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Abstract

Plant traits are a key to understanding and
predicting the adaptation of ecosystems to
environmental changes, which motivates the
TRY project aiming at constructing a global
database for plant traits and becoming a
standard resource for the ecological commu-
nity. Despite its unprecedented coverage, a
large percentage of missing data substantially
constrains joint trait analysis. Meanwhile,
the trait data is characterized by the hier-
archical phylogenetic structure of the plant
kingdom. While factorization based matrix
completion techniques have been widely used
to address the missing data problem, tradi-
tional matrix factorization methods are un-
able to leverage the phylogenetic structure.
We propose hierarchical probabilistic ma-
trix factorization (HPMF), which effectively
uses hierarchical phylogenetic information for
trait prediction. We demonstrate HPMF’s
high accuracy, effectiveness of incorporating
hierarchical structure and ability to capture
trait correlation through experiments.

1. Introduction

Plant traits are morphological, anatomical, biochem-
ical, physiological or phenological features of individ-
uals or their component organs or tissues, e.g., the
height of a mature plant, the mass of a seed or the
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nitrogen content of leaves (Kattge et al., 2011). They
result from adaptive strategies and determine how the
primary producers respond to environmental factors,
affect other trophic levels, and influence ecosystem
functioning (McGill et al., 2006). Plant traits there-
fore are a key to understanding and predicting the
adaptation of ecosystems to ongoing and expected en-
vironmental changes (McMahon et al., 2011). To im-
prove the empirical data basis for such projections,
in 2007 the TRY project (http://www.try-db.org)
was initiated, aimed at bringing together different
plant trait databases worldwide. Since then the TRY
database has accomplished an unprecedented cover-
age. It contains 2.88 million trait entries for 750 traits
of 1 million plants, representing 70,000 plant species.
The consolidated database is likely to become a stan-
dard resource for the ecological community and to sub-
stantially improve research in quantitative and predic-
tive ecology and global change science.

Despite its large coverage, TRY data are highly sparse,
which constrains the usefulness of the joint trait
database. Since traits are correlated and they do
not vary independently, quite a few quantitative or
predictive tasks in ecology require each “referenced”
object (It could be an individual plant or a species
at a site, but we only use the plant as an exam-
ple in the following.) to have multiple traits fully
available. However, in TRY database, the number
of plants with more than same three traits available
is extremely small, making it tricky to perform such
tasks on TRY data directly. There are two possible
solutions: The first is“chopping”, i.e., removing all
plants with target traits missing. Such a simple strat-
egy results in reduced statistical power and may sig-
nificantly alter parameter estimates and model selec-



Trait Prediction Using HPMF

u(1)

v(1)

N(1)

M(1)

u(0)

v(0)

u(2)

v(2)

N(2)

M(2)

u(3)

v(3)

N(3)

M(3)

u(4)

v(4)

N(4)

M(4)

u(5)

v(5)

N(5)

M(5)

x(5)

S(5)

phylogenetic

group

family genus species plant

x(4)

S(4)

x(3)

S(3)

x(2)

S(2)

x(1)

S(1)

Figure 1. Generative process for HPMF.

tion (Nakagawa & Freckleton, 2008), and for TRY this
would actually reduce the data available to a nearly
uselessly small number of plants. The second strategy
is “filling”, i.e., based on non-missing trait entries, fill-
ing in the missing entries with predicted values, which
yields a complete data set for further processing.

In this paper, we focus on the “filling” strategy. If we
consider the trait data as a plant×trait matrix X, with
each entry being a trait value, X is a highly sparse
matrix and the “filling” problem becomes a matrix
completion problem. Meanwhile, the plant kingdom is
hierarchically structured. Based on genetic and phe-
notypic similarity, individual plants can be grouped
to species, species to genera, genera to families, and
families to phylogenetic groups. Besides trait measure-
ments, each individual plant thus has a set of hierarchi-
cally structured phylogenetic information. Therefore,
our matrix completion task aims at effectively using
such hierarchical structure for better prediction.

Matrix factorizations have achieved great success
in matrix completion (Salakhutdinov & Mnih, 2007;
Salakhutdinov & Srebro, 2011; Candes et al., 2009).
However, one limitation of most methods when applied
to TRY data is the inability to use hierarchical phylo-
genetic information. In this paper, we propose hierar-
chical probabilistic matrix factorization (HPMF) to in-
corporate phylogenetic information into matrix factor-
ization for trait prediction. We demonstrate HPMF’s
high prediction accuracy, effectiveness of incorporating
hierarchical structure and ability to capture trait cor-
relation through experiments. Meanwhile, since the
phylogenetic tree of plants is constructed under the
parsimony principle, plants within a species usually
have highly similar trait values, only with small vari-
ations due to individual or environmental differences.
Therefore, species mean is widely used for gap filling
in the ecological community. In experiments, we also
show that HPMF generates significantly higher accu-
racy than prediction using species mean. Although
HPMF is proposed specifically for trait data in this
paper, in principle it could be generalized and applied
to other data with a similar form. In particular, it
could be applied to the data matrix with a hierarchy

on one side. The hierarchy is balanced such that the
distances from the root to all leaf nodes are the same in
terms of the levels. In addition, the nodes at the same
level have a uniform interpretation, e.g., all nodes at
the top level denote phylogenetic groups in our case.

The rest of the paper is organized as follows: Section 2
proposes the HPMF. Section 3 shows experimental re-
sults. We give a brief overview of the related work in
Section 4 and conclude in Section 5.

2. HPMF for Trait Prediction

We propose HPMF to incorporate hierarchical infor-
mation into matrix factorization for missing value pre-
diction. The hierarchy for trait data includes the phy-

logenetic group, family, genus, species, and plant from
top to bottom. The hierarchy is considered as side in-
formation for the plant×trait matrix with missing en-
tries. In addition, we also have data matrices at upper
levels, such as species×trait matrix, genus×trait ma-
trix, etc.. These matrices could be constructed from
the plant×trait matrix and the hierarchy. The details
are discussed in Section 3. We assume the data matri-
ces at all levels to be available before running HPMF.

Denote the data matrix at each level ℓ with X(ℓ) ∈
R

N(ℓ)×M for ℓ running from the top level 1 to the bot-
tom level L. X(ℓ) at each level has S(ℓ) non-missing
entries, and each row n(ℓ) and columnm(ℓ) has a latent

factor u
(ℓ)
n ∈ R

k and v
(ℓ)
m ∈ R

k respectively1. As illus-
trated in Figure 1, the generative process for HPMF
at level ℓ is as follows:

1. For each row n, generate u
(ℓ)
n ∼ N (u

(ℓ−1)
p(n) , σ2

uI),

where p(n) is the parent node of n in the upper
level, e.g., if n is the plant, p(n) is the species of

n. Note u
(ℓ−1)
p(n) = u(0) for ℓ = 1.

2. For each column m, generate v
(ℓ)
m ∼

N (v
(ℓ−1)
m , σ2

vI). Note v
(ℓ−1)
m =v(0) for ℓ = 1.

3. Generate x
(ℓ)
nm ∼ N (〈u

(ℓ)
n ,v

(ℓ)
m 〉, σ2) for each non-

missing entry, where 〈·, ·〉 is the inner product.

In general, the upper-level latent factor is used as the
prior parameter to generate the lower-level latent fac-
tor. On the row side, the upper-level latent factor is
picked based on the phylogenetic information; on the
column side, the one on the same trait is always used.

Denoting latent factor matrices at level ℓ with U (ℓ) ∈

R
k×N(ℓ)

and V (ℓ) ∈ R
k×M , which has u

(ℓ)
n and v

(ℓ)
m in

columns, the posterior over {U (ℓ)}Lℓ=1 and {V (ℓ)}Lℓ=1 is

p
(

{U (ℓ)}Lℓ=1, {V
(ℓ)}Lℓ=1|{X

(ℓ)}Lℓ=1, σ
2, U (0), V (0)

)

1When there is no ambiguity, we use n and m instead
of n(ℓ) and m

(ℓ) as indexes to avoid clutter.
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∝
L
∏

ℓ=1

{

∏

n

N (u(ℓ)
n |u

(ℓ−1)
p(n) , σ2

uI)
∏

m

N (v(ℓ)
m |v(ℓ−1)

m , σ2
vI)

∏

n,m

δ(ℓ)nmN
(

x(ℓ)
nm|〈u(ℓ)

n ,v(ℓ)
m 〉, σ2

)

}

, (1)

where {·}Lℓ=1 denotes the data at all L levels (L = 5 for

TRY data), and δ
(ℓ)
nm = 1 when the entry (n,m) ofX(ℓ)

is non-missing and 0 otherwise. MAP inference on
{U (ℓ)}Lℓ=1 and {V (ℓ)}Lℓ=1 can be done by maximizing
the logarithm of the posterior in (1), which boils down
to minimizing the regularized squared loss as

E =

L
∑

ℓ=1

{

∑

nm

δ(ℓ)nm ‖ x(ℓ)
nm − 〈u(ℓ)

n ,v(ℓ)
m 〉 ‖22 (2)

+ λu

∑

n

‖u(ℓ)
n − u

(ℓ−1)
p(n) ‖22 +λv

∑

m

‖v(ℓ)
m − v(ℓ−1)

m ‖22

}

,

where λu = σ2/σ2
u and λv = σ2/σ2

v . Next, we explore
approaches for doing the MAP inference.

“Diagonally” stacking X(1) to X(L) together yields a

matrix X̃∈RÑ×M̃ , where Ñ=
∑L

ℓ=1N
(ℓ), and M̃=LM ,

and X(ℓ) is placed from row
∑ℓ−1

ℓ′=1Nℓ′+1 to
∑ℓ

ℓ′=1Nℓ′

and column M(ℓ−1)+1 to Mℓ in X̃. Stacking U (ℓ)s

and V (ℓ)s together for ℓ = 0 . . . L yields Ũ ∈ R
k×(Ñ+1)

and Ṽ ∈ R
k×(M̃+1) (1 for u(0) and v(0)). We can

construct an undirected graphWu on the Ũ side, where
Wu(n, n

′) = 1 if n is the parent or child of n′ based on
the phylogenetic information. Similarly, we have Wv

on the Ṽ side, where Wv(m,m′) = 1 if m and m′ are
the same trait at two consecutive levels. Given Wu,
we can define the graph Laplacian (Luxburg, 2007)
Lu and Lv on Ũ and Ṽ sides. Therefore, (2) could be
rewritten using graph Laplacian for regularization as:

E =
Ñ
∑

n=1

M̃
∑

m=1

δ̃nm ‖ x̃nm − 〈ũn, ṽm〉 ‖22 (3)

+ 2λutr
(

ŨLuŨ
T
)

+ 2λvtr
(

Ṽ LvṼ
T
)

.

The problem is not jointly convex on (Ũ , Ṽ ), so one
can consider alternately updating Ũ and Ṽ to reach a
stationary point. Keeping Ṽ fixed, the objective is a
quadratic form in vec(Ũ), whose solution is given by
a linear system of the form Avec(Ũ) = b. In spite of
the sparsity structure in A, solving such a linear sys-
tem in every iteration can lead to a prohibitively slow
algorithm. Hence, we focus on an efficient alternative:
stochastic block co-ordinate descent (Bertsekas, 1999).

At each step, we update U (ℓ) or V (ℓ) at level ℓ through
minimizing the objective function in (2) while keeping
U (ℓ′) and V (ℓ′) at other levels fixed. In particular,

at each level ℓ (ℓ = 1 . . . L), the objective function
containing U (ℓ) and V (ℓ) is given by

E(ℓ) =
∑

n,m

δ(ℓ)nm ‖ x(ℓ)
nm − 〈u(ℓ)

n ,v(ℓ)
m 〉 ‖22 (4)

+ λu

∑

n



‖ u(ℓ)
n −u

(ℓ−1)
p(n) ‖22+1(ℓ<L)

∑

n′∈c(n)

‖u(ℓ)
n −u

(ℓ+1)
n′ ‖22





+ λv

∑

m

(

‖ v(ℓ)
m − v(ℓ−1)

m ‖22+1(ℓ<L) ‖ v(ℓ)
m − v(ℓ+1)

m ‖22

)

,

where c(n) is the set of child nodes of n, e.g, if n is a
species, c(n) denotes plants of that species, and 1(ℓ<L)

is an indicator function taking value 1 when ℓ < L and

0 otherwise. The regularization terms ‖u
(ℓ)
n −u

(ℓ−1)
p(n) ‖22

and ‖v
(ℓ)
m −v

(ℓ−1)
m ‖22 keep u

(ℓ)
n and v

(ℓ)
m close to the cor-

responding latent factors at level ℓ−1, and the regular-

ization terms
∑

c(n)‖u
(ℓ)
n −u

(ℓ+1)
c(n) ‖22 and ‖v

(ℓ)
m −v

(ℓ+1)
m ‖22

keep u
(ℓ)
n and v

(ℓ)
m close to the corresponding latent fac-

tors at level ℓ + 1 (if applicable). Stochastic gradient
descent (SGD) is used to optimize (4) by taking one

entry x
(ℓ)
nm at a time and update u(ℓ) and v(ℓ) corre-

spondingly.

An alternative objective function to (2) is

E =
∑

nm

δ(L)
nm ‖ x(L)

nm − 〈u(L)
n ,v(L)

m 〉 ‖22 (5)

+

L
∑

ℓ=1

{

λu

∑

n

‖u(ℓ)
n − u

(ℓ−1)
p(n) ‖22 +λv

∑

m

‖v(ℓ)
m − v(ℓ−1)

m ‖22

}

,

In this case, we do not have X(ℓ) for ℓ < L, so u
(ℓ)
n

and v
(ℓ)
m at levels ℓ < L are only used for regular-

ization, we hence refer to it as hierarchy-regularized
PMF (HRPMF). However, since there is no data cor-

responding to latent factors u
(ℓ)
n and v

(ℓ)
m for ℓ < L,

the minimizer of (5) will have ‖u
(ℓ)
n − u

(ℓ−1)
p(n) ‖22= 0

and ‖v
(ℓ)
m − v

(ℓ−1)
m ‖22= 0 for ℓ = 3 . . . L − 1. In other

words, the latent factors u
(ℓ)
n (v

(ℓ)
m ) at intermediate

levels ℓ = 2 . . . L− 1 effectively reduce to one variable

u
(L−1)
n (v

(L−1)
m ), which does not make use of the hier-

archy. In Section 3, we show that HRPMF does not
generate satisfactory results.

Once we have U (L) and V (L) inferred, any missing en-
try (n,m) in the original matrix X(L) can be predicted

as x̂
(L)
nm = 〈u

(L)
n ,v

(L)
m 〉.

3. Experimental Result

In this section, we present experimental results for
trait prediction on TRY data. We show results in pre-
diction accuracy and correlation between traits.
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ID Name #Entries Definition

1 Specific leaf area (SLA) 51,848 The one sided area of a fresh leaf divided by its oven-dry mass
2 Plant height 49,595 Shortest distance of main photosynthetic tissue or reproduction unit on plant and ground level
3 Seed mass 96,418 Dry mass of a whole single seed
4 Leaf dry matter content (LDMC) 21,609 Leaf dry mass per unit of leaf fresh mass (hydrated)
5 Stem specific density (SSD) 28,571 The oven-dry mass of a section of a plant’s main stem divided by the its volume when fresh
6 Leaf area 52,266 The one-sided projected surface area of a single leaf or leaf lamina
7 Leaf nitrogen (LeafN) 42,760 Total amount of nitrogen per unit of leaf dry mass
8 Leaf phosphorus (LeafP) 20,549 Total amount of phosphorus per unit of leaf dry mass
9 Stem conduit density 3,519 Number of conduits (vessels and tracheids) per unit of stem cross section
10 Seed number per reproduction unit 5,547 Number of seeds per reproduction unit
11 Wood vessel element length 1,019 Length of a vessel element
12 Leaf nitrogen content per area 14,252 Total amount of nitrogen per unit of leaf area (measured one-sided)
13 Leaf fresh mass 12,131 Fresh mass of a whole leaf
14 Leaf nitrogen phosphorus ratio (LeafN/P) 12,712 Ratio of leaf total nitrogen content versus leaf total phosphorus content
15 Leaf carbon content per dry mass 11,562 Total amount of carbon per unit of leaf dry mass
16 Seed length 4,647 Length of a whole single seed
17 Dispersal unit length 3,021 Length of a whole dispersal unit (seed or fruit)

Table 1. Trait ID, name, number of non-missing entries and definition

3.1. Dataset

Currently, data collection and cleaning is still going
on in the TRY project. In our experiment, we use a
cleaned subset, which is a matrix containing 273,777
plants and 17 traits (Table 1), and 95.3% of entries are
missing. The percentage of missing entries in each trait
is highly unbalanced, ranging from 66.8% to 99.6%.
Starting from the top of the phylogenetic hierarchy,
there are 8 phylogenetic groups, 450 families, 7160 gen-
era, 45,824 species, and 273,777 plants.

Given the original plant×trait matrix and the hierar-
chy, we construct a data matrix on each level of the
hierarchy by taking the means. For example, given
the plant×trait matrix, together with species for each
plant, we can construct a species×trait matrix by tak-
ing the mean of the plants in the same species. Simi-
larly, we can also construct a genus×trait matrix, fam-

ily×trait matrix, etc..

The traits in question have log-normal distribu-
tion (Kattge et al., 2011), so we first take the loga-
rithm for entries in the plant×trait matrix, and then
calculate the z-score for each trait, i.e., for xnm cor-
responding to plant n and trait m, we convert it to
x′
nm = (log(xnm) − lmm)/lsm, where lmm and lsm

are the mean and standard deviation of the logarithm
of trait m. After this step, most of the traits are dis-
tributed normally ranging from -4 to 4. The results
we show are in the transformed space.

3.2. Accuracy in Trait Prediction

We first show the accuracy of trait prediction for
HPMF by comparing it with other methods.

3.2.1. Algorithms

We run five algorithms on the TRY data: MEAN,
PMF, PMF using hierarchical information for initial-
ization level by level (LPMF), HPMF and HRPMF.

The details of each approach are as follows:

MEAN: A “hierarchical mean” strategy is used. For
example, to predict traitm of plant n, among all plants
with trait m available for training, if there are plants
in the same species as plant n, we use species mean for
prediction; otherwise, if there are plants in the same
genus with plant n, we use the genus mean, and so
on. In general, among species mean, genus mean, fam-

ily mean, and phylogenetic group mean, we use the first
available one at the lowest level. In the ecological com-
munity, taking species mean is a common way to deal
with missing data and is highly accurate, since most of
the variation is between species and only little within
species (Kattge et al., 2011).

LPMF: We run PMF (Salakhutdinov & Mnih, 2007)
on data matrices level by level following a top-down
and bottom-up mode iteratively: first from X(1)

to X(L) (top-down), and then from X(L) to X(1)

(bottom-up), repeated for several times. At each level
ℓ, we have

(U (ℓ), V (ℓ)) = PMF(X(ℓ), initU (ℓ), initV (ℓ)) ,

where initU (ℓ) and initV (ℓ) are initializations of U (ℓ)

and V (ℓ). To incorporate the phylogenetic informa-
tion, we use the following strategy: in top-down mode,
at each level ℓ, we set initU (ℓ) and initV (ℓ) based on
immediate upper level factorization result U and V ,

i.e., initU
(ℓ)
n = U

(ℓ−1)
p(n) and initV

(ℓ)
m = V

(ℓ−1)
m ; simi-

larly, in bottom-up mode we set initU (ℓ) and initV (ℓ)

based on immediate lower level factorization result
U and V , i.e., initU

(ℓ)
n =

∑

n′∈c(n) U
(ℓ+1)
n′ /|c(n)| and

initV
(ℓ)
m = V

(ℓ+1)
m , where | · | denotes the number of

elements in the set. The intuition is that we use the
most updated U and V for the current level initializa-
tion immediately.

HPMF: We run stochastic block coordinate descent
as explained in Section 2. In principle, block co-
ordinate descent allows us to update {U (ℓ)}Lℓ=1 and
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Phylogenetic info MEAN PMF LPMF HRPMF HPMF

None 1.0009 0.9743 × × ×
±0.0027 ±0.0235

Phylo 0.9442 × 0.9499 0.9053 0.8812
±0.0036 ±0.0058 ±0.0082 ±0.0124

Phylo+family 0.7699 × 0.7664 0.8013 0.7040
±0.0042 ±0.0083 ±0.0058 ±0.0074

Phylo+family 0.6391 × 0.5960 0.7407 0.5686
+genus ±0.0036 ±0.0095 ±0.0335 ±0.0063
Phylo+family 0.5703 × 0.4638 0.6999 0.4439
+genus+species ±0.0036 ±0.0044 ±0.0170 ±0.0023

Table 2. RMSE of HPMF and other methods. Latent di-
mension k=15 for matrix factorization methods.

{V (ℓ)}Lℓ=1 in an arbitrary order. Empirically, we do
it level by level iteratively following a top-down and
bottom-up order. In each iteration, we first do a top-
down pass to update

(

U (1), V (1)
)

to
(

U (L), V (L)
)

, fol-

lowed by a bottom-up pass to update
(

U (L), V (L)
)

to
(

U (1), V (1)
)

, and repeat the process for several itera-

tions. The intuition is that after updating
(

U (ℓ), V (ℓ)
)

,
we want to immediately use it for regularization in the
next level update. Empirically, we observed that such
a strategy converges faster than only doing top-down
updates repeatedly.

HRPMF: We run HRPMF in a similar way as HPMF,
but use (5) as the objective function.

PMF: We run PMF (Salakhutdinov & Mnih, 2007)
directly on the plant×trait matrix without any phylo-
genetic information, so the prediction is purely based
on non-missing traits in the matrix. PMF can be con-
sidered as a special case for LPMF and HPMF when
no hierarchical information is used.

3.2.2. Methodology

Some plants only have one trait available in our data,
and we need at least one trait for each plant to run
matrix factorization methods. Therefore, we split the
training, test and validation sets as follows: For each
plant, if it has at least three traits available, we ran-
domly hold out one trait for test, one trait for valida-
tion, and rest for training; if it has two traits available,
we randomly hold out one trait for training and one
for test; if it only has one trait available, we use it
for training. Following such a strategy, each plant has
at least one trait in the training set. The test set is
used for test and the validation set is used during the
training process for early stopping, i.e., after 5 itera-
tions, if the performance on validation set decreases,
we stop training. We repeat the holding-out process 5
times to get 5 randomly split datasets, and construct
the upper-level matrices for training and validation,
but the test set is only at the plant×trait level.

To investigate how the algorithms react to increasing
hierarchical information, we first only use the phylo-

0 2 4 6 8 10

0.45

0.5

0.55

Iterations

R
M

S
E

 

 

LPMF
HPMF

Figure 2. RMSE of LPMF and HPMF with increasing
number of iterations.

genetic group information, and gradually add family,
genus, and species information one level at a time, un-
til we incorporate all levels into the algorithm.

RMSE is used for evaluation. Assuming there are to-
tally T entries for test, at is the true value and ât is
the predicted value, RMSE is defined as RMSE =
√

∑

t(at − ât)2/T .

3.2.3. Results

The result for different algorithms are in Table 2. The
first row shows the result without using phylogenetic
information. In this case, MEAN uses the overall mean
of all plants for each trait for prediction. The rest rows
show the result with increasing phylogenetic informa-
tion being used. The result for LPMF, HPMF and
HRPMF are obtained from 5 top-down and bottom-
up passes. The main message is as follows:
(1) For MEAN, LPMF, HPMF, and HRPMF, RMSE
keeps decreasing when more phylogenetic information
gets incorporated.
(2) HPMF outperforms MEAN at all levels by a large
margin. We run a paired t-test and find HPMF is sig-
nificantly better than MEAN with a p-value smaller
than 10−5 at all levels.
(3) HPMF outperforms LPMF, and its advantage is
more distinct when only coarse-level phylogenetic in-
formation is available. One possible reason is as fol-
lows: Finer-level phylogenetic data privide more pre-
cise information than the coarse-level data. For ex-
ample, trait values on plant level are usually closer
to trait values on the species level than those on the
genus level. Therefore, using species information even
just for initialization, LPMF yields a fairly good result.
However, for coarse-level phylogenetic data, incorpo-
rating it through initialization alone may not work
well. A model which captures the hierarchical infor-
mation explicitly, such as HPMF, is more powerful.
(4) HRPMF does not perform well. As explained in

Section 2, since u
(ℓ)
n s and v

(ℓ)
m s in the upper levels are

only used in the regularization and there is no data
directly associated with them, the hierarchy is not ef-
fectively used.
(5) Figure 2 shows how RMSE changes with increas-
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Figure 3. RMSEMEAN -RMSEHPMF on two parts of test
data with (Part A) or without (Part B) corresponding
training data in the same species available. HPMF per-
forms mostly better than MEAN even on part A, and much
better on part B.

ing number of iterations (top-down and bottom-up
passes). In the first three iterations, for both LPMF
and HPMF, RMSE drops quickly, and then it does not
change much along the time.

We do a closer comparison between HPMF and MEAN
based on one run of these two algorithms. As we have
mentioned, using species mean is highly accurate due
to the small variance within the species. Therefore, it
is interesting to differentiate the result from the species
mean and upper level means for the MEAN strategy,
and compare them to HPMF respectively. In particu-
lar, the test data is divided to 17 parts, one for each
trait, and each part is further divided to two: in part
A, for each trait m of plant n, there exist plants in the
same species with n and their trait m is non-missing.
Therefore, the species mean is used for MEAN on this
part of data. The rest of the test data are in part B, on
which genus or upper-level means are used as available.
Such a split of test data does not affect the training
process of HPMF, but for test, we compute HPMF’s
results on part A and B of each trait respectively. The
comparison of HPMF and MEAN is presented in Fig-
ure 3, where we show RMSEMEAN − RMSEHPMF

on each trait, so if the bar is above zero, HPMF per-
forms better, and otherwise MEAN performs better.
From Figure 3, we can see that even on part A, where
species mean are used for MEAN, HPMF is perform-
ing slightly better than MEAN on most traits. The
only two traits where MEAN is doing a better job is
trait 3 (Seed Mass) and 9 (Stem Conduit Density).
These traits have large variation among species, hence
species mean is doing well and the collaborative filter-
ing strategy of HPMF is not very helpful by borrow-
ing information from other species. For the result on
part B, where upper level means are used for MEAN,
the advantage of HPMF is more distinct. This result

is important, because it demonstrates HPMF’s good
prediction performance when trait data in the same
species is not available.

3.3. True Trait vs Predicted Trait

In the following sections, we will show a variety of
results for HPMF other than RMSE.

While RMSE gives an overall accuracy, it masks de-
tails about the distribution of values and about fits of
predicted to true trait values. Therefore, we do a scat-
ter plot for each trait, using true value and predicted
value on test entries. Such scatter plots are useful
to the ecological community since they show the dis-
tribution of values; the shape, variance and scatter of
predictions in relation to the full spectrum of trait val-
ues; and whether the predictions are close to the 1:1
line. The results for HPMF are presented in Figure 4,
where we use two traits as examples, viz., Wood Ves-
sel Element Length and Leaf Fresh Mass. Each dot
denotes one entry in the test set matrix.

The result in the first column is from HPMF without
phylogenetic information (i.e., PMF). We show two
typical results. For Wood Vessel Element Length, the
dots roughly form a horizontal line. For Leaf Fresh
Mass, the dots form an “X”-shape plot containing two
parts: one part is close to a 1:1 line and the other part
is close to a horizontal line. A horizontal line indicates
poor prediction, since there is no evident correlation
between the true and predicted value, while a 1:1 line
indicates good prediction. The reason for the “X”-
shape plot is as follows: Leaf Fresh Mass is strongly
correlated with Leaf Area (as indicated in Figure 5
in the next subsection), so when we predict the Leaf
Fresh Mass, for plants with Leaf Area trait available,
PMF is able to use the information on Leaf Area and
makes a fair prediction (dots close to the 1:1 line),
but for plants whose Leaf Area is not available, PMF
cannot do much and gives a poor prediction (dots on
the horizontal line).

Starting from the second column, when more phylo-
genetic information is used, the horizontal line grad-
ually rotates counter clockwise and the shape of the
plot becomes more concentrated to the 1:1 line. But
note that especially in the second column the slope of
the line is still less than 1, suggesting overpredicting
at low values and underpredicting at high. Finally,
in the last column when all phylogenetic information
is used, the plots are roughly 1:1 lines, indicating that
the predictions are close to their true values. Thus, for
HPMF with all phylogenetic information, one can get
accurate prediction in Leaf Fresh Mass even for plants
whose Leaf Area is not available, and accurate predic-
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Figure 4. Scatter plots for (true value, predicted value) of HPMF on test data of two traits with increasing phylogenetic
information. Column 1: no phylogenetic information used. Column 2: phylogenetic group used. Column 3: phylogenetic
group and family used. Column 4: phylogenetic group, family and genus used. Column 5: phylogenetic group, family,
genus, and species used. When more phylogenetic information is used, the plot becomes closer to a 1:1 line.

tion for Wood Vessel Element Length even if there is
no trait closely correlated with it.

3.4. Trait Correlation

One of the most interesting aspects for the ecolog-
ical community is to explore the correlation among
the traits and how they vary jointly (Wright et al.,
2004; Baraloto et al., 2010). Traits do not vary in-
dependently since there are always constraints, e.g.,
tiny plants cannot have large leaves; and there are also
tradeoffs, e.g., plants with thin leaves (low SLA) tend
to have high leafN and leafP and thus high photo-
synthetic rate, and vice-versa. These constraints and
trade-offs have implications for ecosystem functioning
and the potential of plants to adjust to changing en-
vironmental conditions. Therefore, it is interesting to
explore the correlation among traits and to further un-
derstand the underlying causes and mechanisms. How-
ever, due to the high sparsity of the TRY data, it is
usually not possible to derive correlation pattern be-
yond two or three traits, since there are not enough
plants having a specific set of more than two or three
traits available. Matrix completion technique makes
such analysis possible. However, it requires the pre-
dicted correlation to be close to the true correlation.

In this subsection, we show the correlation result for
pairs of traits. Given the plant×trait matrix, we ran-
domly hold out 80% of entries for training, 10% for
validation, and 10% for test. A few test entries do not
have training data in the same row (plant) so we can-
not predict their values. We ignore these entries and
only focus on the ones we can predict.

Given any pair of traits, for plants with both traits
available in the test data, we can do a scatter plot

for each pair as in Figure 5, where each dot is one
plant, and its two coordinates are the two trait
values. Figure 5 presents some examples of trait
pairs with strong positive or negative correlation.
We can see that the correlation from the prediction
(green) is close to the correlation from the true test
set (red). Interestingly, HPMF is picking up accurate
correlations, which is a second order information and
was not part of the objective function. We explain
the observed correlation for each pair as follows:

LeafFreshMass-LeafArea: Leaves with large area
tend to have higher mass, as leaf thickness is con-
strained. (physical constraint)

LDMC-SLA: Thin leaves with little density (high
SLA) tend to have only few structural components to
make the leaves robust, they often get their tension
for water pressure within the cells (turgor). Thus
they have little dry matter content relative to water
content: these plants invest little carbon to make the
leaves robust. These leaves are often short lived. (leaf
economic trade-off (Wright et al., 2004))

LeafN-LeafP: For the processes of living, both
nitrogen (N) and phosphorus (P) are needed in a
specific relation. N is for proteins, and P is for genes
and energy distribution within cells. (physiological
constraint (Wright et al., 2004))

4. Related Work

Apart from using species mean for filling gaps in
trait matrices, missing value prediction in ecol-
ogy is commonly solved by two widely used ap-
proaches (Nakagawa & Freckleton, 2008). First is
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multiple imputation (Rubin, 1987) methods, which
typically replace the missing by 3-10 simulated ver-
sions. Second is augmentation methods, which im-
plicitly fill in missing entries in the context of model
parameter estimation. In these cases the gap filling
becomes part of model parameter estimation and the
missing entries are not explicitly available.

In the machine learning community, low-rank factor-
ization based algorithms have been developed fast
for matrix completion. Salakhutdinov & Mnih (2007)
propose probabilistic matrix factorization (PMF).
Lawrence & Urtasun (2009) propose a non-linear ma-
trix factorization with Gaussian processes. In addi-
tion, there has been work on trace norm regularized
matrix factorization (Salakhutdinov & Srebro, 2011),
and algorithms which discover low-rank and sparse
components (Candes et al., 2009). Recent years have
seen emergence of work on incorporating hierarchi-
cal structure into matrix factorization. Menon et al.
(2011) use the hierarchical structure to help factorize
the click through rate matrix on advertisements.

5. Conclusions

In this paper, we focus on predicting missing traits for
plants in TRY database. We propose HPMF which
can incorporate hierarchical phylogenetic information
into matrix factorization. We show that HPMF im-
proves the prediction accuracy considerably by effec-
tively using the phylogenetic information in the con-
text of probabilistic matrix factorization. It gener-
ates higher prediction accuracy than the species mean
strategy, which is considered accurate in the ecolog-
ical community. We also show that HPMF captures
the correlation among the traits accurately.
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