convex surrogates used for binary classification,
namely exponential and logistic losses, are consistent
for the minimization of rank loss. Surprisingly, our
surrogates are even simpler than existing ones for rank-
ing, as they are univariate loss functions; thus, be-
ing defined on single labels rather than label pairs, it
comes with additional advantages in terms of complex-
ity. Instead of directly proving convergence, we give
a much stronger result by deriving regret bounds and
convergence rates.

The paper is organized as follows. In the next section,
we introduce the setting of multilabel classification and
elaborate on the rank loss for performance evaluation.
Our main theoretical result is presented in Section 3
and discussed against the background of (Gao & Zhou,
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2011) in Section 4. The theoretical contribution of the
paper is complemented by some computational exper-
iments in Section 5, prior to concluding with a sum-
mary in Section 6.

2. Multilabel Classification

In this section, we explain the MLC problem more
formally and, along the way, introduce the notation
used throughout the paper.

Let X denote an instance space, and let L =
{λ1, λ2, . . . , λm} be a finite set of class labels. We as-
sume that an instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this sub-
set is often called the set of relevant (positive) labels,
while the complement L \ L is considered as irrele-
vant (negative) for x. We identify a set L of relevant
labels with a binary vector y = (y1, y2, . . . , ym), in
which yi = 1 iff λi ∈ L. The set of possible label-
ings is denoted Y = {0, 1}m. We assume observations
to be generated independently and randomly accord-
ing to a probability distribution P (X = x,Y = y)
(later denoted P (x,y)) on X × Y, i.e., an observation
y = (y1, . . . , ym) is the realization of a corresponding
random vector Y = (Y1, Y2, . . . , Ym).

A multilabel classifier h assigns a (predicted) label
subset to each instance x ∈ X . More generally, we
allow the output of the classifier to be a vector of
real numbers h(x) = (h1(x), . . . , hm(x)) ∈ Rm, which
means that h is an X → Rm mapping. A score vector
of this kind can not only be turned into a label subset
(binary vector y ∈ {0, 1}m) via thresholding, but can
also be used for ranking the labels λi in a natural way,
namely by sorting them in decreasing order according
to their respective scores si = hi(x).

2.1. Loss, Risk and Regret

The prediction accuracy of h is measured in terms of
its risk, that is, its expected (classification) loss

L(h, P )=E [`(Y ,h(X))]=

∫
`(y,h(x)) dP (x,y) , (1)

where ` : Y×Rm → R is a loss function. In addition, it
will be convenient to use an expected loss conditioned
on an instance x ∈ X :

L(h, P |x)=E [`(Y ,h(x)) |x]=
∑
y∈Y

`(y,h(x))P (y |x) ,

so that L(h, P ) = E[L(h, P |X)].

The risk of a classifier is not always a good indica-
tor of its true performance, as it does not account for

the hardness of the problem. In fact, even the opti-
mal classifier h∗ (which has access to the distribution
P (x,y)) will normally have a non-zero risk. We call
h∗ the Bayes classifier. For each x ∈ X , this classifier
minimizes expected loss conditioned on x:

h∗(x) = arg min
s∈Rm

∑
y∈Y

`(y, s)P (y |x) (2)

We note that in general, h∗ is not unique. However,
the risk of h∗, denoted L∗(P ), is unique, and is called
the Bayes risk. It offers a reasonable baseline for com-
parison and suggests to define the regret of a classifier
h as follows:

Reg(h, P ) = L(h, P )− L∗(P ) (3)

Occasionally, we will also use the regret conditioned on
an instance x, denoted Reg(h, P |x). Later on, when
analyzing the risk and regret for particular loss func-
tions, such as rank loss, we will use more specific no-
tations like Lrnk and Regrnk, which indicate the loss
function that risk and regret are referring to.

2.2. Rank Loss

In this paper, we focus on the rank loss, which is among
the most important loss functions in MLC and has at-
tracted much attention in recent years (Dembczyński
et al., 2010; Gao & Zhou, 2011):

`rnk(y,h)=w(y)
∑

(i,j) :yi>yj

(
Jhi<hjK +

1

2
Jhi=hjK

)
, (4)

where J·K is the standard {false, true} → {0, 1} map-
ping (for the sake of clarity, we will suppress depen-
dence on x in the notation, whenever it is clear from
the context). Treating the classifier’s output as a rank-
ing, the rank loss compares the true label subset with
this ranking, in which all relevant labels ideally pre-
cede all irrelevant ones. More specifically, the rank
loss counts the number of label pairs violating this
condition and multiplies it by a positive weight w(y).
In other words, the “penalty” or “cost” for a mistake
on a label pair is given by w(y) and may thus depend
on properties of the true labeling y.

Typically, w(y) is a normalization constant equal to
the reciprocal of the total number of pairwise compar-
isons between labels, thus accounting for the fact that
the maximum number of possible mistakes depends
on the number of positive labels in y. Yet, we shall
not make any specific assumptions about about w(y)
throughout the paper, except that it is non-negative
and bounded: 0 ≤ w(y) ≤ wmax for all y.1

1For our results, it is even enough to assume that w is
bounded in expectation: E[w(Y ) |x] ≤ wmax for all x.
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Let us determine the Bayes classifier for the rank loss.
To this end, it is convenient to introduce the following
quantity:

∆uv
ij =

∑
y : yi=u,yj=v

w(y)P (y |x) ,

where i, j ∈ {1, . . . ,m} and u, v ∈ {0, 1}. Note
that ∆uv

ij reduces to the marginal probability P (Yi =
u, Yj = v |x) if w(y) ≡ 1. For a more general weight
function w(·), ∆uv

ij combines the probability of the
label combination (Yi = u, Yj = v) with the poten-
tial penalty in case these labels are ranked incorrectly.
Thus, it can be seen as a kind of importance of this
label combination.

By definition, ∆uv
ij = ∆vu

ji for all (i, j) and

∆00
ij + ∆01

ij + ∆10
ij + ∆11

ij = W ,

where W = E[w(Y ) |x] =
∑

y w(y)P (y |x) (which is
a condition similar to the normalization property of a
probability distribution). Then, the conditional risk
can be written as follows:

Lrnk(h, P |x) =
∑
i>j

(
∆10
ij Jhi > hjK + ∆01

ij Jhi < hjK

+
1

2
(∆10

ij + ∆01
ij )Jhi = hjK

)
(5)

To proceed further, we define ∆u
i = ∆u0

ij + ∆u1
ij for

any j 6= i (one readily verifies that this quantity does
not depend on j). ∆u

i plays a role comparable to the
marginal probability P (Yi = u |x). We have ∆0

i +
∆1
i = W for all i and

∆1
i −∆1

j = ∆10
ij + ∆11

ij −∆10
ji −∆11

ji (6)

= ∆10
ij + ∆11

ij −∆01
ij −∆11

ij = ∆10
ij −∆01

ij .

The Bayes classifier ranks labels according to the ∆1
i ,

i.e., a vector h∗ = (h∗1, . . . , h
∗
m) is a Bayes prediction

if h∗i > h∗j whenever ∆1
i > ∆1

j , h
∗
i = h∗j whenever

∆1
i = ∆1

j , and h∗i < h∗j whenever ∆1
i < ∆1

j . Indeed,
using (6), we see that the Bayes classifier thus defined
minimizes every term in the sum in (5). This result
extends the result by Gao & Zhou (2011) defined in
terms of ∆10

ij . The Bayes risk conditioned on x is given
by

L∗rnk(P |x) =
∑

1≤i<j≤m

min{∆10
ij , ∆01

ij } . (7)

The equality ∆1
i −∆1

j = ∆10
ij −∆01

ij in (6) is not only
useful but also remarkable. In order to understand its
meaning, it is convenient to consider the special case

w(y) ≡ 1, in which the ∆-values reduce to conditional
probabilities (Dembczyński et al., 2010). In this case,
(6) becomes

P (Yi = 1,Yj = 0 |x)− P (Yi = 0, Yj = 1 |x)

= P (Yi = 1 |x)− P (Yj = 1 |x) .

The decision whether label λi should be ranked ahead
of λj or the other way around depends on the sign of
the left-hand side: If the joint probability of (Yi =
1, Yj = 0) is higher than the joint probability of (Yi =
0, Yj = 1), the answer should be affirmative, otherwise
not. According to the above equation, the answer can
be found by just looking at the marginal probabilities
P (Yi = 1 |x) and P (Yj = 1 |x). This is remarkable,
as it means that the dependency between Yi and Yj
can safely be ignored—a key observation for our main
result in the next section.

3. Main Result

We prepare our main result, to be presented in Section
3.3, by two auxiliary results.

First, in Section 3.1, we show that rank regret de-
pends solely on the marginal weights ∆u

i , and that we
are allowed to replace the original distribution P by
any other distribution P ′, as long as they both lead
to the same marginal weights ∆u

i . In particular, we
can choose P ′, for which labels are (conditionally) in-
dependent.

Second, in Section 3.2, we provide the basic argument
for the use of univariate loss functions, showing that,
under the assumption of independence, such losses are
sufficient for the consistent ranking of objects. This
result will be shown, not for MLC directly, but in the
context of the related problem of bipartite ranking.

The final step in Section 3.3 will therefore consist of
transferring this result back to the setting of MLC,
using the trick from Section 3.1 and the fact that ex-
pected univariate losses depend on distribution only
through the marginal weights ∆u

i .

3.1. Label Dependence Does Not Influence
Rank Regret

The main problem in the analysis of the regret (3)
is the conditional dependence of labels given x. As
already mentioned, however, this dependence does not
seem to play an important role in the minimization
of rank regret. In the following, we shall make this
observation more explicit by showing that rank regret
depends solely on the marginal weights ∆u

i :

Lemma 3.1. For every x ∈ X , and every multilabel
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classifier h:

Reg(h, P |x) =
∑

1≤j<i≤m

(
∆1
i Jhi < hjK + ∆1

jJhi > hjK

+
∆1
i + ∆1

j

2
Jhi = hjK−min{∆1

i ,∆
1
j}
)
.

Proof. According to (5) and (7), Reg(h, P |x) can be
written as

Reg(h, P |x) =
∑

1≤j<i≤m

Bij ,

where

Bij = ∆10
ij Jhi < hjK + ∆01

ij Jhi > hjK

+
∆10
ij + ∆01

ij

2
Jhi = hjK−min{∆10

ij ,∆
01
ij } .

Since only one of the first three terms can be nonzero,
Bij will not change if we add ∆11

ij to the first three
terms and subtract it from the last term:

Bij = (∆10
ij + ∆11

ij )Jhi < hjK + (∆01
ij + ∆11

ij )Jhi > hjK

+
(∆10

ij + ∆11
ij ) + (∆01

ij + ∆11
ij )

2
Jhi = hjK

−min{∆10
ij + ∆11

ij ,∆
01
ij + ∆11

ij } .

By definition, ∆10
ij + ∆11

ij = ∆1
i , ∆01

ij + ∆11
ij = ∆10

ji +

∆11
ji = ∆1

j , so that:

Bij = ∆1
i Jhi < hjK + ∆1

jJhi > hjK

+
∆1
i + ∆1

j

2
Jhi = hjK−min{∆1

i ,∆
1
j} .

(8)

Lemma 3.1 implies that the rank regret of any mul-
tilabel classifier h will not change if we replace the
original distribution P and weight function w by any
other distribution P ′ and function w′, as long as they
lead to the same marginal weights ∆u

i . In particu-
lar, we can choose P ′ to be a product distribution, for
which labels are (conditionally) independent, and the
constant weight function w′(y) = W for all y. As we
shall see in Section 3.3, this will effectively result in a
bipartite ranking problem for every x.

Before exploiting this finding in Section 3.3, we provide
a second building block of our main result, showing
that the minimization of specific univariate losses is
sufficient for the proper ranking of objects under the
assumption of independence. To this end, we refer to
the related though slightly simpler setting of bipartite
ranking. From now on, it will be more convenient to
encode labels as −1 and +1, i.e., yi ∈ {−1,+1} instead
of {0, 1}.

3.2. Univariate Loss Minimization is Sufficient
under the Assumption of Independence

The bipartite ranking problem (Cohen et al., 1999;
Clémençon et al., 2008; Kot lowski et al., 2011) is in
a sense in-between MLC and standard binary classifi-
cation. Like in the latter, there is only a single binary
class label, but like in MLC, performance is measured
in terms of rank loss instead of classification error.
However, instead of ranking labels given an instance,
the problem is to rank the instances themselves.

More specifically, consider a simple binary classifica-
tion problem with training examples (x̃, ỹ) ∈ X̃ ×
{−1,+1}. A classifier h̃ is a real-valued function
h̃ : X̃ → R, and performance is measured in terms of a
bipartite rank loss defined on pairs of labels:

`br((ỹ, ỹ
′), (h̃, h̃′)) = Jỹ > ỹ′KJh̃ < h̃′K

+ Jỹ < ỹ′KJh̃ > h̃′K +
1

2
Jỹ 6= ỹ′KJh̃ = h̃′K

This is a non-normalized version of the rank loss,
which is more useful for our purposes; in the litera-
ture, it is common to use a normalized version, which
differs from the non-normalized one by a product of
class priors (Clémençon et al., 2008).

Given the loss, we can define risk and regret by tak-
ing expectations over the pairs of instances which are
generated i.i.d.:

Lbr(h̃, P̃ ) = E[`br((Ỹ , Ỹ
′), (h̃(X̃), h̃(X̃ ′))]

=

∫
`br((ỹ, ỹ

′), (h̃(x̃), h̃(x̃′)))dP̃ (x̃, ỹ)dP̃ (x̃′, ỹ′) ,

Regbr(h̃, P̃ ) = Lbr(h̃, P̃ )− inf
h̃′
Lbr(h̃

′, P̃ ) .

Let `exp(ỹ, h̃) = e−ỹh̃, `log(ỹ, h̃) = log(1 + e−ỹh̃)
be the standard exponential and logistic losses for
binary classification. For these losses, we can
again define risks Lexp(h̃, P̃ ), Llog(h̃, P̃ ) and regrets

Regexp(h̃, P̃ ),Reglog(h̃, P̃ ) in a standard way. The fol-
lowing theorem relates bipartite ranking regret to re-
grets in terms of exponential and logistic loss:

Theorem 3.1.

Regbr(h̃, P̃ ) ≤
√

3

2

√
Regexp(h̃, P̃ ) (9)

Regbr(h̃, P̃ ) ≤
√

2
√

Reglog(h̃, P̃ ) (10)

Theorem 3.1 is very similar to Theorem 4.1 in
(Kot lowski et al., 2011), except that the latter involves
a normalized version of the bipartite rank loss and so-
called balanced loss functions. Nevertheless, in order
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to show Theorem 3.1, the proof from (Kot lowski et al.,
2011) can be adapted quite easily. Here, we omit a de-
tailed presentation of the modifications required due
to space restrictions.

3.3. Minimizing Rank Loss in MLC

The exponential loss and the logistic loss introduced
above are commonly used in standard classification. A
straightforward extension of these losses to the MLC
setting, taking multiple labels and instance weights
into account, is given as follows:

`exp(y,h) = w(y)

m∑
i=1

e−yihi , (11)

`log(y,h) = w(y)

m∑
i=1

log
(
1 + e−yihi

)
. (12)

The minimization of these losses comes down to solv-
ingm independent classification problems, one for each
label. Any algorithm for classification with exponen-
tial or logistic surrogate, such as AdaBoost or logis-
tic regression, can be used for this purpose, provided
it allows for handling weighted instances. Despite its
simplicity and efficiency, this approach provides a con-
sistent way of minimizing the rank loss, as shown by
the following result.

Theorem 3.2. Let Regexp(h, P ) and Reglog(h, P ) be
the regrets for exponential and logistic losses, respec-
tively. Then

Regrnk(h, P ) ≤
√

6

4
C
√

Regexp(h, P ), (13)

Regrnk(h, P ) ≤
√

2

2
C
√

Reglog(h, P ), (14)

where C ≤ m√mwmax.

Proof. The idea of the proof is to reduce an MLC prob-
lem, conditioned on an instance x, to a bipartite rank-
ing problem, which then allows us to exploit Theorem
3.1. More specifically, for a given x, we define a bi-
partite ranking problem by setting X̃ = {1, . . . ,m};
that is, the objects (instances) to be ranked now cor-
respond to the label indices of our MLC problem and
are of the form x̃ = i, (i = 1, . . . ,m). Moreover, we
define a distribution P̃ on X̃ × {−1,+1} as follows:

P̃ (X̃ = i) =
1

m
, P̃ (Ỹ = 1 | X̃ = i) =

∆1
i

W
(15)

For a classifier h̃ with h̃(x̃ = i) = hi, it is easy to see
that

Regbr(h̃, P̃ ) =
1

m2

∑
i,j

B̃ij ,

where B̃ij is defined as:

B̃ij =
∆1
i

W

(
1−

∆1
j

W

)
Jhi < hjK +

∆1
j

W

(
1−∆1

i

W

)
Jhi > hjK

+
1

2

(
∆1
i

W

(
1−

∆1
j

W

)
+

∆1
j

W

(
1− ∆1

i

W

))
Jhi = hjK

−min

{
∆1
i

W

(
1−

∆1
j

W

)
,

∆1
j

W

(
1− ∆1

i

W

)}
=
Bij
W

,

where the last equality is valid because the term
∆1

i

W

∆1
j

W
cancels and because of (8). Using the above and
Lemma 3.1, we see that

Regbr(h̃, P̃ ) =
1

m2

∑
i,j

B̃ij =
1

Wm2

∑
i,j

Bij

≥ 2

Wm2

∑
1≤j<i≤m

Bij =
2

Wm2
Regrnk(h, P |x) .

(16)

Theorem 3.1 relates Regbr(h̃, P̃ ) to Reg`(h̃, P̃ ), for `
being the exponential or logistic loss. What remains,
therefore, is to trace back Reg`(h̃, P̃ ) to Reg`(h, P |x),
where the latter regret is based on the original distri-
bution P and the multilabel versions (11–12) of expo-
nential and logistic loss. The following equalities hold:

L`(h, P |x) =

n∑
i=1

`(1, hi)∆
1
i + `(−1, hi)∆

0
i ,

L∗` (P |x) =

n∑
i=1

inf
h

{
`(1, h)∆1

i + `(−1, h)∆0
i

}
,

where we have, respectively, risks based on the mul-
tilabel loss and risks based on standard classification
loss on the left-hand and right-hand side. Due to (15),
we get

Reg`(h, P |x) = WmReg`(h̃, P̃ ) . (17)

Taking (16), (9–10), and (17) together gives

Regrnk(h, P |x) ≤
√

6

4
C
√

Regexp(h, P |x) ,

Regrnk(h, P |x) ≤
√

2

2
C
√

Reglog(h, P |x) ,

where C = m
√
mW . The Theorem is proved by noting

that W ≤ wmax, taking the expectation with respect
to x on both sides, and applying Jensen inequality
E[f(X)] ≤ f(E[X]) for the concave function f(x) =√
x.

One might be concerned by the possibly large con-
stant C = m

√
mW appearing in the bound, wonder-

ing whether it could perhaps be improved. However,
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C is indeed expected to appear in the bound and does
actually not weaken it. Instead, it only compensates
for the difference in the scale of both sides of (13)
and (14). Indeed, the rank regret on the left-hand
side scales like O(m2W ), while the square root of ex-
ponential/logistic regret on the right-hand side scales
like O(

√
mW ). Therefore, there must be a constant

O(m
√
mW ) on the right-hand side to compensate for

the difference.

Another question is whether the square-root conver-
gence in (13–14) could be improved. The answer is
negative: Bartlett et al. (2006) already showed for bi-
nary classification (which can be casted as a special
MLC ranking problem) that the square-root bound is
unavoidable in the worst case.

4. Relationship to Prior Work

This section is meant to look at the result of Gao &
Zhou (2011) against the background of our findings so
far, trying to support a more intuitive understanding.
As mentioned earlier, these authors consider pairwise
convex surrogate losses of the form

`φ(y,h) =
∑

(i,j) : yi>yj

w(y)φ(hi − hj) , (18)

where φ is a convex, differential, non-linear, and non-
increasing function, and show that no such loss is con-
sistent for multilabel ranking. Given the existence of
pairwise losses that are actually consistent for bipar-
tite ranking, this result appears to be surprising at first
sight, all the more since, in our proof, we are using a
reduction to bipartite ranking, too.

The reason for inconsistency becomes more apparent
when looking at the conditional expected loss:

Lφ(h, P |x) =
∑
i>j

∆10
ij φ(hi−hj)+∆10

ji φ(hj−hi) (19)

A necessary condition for consistency is that the Bayes
classifier h∗ for φ-loss is also the Bayes ranker, i.e.,

sign(h∗i − h∗j ) = sign(∆10
ij −∆01

ij ) . (20)

To ease understanding, it is again convenient to con-
sider the special case w(y) ≡ 1, in which the ∆-values
reduce to conditional probabilities (and, therefore, are
more easily interpretable). In our approach of uni-
variate loss minimization, (20) is indeed valid: Ac-
cording to (6), the equality ∆1

i − ∆1
j = ∆10

ij − ∆01
ij

holds true. Moreover, by applying a convex loss func-
tion φ, the prediction h∗i of the Bayes classifier is a
nonlinear yet monotone transformation of the condi-
tional probability ∆1

i = P (Yi = 1 |x): The larger

the probability of the conditional class, the larger the
score produced by the Bayes classifier. Consequently,
sign(h∗i − h∗j ) = sign(∆1

i − ∆1
j ) = sign(∆10

ij − ∆01
ij ).

Thus, loosely speaking, our approach guarantees con-
sistency because the (Bayes) decision of how to rank
two labels λi and λj , which depends on the sign of
∆10
ij −∆01

ij , remains unaffected by both of our measures:

the consideration of univariate marginals ∆1
i instead of

the bivariate ones ∆10
ij and ∆01

ij (label dependency does
not matter), as well as the transformation implied by
the convex surrogate afterward.

Now, although the first argument of the irrelevance
of label dependence does in principle remain valid in
case of pairwise loss, consistency is essentially lost in
the second step. In fact, the use of a convex surrogate
loss has a much more involved effect in the pairwise
case, since the (nonlinear monotone) transformation
now applies to the differences ∆1

i − ∆1
j = P (Yi =

1 |x)−P (Yj = 1 |x) of conditional probabilities instead
of the conditionals themselves. Therefore, since each
∆1
i simultaneously participates in several such differ-

ences, the minimization of (19) results in a compli-
cated solution h∗, where h∗i generally depends on all
∆10
jk (1 ≤ j, k ≤ m), and not only on ∆1

i . Gao & Zhou
(2011) exploit this observation to show that, for any
φ defined as above, the pairwise marginals ∆10

jk can
be chosen such that the Bayes classifier h∗ is not the
Bayes ranker. The only case in which (19) admits a
simple solution for certain losses φ is when the labels
are independent, and this is exactly the case of bipar-
tite ranking, for which consistency is known to hold.

We note that Gao & Zhou (2011) (following Duchi
et al. (2010)) showed consistency (but not regret
bounds and convergence rates) of some specific pair-
wise surrogate losses, one of which can be rewritten as
a univariate linear surrogate with regularization.

5. Empirical Results

To verify our theoretical claims we performed experi-
mental studies on synthetic and benchmark data. We
measured the performance of the algorithms in terms
of the rank loss (4) with weights defined as:

w(y) = (sy(m− sy))−1 , where sy =
∑
i yi . (21)

This is a popular choice, as the weights are the inverses
of the total number of pairwise comparisons between
labels. Thus, the value of the rank loss is between 0
(perfect ordering) and 1 (reversed ordering).

The main goal of the experiment is to verify whether
simple algorithms based on univariate surrogate losses
(11) and (12) are competitive to state-of-the-art al-
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gorithms that minimize the rank loss using convex
pairwise surrogates (18). Note that minimization of
(11) and (12) reduces to solving m independent clas-
sification tasks with weighted training examples. In
other words, each task is solved by using an algo-
rithm that minimizes the ordinary exponential or lo-
gistic loss on a set of weighted training examples. We
used AdaBoost.M1 to minimize the exponential loss
and logistic regression to minimize the logistic loss.
We refer to this reduction framework as Weighted
Binary Relevance (WBR). We compared WBR with
two well-known algorithms for multilabel ranking, Ad-
aBoost.MR (Schapire & Singer, 2000) and log-linear
models for label ranking (LLLR) (Dekel et al., 2003).
These two algorithms seek to minimize the rank loss
by using convex surrogates defined on label pairs (18).
AdaBoost.MR uses the exponential and LLLR the
logistic surrogate. Let us underline that both Ad-
aBoost.MR and LLLR use weights (21) in their sur-
rogates, so that all the algorithms are tailored for the
same performance measure.

In boosting algorithms, we used decision stumps as
weak learners. For AdaBoost.M1, we selected the
number of decision stumps from {10, 20, 50, 100, 200},
while for AdaBoost.MR, the total number of de-
cision stumps from {10, 20, 50, 102, . . . , 104, 2×104}.
The regularization parameter in logistic regres-
sion was tuned in the range {10−3, 10−2, . . . , 103}.
We ran LLLR with different numbers of iterations
{10, 20, 50, 102, . . . , 104, 2×104}.2 The tuning process
should not favor any of the methods, as all algorithms
have a single parameter to choose.

5.1. Synthetic Data

We designed synthetic data to show a difference in the
performance of the algorithms in the cases of label de-
pendence and independence, respectively. The model
is based on latent variables f = (f1, f2, . . . , fm):

f = Ax+ ε,

where x is a two-dimensional feature vector uniformly
drawn from a unit disk, A is an m × 2 matrix of lin-
ear coefficients, and ε is an m-dimensional noise vector
whose coordinates are drawn from N(0, 0.25). The la-
bels are obtained from the latent variables according to

y = JMf > 0K,
2To perform experiments, we used MULAN (http:

//mulan.sourceforge.net/) and Weka (http://www.cs.
waikato.ac.nz/ml/weka/) packages, implementation of lo-
gistic regression from Mallet (http://mallet.cs.umass.
edu/), and the original implementation of AdaBoost.MR
from the BoosTexter package (http://www.cs.princeton.
edu/~schapire/boostexter.html).

where M is an m×m mixing matrix introducing de-
pendencies between labels, and J·K applies to each el-
ement of the vector separately. A single model is thus
determined by the choice of A and M . The indepen-
dent label case is obtained for M being the identity I.

We generated 10 random models, with rows of A
drawn uniformly from a 2-dimensional unit sphere.
For each model, we considered the case of indepen-
dent (M = I) and dependent labels (entries of M
drawn independently and uniformly from [−1, 1]). In
each case, we trained all 4 algorithms on training sets
of different sizes n, varying n from 100 to 16000 exam-
ples. For each n, 10 training sets of a given size were
generated (thus, there are 100 repetitions for any given
training set size n). For testing, we used a dataset con-
taining 50 000 examples.

The results are given in Fig. 1. We compared the algo-
rithms based on exponential loss separately from those
for logistic loss. The results shown in Fig. 1 are nicely
in agreement with what we expect from our theoret-
ical results, at least for the logistic loss: In the case
of label independence, where both pairwise and uni-
variate loss minimization are consistent, the methods
perform more or less en par. However, in the case
where labels are not independent, and hence the pair-
wise approach is no longer consistent, our approach
of univariate loss minimization shows small but con-
sistent improvements. In the case of exponential loss,
the picture is not entirely clear,3 but the univariate
approach seems to outperform its competitor based on
pairwise loss for large enough training data. Weaker
performance of the exponential loss follows from the
fact that the stumps used as base learners in boosting
do not exactly match the true (linear) model.

5.2. Benchmark Data

We also performed an experiment on commonly used
benchmark datasets.4 We chose 4 datasets of moder-
ate size, with around 10 labels, and one large dataset
with 101 labels and more than 30K training examples.
The datasets are described in Table 1. To facilitate
comparison of the results presented in this paper, we
used the original split for training and test sets.

The results are given in Table 2, again separately for

3AdaBoost.MR behaves quite strangely on these
datasets as for more than 20 stumps it quickly overfits.
Therefore, we also limited the number of stumps in WBR-
AdaBoost.

4 These datasets are taken from MULAN
http://mulan.sourceforge.net/datasets.html
and LibSVM http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html repositories.

http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://mallet.cs.umass.edu/
http://mallet.cs.umass.edu/
http://www.cs.princeton.edu/~schapire/boostexter.html
http://www.cs.princeton.edu/~schapire/boostexter.html
http://mulan.sourceforge.net/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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Figure 1. Learning curves on synthetic data. Two left plots present results on data with independent labels, while the
two right plots on data with dependent labels. The plots compare the algorithms based on exponential loss separately
from those based on logistic loss. The blue lines indicate the Bayes risk.

Table 1. Basic statistics for the datasets, including train-
ing and test set sizes, number of features and labels, and
minimal, average, and maximal number of relevant labels.

dataset #train #test #attr. #lab. min ave. max

image 1200 800 135 5 1 1.24 3
emotions 391 202 72 6 1 1.96 3
scene 1211 1196 294 6 1 1.06 3
yeast 1500 917 103 14 1 4.23 11
mediamill 30993 12914 120 101 0 4.36 18

Table 2. Experimental results on benchmark datasets in
terms of rank loss. We compare the algorithms based on
exponential loss (left) separately from those based on lo-
gistic loss (right). For each dataset, the winner of the two
competing algorithms is marked by a *.

dataset AB.MR WBR-AB LLLR WBR-LR

image 0.2081 *0.2041 *0.2047 0.2065
emotions 0.1703 *0.1699 0.1743 *0.1657
scene *0.0720 0.0792 0.0861 *0.0793
yeast 0.2072 *0.1820 *0.1728 0.1736
mediamill 0.0665 *0.0609 0.0614 *0.0472

exponential and logistic loss. The picture conveyed by
these results is less clear than it was for the synthetic
datasets. In fact, since the true nature of the data is
not known (i.e., whether or not the labels are indepen-
dent), is is difficult to draw clear conclusions. Never-
theless, one can safely say the simple reduction algo-
rithms trained independently on each label are com-
petitive to state-of-the-art algorithms defined on pair-
wise surrogates. Again, this is in complete agreement
with our theoretical results.

6. Conclusions

In this paper, we have shown that common univariate
convex surrogates are consistent for mutlilabel rank-
ing. We proved explicit regret bounds, relating rank-
ing regret to univariate loss regret, which not only help
to answer the question of consistency, but also inform
about the rates of convergence.

For several reasons, our results should be of interest

to the machine learning community. Most notably,
because they are arguably surprising in light of (Gao
& Zhou, 2011), where inconsistency is shown for the
most popular pairwise surrogates. Moreover, on the
more practical side, our results motivate simple and
scalable algorithms for multilabel ranking, which are
plain modifications of standard algorithms for classifi-
cation (such as logistic regression or AdaBoost).
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Dembczyński, K., Cheng, W., and Hüllermeier, E. Bayes
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