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Abstract

With the advent of kernel methods, automat-
ing the task of specifying a suitable kernel has
become increasingly important. In this con-
text, the Multiple Kernel Learning (MKL)
problem of finding a combination of pre-
specified base kernels that is suitable for the
task at hand has received significant atten-
tion from researchers. In this paper we show
that Multiple Kernel Learning can be framed
as a standard binary classification problem
with additional constraints that ensure the
positive definiteness of the learned kernel.
Framing MKL in this way has the distinct
advantage that it makes it easy to leverage
the extensive research in binary classification
to develop better performing and more scal-
able MKL algorithms that are conceptually
simpler, and, arguably, more accessible to
practitioners. Experiments on nine data sets
from different domains show that, despite
its simplicity, the proposed technique com-
pares favorably with current leading MKL
approaches.

1. Introduction

Kernel methods such as support vector machines
(SVM) (Cortes & Vapnik, 1995), kernel ridge regres-
sion, or kernel PCA (Smola & Muller, 1999), use a pos-
itive semi-definite (PSD) kernel to implicitly map the
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instances from the original instance space to a feature
space where the standard linear algorithm is applied.
The main drawback of kernel methods is that they re-
quire the user to specify a single suitable kernel in the
first place, which is often critical to the method’s suc-
cess, but is usually a hard task even when the user
has a good familiarity with the problem domain. To
ease this burden, significant attention has been given
the problem of automatically learning the kernel. The
majority of the previous work in this area has focused
on the Multiple Kernel Learning (MKL) setting, where
the user is only tasked with specifying a set of base ker-
nels, and the learning algorithm is in charge of finding
a combination of these base kernels that is appropriate
for the problem at hand.

There have been two main lines of work in this direc-
tion. The first one learns both the the weights of the
kernel combination and the parameters of the classifier
by solving a single joint optimization problem. This
one-stage approach was first proposed by (Lanckriet
et al., 2004) and has since received significant atten-
tion (Rakotomamonjy et al., 2007; Sonnenburg et al.,
2006; Cortes et al., 2010a; Kloft et al., 2011; Bach,
2008; Zien & Ong, 2007; Cortes et al., 2009; Sindhwani
& Lozano, 2011).

The second line of work in kernel learning follows a
two-stage approach: first learn a “good” combination
of base kernels using the training data, then use the
learned kernel with a standard kernel method such
as SVM or kernel ridge regression to obtain a clas-
sifier/regressor. This approach has been initially pro-
posed in (Cristianini et al., 2001) and (Kandola et al.,
2002), and recently revisited by (Cortes et al., 2010b).
The two-stage leaning approaches so far have been
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based on the notion of target alignment. Intuitively,
target alignment, is a measure of similarity (agree-
ment) between a kernel and the target kernel, which
is derived from the training labels, and represents the
optimal kernel for the training sample.

In this paper we introduce TS-MKL, a general ap-
proach to Two-Stage Multiple Kernel Learning that
encompasses the previous work based on target align-
ment as special cases. We formulate the kernel learn-
ing problem as a standard linear classification problem
in a new instance space. In this space, any linear clas-
sifier with weights µ directly corresponds to a linear
combination of base kernels with weights µ. To avoid
confusions, we will denote this new instance space as
the K-space, and a classifier in the K-space as a K-
classifier throughout the paper. Thus the problem of
finding a “good” kernel combination reduces to find-
ing a “good” linear classifier in the K-space, a very
familiar problem. One big advantage of this approach
is that one can easily adapt techniques from binary
classification to solve the MKL problem. For instance,
one can use familiar and well understood max-margin
methods to obtain better performing MKL algorithms,
or take advantage of the recent advances in large scale
learning to scale up and/or parallelize the MKL im-
plementations. For the results presented in this paper
we learn K-classifiers (and hence kernels) by training
L2 regularized linear SVMs with positive weights using
the stochastic projected sub-gradient descent method
from Pegasos (Shalev-Shwartz et al., 2007).

On the theoretical side, we prove a finite sample gen-
eralization bound for the original classification task in
terms of the expected hinge loss and the margin of a
K-classifier in the K-space. This justifies our approach
of training a K-classifier that has low hinge loss and
high margin in the K-space in order to learn a good
kernel for the original classification problem. To the
best of our knowledge, this result represent the first
finite sample bound for two-stage kernel learning, im-
proving on previous bounds that were only asymptotic.
We also give a concentration bound for the expected
hinge loss of a K-classifier.

On the empirical side, we run a comprehensive eval-
uation on two object recognition datasets (Caltech
101 and 256), three bioinformatics datasets (Psort+,
Psort-, Plant) and four UCI datasets. On all these
datasets our method performs better than, or the same
as target alignment, showing that choosing a better
K-classifier is beneficial. Our method also fares well
against one-stage multiple kernel learning approaches
significantly outperforming them on Caltech-256 and
being essentially tied on the others.

Figure 1. The K-space for two base kernels (p = 2). Points
represent positive and negative K-examples zxx′ . The co-
ordinates are the values of K1(x, x′) and K2(x, x′).

2. Method

We consider a classification problem where instances
(x, y) are drawn from a distribution P over X × Y,
with Y a finite discrete set of labels. We assume that
we have access to p positive semi-definite (PSD) base
kernel functions K1, · · · ,Kp with Ki : X × X → R.
Our goal is to learn a combination of these kernel
functions that is itself a positive semi-definite func-
tion and is a “good” kernel for the classification
task at hand. To achieve this, we define a new bi-
nary classification problem over a new instance space
{(zxx′ , tyy′)|((x, y), (x′, y′)) ∼ P × P} ⊂ Rp × {±1}
where

zxx′ = (K1(x, x′), · · · ,Kp(x, x
′))

tyy′ = 2 · 1{y = y′} − 1
(1)

We will call this space the K-space, and call zxx′ a K-
example or K-instance and tyy′ a K-label. Any function
h : Rp → R in this space induces a similarity function
K̃h between instances in the original space:

K̃h(x, x′) = h(zxx′) = h(K1(x, x′), · · · ,Kp(x, x
′))

If K̃h is also positive semi-definite, hence a valid
kernel, we say that h is a K-classifier. For exam-
ple, all linear functions with positive coefficients (i.e.
hµ(zxx′) = µ · zxx′ with µ ≥ 0) are K-classifiers with

the induced kernels K̃µ being linear combinations of
the p base kernels. Figure 1 shows a toy example for
the case of two base kernels. Each point in the figure
is a labeled K-example (zxx′ , tyy′) corresponding to a
pair (x, y), (x′, y′) of original instances. Note that the
figure is drawn in K-space, not in input space. For
a linear K-classifier hµ, the value of its induced ker-

nel for a parir of original instances, K̃µ(x, x′), is the
projection of the corresponding K-example zxx′ on the
vector µ (represented by the green line). The left and
center sub-figures show the cases where µ is (0, 1) and
(1, 0) respecively. In both cases the induced kernel
combination is suboptimal. The linear combination in
the right sub-figure corresponds to µ = (1, 1) and is
a good combination because the kernel values of pairs
of instances in the same class are separated from the
kernel values of pairs of instances in different classes.

The key insight behind our method is that, if a K-
classifier h is a good classifier in the K-space, then
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the induced kernel K̃h(x, x′) = h(zxx′) will likely be
positive when x and x′ belong to the same class and
negative otherwise. This makes K̃h a good kernel for
the original classification task. This intuition is made
more precise in Section 3 where we provide a general-
ization bound that shows that a K-classifier that sep-
arates the positive and negative K-examples with high
margin will indeed induce a kernel that allows learn-
ing a good classifier for the original task. Note that
having a good K-classifier is a sufficient condition, not
a necessary one. There can very well exist combina-
tions of base kernels that do not correspond to a good
K-classifier, but are good kernels nevertheless. Unlike
one-stage kernel learning approaches, our method will
not be able to find such combinations and it might
miss on some good kernels. The results in Section 4,
however, show that this does not seem to be the case in
practice, as we consistently matched or exceeded the
performance of one-stage MKL.

Thus the problem of learning a good kernel can be re-
duced to the problem of learning a good K-classifier
in the newly defined K-space: given a training sam-
ple (xi, yi)

n
i=1 for the original classification task, con-

struct a K-training set (zij , tij)1≤i≤j≤n and learn a K-
classifier h from this sample. Any learning algorithm
can be used for learning h provided that the induced
kernel can be guaranteed to be a valid PSD kernel1.

In line with the majority of the MKL work, in this pa-
per we focus on learning linear K-classifiers, and hence
linear combinations of base kernels. The results in Sec-
tion 3 suggest that it is desirable to have a maximum
margin K-classifier, thus we use L2 regularized linear
SVM to learn the K-classifier, and ensure that the in-
duced kernel is PSD by constraining the weights to be
positive. One could, however, use a sparsity promoting
regularizer (e.g., L1 penalty) if a sparse combination
of kernels is desired.

The optimization problem for learning the kernel
weights µ is thus given by

min
µ≥0

λ

2
||µ||2 +

1(
n
2

)
+ n

∑
1≤i≤j≤n

[1− tijµ · zij ]+ (2)

where [1− s]+ = max{0, 1− s} is the hinge loss.

To optimize this objective we use the stochastic pro-
jected sub-gradient descent implemented in Pega-

1One could drop the PSD requirement and use any clas-
sifier, even a non-linear one, to obtain a similarity function
rather than a proper kernel. The theory of learning with
similarity functions (Balcan & Blum, 2006) can be then
applied to learn a classifier for the original task. General-
ization bounds similar to the ones in Section 3 would also
hold for this case.

sos (Shalev-Shwartz et al., 2007), with an additional
projection to the non-negative constraint set after
every gradient step. Using a stochastic optimiza-
tion method allows us to scale very well despite the
quadratic number of K-examples: computation time
is not directly dependent on the number of instances,
linear in the number of base kernels, and independent
of the number of classes. If needed, memory usage can
be reduced through streaming techniques or on the fly
construction of the K-examples.

2.1. Connection to Target Alignment

Previous two-stage kernel learning approaches (Cris-
tianini et al., 2001; Cortes et al., 2010b) learn
a non-negative linear combination of base kernels
that maximizes the alignment with the target ker-
nel K(t)(xi,xj) = yiyj on the training set. This is
achieved by solving the optimization problem

max
µ≥0

〈
∑p
l=1 µlKl,K

(t)〉
||
∑p
l=1 µlKl||F

, s.t. ||µ||2 = 1, (3)

where A is the Gram matrix of kernel A on the training
set, 〈A,B〉 = tr(ABT ) and ||A||2F = tr(AAT ).

The above optimization problem can be re-written in
our terminology of K-examples as follows:

max
µ≥0

µT
(∑

tij=1 zij −
∑
tij=−1 zij

)
√
µT
(∑

∀i,j zijzTij

)
µ

, s.t. ||µ||2 = 1

When the base kernels are centered, as proposed
in (Cortes et al., 2010b), the denominator represents
the overall standard deviation of the projections of the
K-examples on the vector µ. Hence target alignment
attempts to find a projection direction µ that max-
imize the difference between the sums of the projec-
tions of the positive and negative K-examples, while
minimizing the overall variance of the projected K-
examples. This is very similar to using Fisher-LDA in
the K-space, with non-negativity constraints on µ. In
fact, viewing target alignment from this perspective,
makes it clear that it implicitly makes the assump-
tion that the data is homoscedastic (the positive and
negative K-examples have the same covariance), which
might not be appropriate in real applications.

2.2. Connection to Learning with
Hyperkernels

The approach proposed in this paper can also be cast
in the framework of learning with hyperkernels (Ong
et al., 2005) which provides a general recipe for kernel
learning and includes Multiple Kernel Learning as a
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special case. It introduces the notions of kernel quality
functional, a measure of “goodness” of a kernel that
depends on the training data, and Hyper Reproducing
Kernel Hilbert Space, an RKHS over kernel functions
that defines the class of kernels that can be learned.
Once the desired Hyper-RKHS and quality functional
are specified, one has to solve a semi-definite program
(SDP) to optimize the quality functional regularized
by the norm induced by the Hyper-RKHS.

When using an SVM as the K-classifier, TS-MKL can
be put in the learning with hyperkernels framework by
defining the Hyper-RKHS to be the set of non-negative
linear combinations of base kernels, and the quality
functional to be the hinge loss in K-space. Consider-
ing this specific setting has significant advantages: it
enables the use of simple and well understood binary
classification techniques to learn the kernel, it enables
a theoretical analysis, and it allows a significantly more
scalable implementation. Equally important, all these
advantages do not seem to come at the cost of reduced
performance, as we are still performing on par with or
better than competing MKL techniques.

3. Theoretical Results2

In this section we make the connection between the
performance a K-classifier in the K-space and the per-
formance on the original problem precise. This jus-
tifies the approach taken in this paper not only intu-
itively, but also from a theoretical standpoint. Specif-
ically, we bound the generalization error of an SVM
that uses the kernel induced by a K-classifier in terms
of the expected hinge loss and the margin of the K-
classifier in the K-space:

Theorem 3.1 Let P be a distribution on X × {±1},
zxx′ and tyy′ be as in Equation 1, h be a K-classifier,
and R be a constant s.t. h(zxx) ≤ R2 ∀x ∈ X . Let

HLh,γ = E((x,y),(x′,y′))∈P×P

t[
1− tyy′h(zxx′)

γ

]
+

|

be the expected K-space hinge loss relative to margin γ
of the K-classifier h. Then, with probability 1 − δ, a
classifier f̂ with generalization error

P(x,y)

r
yf̂(x) ≤ 0

z
≤ HLh,γ +O

(√
R4 ln(1/δ)

γ2n

)

can be learned efficiently from a training sample of n
instances drawn IID from P .

2Due to lack of space, all proofs are included in the
supplementary material.

The theorem follows from the two lemmas stated be-
low. The first lemma shows that a K-classifier that has
low expected hinge loss in the K-space will induce a
“good” kernel. The second lemma shows that a good
kernel allows for a classifier with low generalization
error to be efficiently learned from a finite training
sample. The following definition states formally what
we mean by a good kernel (Srebro, 2007).3

Definition A kernel K is an (ε, γ) good kernel in
hinge loss with respect to a distribution P on X×{±1}
if there exist a classifier w ∈ HK with ‖w‖HK

= 1 s.t.

E(x,y)

t[
1− y〈w, φ(x)〉

γ

]
+

|

≤ ε

where HK is the Hilbert space and φ(·) is the feature
mapping corresponding to K.

Lemma 3.2 Let P , h, HLh,γ , R be as in Theo-

rem 3.1. Then the K̃h is a (HLh,γ ,
γ
R ) good kernel

in hinge loss with respect to P .

Lemma 3.3 Let K be an (ε, γ) good kernel in hinge
loss, with K(x, x) ≤ R2 ∀x ∈ X . Let (xi, yi)

n
i=1 be an

IID training sample, and f̂(x) = ŵ · φ(x) with

ŵ = arg min
||w||HK

≤1

1

n

n∑
i=1

[
1− yiw · φ(xi)

γ

]
+

be a kernel classifier that minimizes the average hinge
loss relative to γ on the training sample. Then, with
probability at least 1− δ, we have:

P(x,y)

r
yf̂(x) ≤ 0

z
≤ ε+O

(√
R2 ln(1/δ)

γ2n

)

Lemma 3.3 follows directly from Theorem 21 in
(Bartlett & Mendelson, 2002).

Note that, unlike in the one-stage kernel learning case,
the generalization bound in Theorem 3.1 is in terms of
the expected hinge loss of the K-classifier not the train-
ing hinge loss. While we are hopeful a generalization
bound for the classification problem in the K-space can
be obtained, as of now it remains an open problem.

We can, however, prove a concentration bound for the
expected hinge loss of a K-classifier. This is the analog
of the concentration bounds for target alignment in
(Cortes et al., 2010b; Cristianini et al., 2001).4

3A kernel that does not satisfy this definition is not
necessarily a “bad” kernel. We just can not make any
formal statements with respect to its performance.

4This is not a regular generalization bound as the K-
classifier is not allowed to depend on the IID sample.
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Theorem 3.4 Let P , h, HLh,γ , R be as in Theo-
rem 3.1. Let (xi, yi)

n
i=1 be an IID sample distributed

according to P . Then the following inequality holds
with probability at least 1− δ

HLh,γ ≤
2

n(n− 1)

∑
1≤i<j≤n

[
1− tijh(zij)

γ

]
+

+

√√√√2
(

1 + R2

γ

)2
ln 1/δ

n

4. Empirical Evaluation

We evaluate the proposed method on two object recog-
nition datasets (Caltech-101 and Caltech-256), three
bioinformatics datasets (Psort+, Psort- and Plant),
and four UCI datasets (Sonar, Pima, Vertebral and
Ionosphere). We compare our method with several
baselines: best kernel, uniform combination of base
kernels (Average), target alignment, and the one-
stage MKL algorithms SILP (Sonnenburg et al., 2006),
SimpleMKL (Rakotomamonjy et al., 2007), L2-Norm
MLK (Kloft et al., 2011), and UFO-MKL (Orabona
& Jie, 2011). For two-stage methods we use LIB-
SVM (Chang & Lin, 2011) to train the data classifier
and select the regularization parameter C via 4-fold
cross-validation for all datasets except Caltech where
it is fixed at 1000. On multi-class problems, we use a
one-vs-rest SVM. For one-stage approaches other than
UFO-MKL, we selected C as above and use a one-vs-
rest scheme for multi-class problems. For UFO-MKL
we use the joint multi-class formulation and search
over α and C using a bi-dimensional grid. Following
(Orabona & Jie, 2011), we run the optimization for 20
epochs on UCI datasets, 30 epochs on Caltech-101 and
100 epochs on Caltech-256. All kernels used in the ex-
periments are centered and standardized to have zero
mean and unit variance in feature space.

4.1. Methodology for TS-MKL

To learn kernel combination weights µ with TS-
MKL we optimize the objective in Eq. 2 using Pe-
gasos (Shalev-Shwartz et al., 2007) with an additional
projection to the non-negative constraint set after each
sub-gradient step. We use a batch size of 100 for each
sub-gradient computation and run 103 sub-gradient
steps for UCI datasets and 105 for all others. Fig-
ure 2, plots the test data accuracy versus the number
of gradient iterations on Caltech-101, showing that af-
ter 105 iterations the change in accuracy is minimal.
For the bigger Caltech-256 there is also essentially no
change after 105 iterations. We use subsampling to
balance the positive and negative K-examples.
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Figure 2. Left: Test data accuracy as a function of number
of sub-gradient iterations in Pegasos. Right: Correlation
between hinge loss (and accuracy) on K-examples and test
data accuracy on Caltech-101.

To select the parameter λ, we use a single 80%-20%
random split of the Pegasos training set and search
for the λ with the lowest validation hinge loss5. The
search grid for λ is taken to be in the range of 100 to
10−8 dividing in each step by 4. A big advantage of
this selection scheme for λ is that it is completely in-
dependent from the data classifier that will ultimately
use the learned kernel. This keeps the setup simple
and avoids intricate multi-level multi-dimensional val-
idation schemes across the parameters of the data clas-
sifier and the K-classifier. Fig. 2, shows the hinge-loss
in K-space, the accuracy of the K-classifier, and the
accuracy of the data classifier that uses the learned
kernel, as a function of λ. The plot shows a clear
correlation between hinge loss in K-space and data ac-
curacy with the learned kernel. The data accuracy in-
creases when the hinge loss in K-space decreases and
vice versa. This experiment provides further empri-
cal evidence for our theoretical results that show that
a good K-classifier (having low hinge loss in K-space)
corresponds to a good learned kernel.

After λ is selected, Pegasos is retrained on the full
training set of K-examples. The obtained weight vec-
tor µ is then used to linearly combine the base ker-
nels, and the SVM data classifier is trained using this
learned kernel with C selected as described above.

4.2. Caltech-101 and Caltech-256

Both these datasets contain pictures of objects and
the task is to recognize the object category. Caltech-
101 has 102 classes and Caltech-256 has 256 classes.
Caltech-101 is perceived as an easier dataset than
Caltech-256 in which images are not left-right aligned
and there are more categories. We follow the exper-
imental setup used in (Gehler & Nowozin, 2009) and
use the same 39 base kernels and train test splits.

We report results using all 102 classes for Caltech-

5Since the K-examples are dependent, the training and
validation set will not be fully independent. Nevertheless,
this does not seem to negatively affect the performance.
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Figure 3. Left: Caltech-101 results: mean accuracy over
all classes for different sample sizes, averaged over 5 splits.
Right: Caltech-256 results: mean accuracy over all classes
for different sample sizes

101 averaged over five splits. For Caltech-256, the
results are for 256 classes (excluding the clutter cat-
egory), for a single split. The performance measure
used is mean prediction rate per class. The num-
ber of training images per class is varied in the range
5, 10, 15, 20, 25, 30 for Caltech-101, and in the range
5, 10, 15, 20, 25, 30, 40, 50 for Caltech-256. The num-
ber of test images used is up to 50 images per class for
Caltech-101 and 25 images per class for Caltech-256.
The regularization parameter for the data SVM, C, is
fixed to 1000 for all methods6.

The results for Caltech-101 and Caltech-256 are shown
in Fig. 3.7 On Caltech-101 our approach yields a mean
accuracy of 0.512, 0.630, 0.691, 0.725, 0.752, 0.772 for
5, 10, 15, 20, 25, 30 samples per class respectively.
Comparing to UFO-MKL, our performance is higher
for 5 samples per class, and very similar for all other
sample sizes. One-stage MKL methods using the one-
vs-all multi-class scheme perform significantly worse
and do not even outperform the average kernel un-
til the training set has 25 samples per class. This is
probably because data is too scarce to allow learning
a separate kernel for each class. Target alignment per-
forms a little better than the average kernel, but is
still significantly worse than TS-MKL. We also show
the performance of LP-β (Gehler & Nowozin, 2009),
which, to the best of our knowledge, is the state of
the art method on this data set8. The performance of
TS-MKL and UFO-MKL is almost on par with LP-β,
especially for larger sample sizes. While LP-β is simi-
lar in spirit to multiple-kernel learning, it is not a true
kernel learning algorithm as it does not produce a ker-

6C = 1000 is the best setting for the one-stage MKL
algorithms (Gehler & Nowozin, 2009)

7We take the results for LP-β and MKL from (Gehler
& Nowozin, 2009).

8LP-β achieves state of the art performance when us-
ing additional kernels (http://www.vision.ee.ethz.ch/

~pgehler/projects/iccv09). We could not obtain all 48
kernels, so we only report results with only 39 kernels for
all methods

nel, but rather learns an ensemble of SVM classifiers,
each of which is trained on an individual kernel.

On Caltech-256 dataset, our approach performs bet-
ter than all competing kernel learning baselines. We
achieve 0.245, 0.320, 0.370, 0.426, 0.448, 0.475, 0.494
mean accuracy for 5, 10, 15, 20, 25, 30, 40, 50 training
samples per class. This performance is significantly
higher than the best results reported in the litera-
ture for 5, 10, and 15 training samples, after which
we again perform on par with LP-β. On this dataset,
UFO-MKL performance9 is similar to that of the aver-
age kernel, while the rest of the one-stage MKL tech-
niques perform worse. Exact target alignment is worst
among all other approaches, however approximate tar-
get alignment is able to at least match the performance
of the average kernel.

4.3. Bioinformatics datasets

We evaluate our method on a problem relevant to
cell-biology predicting: the subcellular localization of
proteins, which is crucial in making inference about
protein function and protein interactions. We follow
the experimental setup of (Zien & Ong, 2007) and use
the same 69 kernels. The kernels used are: 2 kernels
on phylogenetic trees, 3 kernels from BLAST E-values
and 64 sequence motif kernels.

We experiment with three datasets. The first two
datasets are for the problem of bacterial protein lo-
cations (Gardy et al., 2004). The Psort+ dataset has
541 data points with 4 classes and Psort– dataset has
1444 data points with 5 classes. We report average F1
score over all classes over 10 random splits for both
these datasets as done in (Zien & Ong, 2007). The
third dataset used is the original plant dataset of Tar-
getP (Emanuelsson et al., 2000), and has 940 exam-
ples with 4 classes. We use the performance measure
of Matthew’s Correlation Coefficient (MCC) following
the evaluation in (Zien & Ong, 2007). Again, average
MCC score over all 4 classes is reported.

The results are shown in Table 1. The papers that have
used the Psort datasets in the past (Gardy et al., 2004;
Zien & Ong, 2007), reported results after filtering out
the most unsure predictions in the test set. For Psort+
and Psort-, about 15% and 13.3% of the test examples
were filtered out respectively and the performance is
reported only for the remaining predictions. We follow
the same procedure to be able to compare with these
methods. We also report performance for full test set.
On these datasets, all the kernel learning methods have

9The UFO-MKL performance at 40 and 50 samples is
missing because the code we are using runs out of memory.

http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09
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Psort+ Psort– Plant
Full test Filtered Full test Filtered Full test

Best Kernel 81.30(4.69) 86.26(4.96) 85.95(1.54) 91.53(1.04) 72.19(3.94)
Average 84.75(3.97) 89.48(4.97) 88.03(1.10) 93.95(1.14) 86.72(3.38)

Target Alignment 88.14(3.99) 92.82(3.99) 89.91(1.42) 95.22(1.33) 89.13(2.75)
MKL (SILP/Simple) 89.05(3.02) 93.89(3.37) 91.01(1.10) 96.01(1.51) 89.32(2.76)

MC-MKL – 93.8 – 96.1 89.1
TS-MKL(Our Approach) 89.08(3.32) 93.50(2.74) 90.15(1.33) 95.63(1.31) 88.86(3.26)

Table 1. Average accuracy measures (%) over 10 splits for Psort+, Psort- and Plant datasets. Numbers in parentheses
are the std. deviations. The accuracy measures for MC-MKL (Zien & Ong, 2007) are taken from their paper.

similar performance, and are better than the best ker-
nel and average kernel baselines. Multi-class multiple
kernel learning (MC-MKL) of (Zien & Ong, 2007) is
also close to our method and other baselines.

4.4. UCI datasets

We use four UCI datasets: Sonar, Ionosphere, Pima
and Vertebral (the three class version). For each of
these datasets, we perform two types of MKL exper-
iments. In first setting, we construct a total of 13
kernels on the full feature vectors: 9 Gaussian kernels
(e−γ||xi−xj ||2) with γ = {2−10, 2−9, . . . , 2−2}, 3 poly-
nomial kernels of degree 2,3 and 4, and a linear kernel.
In the second setting, we augment these 13 kernels
with another set of Gaussian, polynomial and linear
kernels constructed on individual features of the data.
The range of parameter γ for Gaussian and degree pa-
rameter for polynomial kernel is kept same as before.
If the data has d features, we have total 13d+ 13 ker-
nels in the second setting. We report average accuracy
accuracy over 10 random 80%− 20% train-test splits.

The results are shown in Table 2. On all these
datasets, no kernel learning approach seems to im-
prove performance over the straightforward baselines
of best kernel and average kernel. Although further
study is needed to reach a definite conclusion, these
results seem to indicate that blindly using a kitchen
sink of standard kernels is not beneficial if the goal is to
combine these kernels using an MKL approach. This
highlights the importance of evaluating MKL tech-
niques using datasets like Caltech and PSORT, where
the kernels have been carefully designed using domain
knowledge to capture different, potentially useful, no-
tions of similarity in the data.

4.5. Computational Efficiency

Since the number of K-examples is quadratic in the
number of training instances, one might worry about
the scalability of the TS-MKL method. In this sec-
tion we compare the running time of TS-MKL with
Target Alignment, and UFO-MKL (Ultra-Fast Opti-
mization MKL) which, to the best of our knowledge,
is the fastest one-stage MKL technique to date.

Sonar Pima Caltech 101
p = 793 p = 117 Train 30

Targ. Align 133 93.71 607(579)
UFO-MKL 3.018 17.97 387
TS-MKL 1.09 1.3977 34(6)

Table 3. Running time in seconds. In paranthesis we show
the time taken by the kernel learning stage alone.

Table 3 shows the running times for the Sonar, Pima
and Caltech 101 datasets. The running time is for a
single run using the best setting of parameters (i.e.
it does not include the time for parameter selection).
For TS-MKL and Target Alingment we also show in
paranthesis the time taken by the kernel learning stage
alone, without the final data SVM, on Caltech-101.
For Sonar, which has only 166 training samples, the
running time of UFO-MKL and TS-MKL is compara-
ble. However, on Pima, which has 614 samples, and
on Caltech, which has 3060 samples and 102 classes,
TS-MKL is more than an order of magnitude faster
than UFO-MKL. This shows that, by taking advan-
tage of the advances in large scale stochastic optimiza-
tion, TS-MKL is not only able to gracefully handle the
quadratic increase in the number of K-examples, but
it is actually the fastest MKL method to date.

5. Conclusions and Future Work

Framing kernel learning as a standard classification
problem in a properly defined instance space allows
us to easilly adapt well understood classification tech-
niques to obtain a scalable and high performing two-
stage multiple kernel learning algorithm. Our ap-
proach is backed up by formal theoretical guarantees,
and by empirical evaluation that shows it always out-
performs or is on par with leading one-stage and two-
stage kernel learning methods. This is a remarkable
feat for a method that is quite simple and intuitive.

This new perspective on multiple kernel learning opens
the door to a number of interesting questions to be
addressed in subsequent research. Examples are: ex-
ploring the use of non-linear K-classifiers in conjunc-
tion with the learning with similarity functions frame-
work; improving performance in scarce data condi-
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Sonar Ionosphere Pima Vertebral
p = 793 p = 13 p = 442 p = 13 p = 117 p = 13 p = 91 p = 13

Best Kernel 86.90(4.23) 86.90(4.24) 95.00(2.04) 95.00(2.04) 76.10(2.63) 76.10(2.63) 83.65(5.73) 83.67(5.73)
Average 85.00(4.5) 86.42(3.73) 92.00(2.87) 94.28(3.01) 76.82(2.76) 76.30(2.62) 81.58(5.92) 82.03(5.03)

Targ. Align 80.24(4.2) 85.47(3.26) 91.57(2.28) 94.42(2.17) 75.97(3.03) 76.82(3.15) 82.88(6.18) 80.90(4.18)
MKL(SILP/Simple) 85.23(5.11) 84.76(2.55) 92.54(1.56) 95.42(2.50) 75.71(3.28) 75.97(3.16) 82.72(4.16) 78.42(3.55)

L2-MKL 86.42(4.05) 85.71(4.04) 91.85(1.51) 95.14(2.04) 75.45(2.31) 76.55(2.23) 79.68(4.84) 80.87(5.1)
UFO-MKL 82.85(6.7) 86.19(4.3) 91.85(2.86) 96.14(1.9) 74.28(2.47) 74.02(3.46) 79.16(6.57) 79.09(6.03)

TS-MKL(Our Approach) 86.43(3.9) 86.19(3.38) 92.43(1.18) 94.29(2.12) 75.78(3.02) 76.42(2.87) 82.82(5.63) 81.10(4.42)

Table 2. Average accuracy (%) over 10 random splits on UCI datasets. p denotes the number of base kernels. Numbers
in parentheses are the std. deviations.

tions through semi-supervised and multi-task mul-
tiple kernel learning by using such techniques to
learn the K-classifier; or applying TS-MKL to semi-
supervised clustering and dimensionality reduction
problems where the supervised signal is usually given
in terms of pairwise must-link and can-not-link con-
straints rather than labels.
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