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Abstract

In this work, we develop a simple algorithm
for semi-supervised regression. The key idea
is to use the top eigenfunctions of integral
operator derived from both labeled and un-
labeled examples as the basis functions and
learn the prediction function by a simple lin-
ear regression. We show that under appropri-
ate assumptions about the integral operator,
this approach is able to achieve an improved
regression error bound better than existing
bounds of supervised learning. We also veri-
fy the effectiveness of the proposed algorithm
by an empirical study.

1. Introduction

Although numerous algorithms have been develope-
d for semi-supervised learning (Zhu (2008) and ref-
erences therein), most of them do not have theoreti-
cal guarantee on improving the generalization perfor-
mance of supervised learning. A number of theories
have been proposed for semi-supervised learning, and
most of them are based on one of the two assumption-
s: (1) the cluster assumption (Seeger, 2001; Rigollet,
2007; Lafferty & Wasserman, 2007; Singh et al., 2008;
Sinha & Belkin, 2009) which assumes that two da-
ta points should have the same class label or sim-
ilar values if they are connected by a path passing
through a high density region; (2) the manifold as-
sumption (Lafferty & Wasserman, 2007; Niyogi, 2008)
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which states that the prediction function lives in a low
dimensional manifold of the marginal distribution PX .

It has been pointed out by several stud-
ies (Lafferty & Wasserman, 2007; Nadler et al.,
2009) that the manifold assumption by itself is
insufficient to reduce the generalization error bound
of supervised learning. However, on the other hand, it
was found in (Niyogi, 2008) that for certain learning
problems, no supervised learner can learn effectively,
while a manifold based learner (that knows the man-
ifold or learns it from unlabeled examples) can learn
well with relatively few labeled examples. Compared
to the manifold assumption, theoretical results based
on cluster assumption appear to be more encouraging.
In the early studies (Castelli & Cover, 1995; 1996),
the authors show that under the assumption that
the marginal distribution PX is a mixture of class
conditional distributions, the generalization error will
be reduced exponentially in the number of labeled
examples if the mixture is identifiable. Rigollet
(2007) defines the cluster assumption in terms of
density level sets, and shows a similar exponential
convergence rate given a sufficiently large number
of unlabeled examples. Furthermore, Singh et al.
(2008) show that the mixture components can be
identified if PX is a mixture of a finite number of
smooth density functions and the separation/overlap
between different mixture components is significantly
large. Despite the encouraging results, one major
problem of the cluster assumption is that it is difficult
to be verified given a limited number of labeled exam-
ples. In addition, the learning algorithms suggested
in (Rigollet, 2007; Singh et al., 2008; Zhang & Ando,
2005) are difficult to implement efficiently even if the
cluster assumption holds, making them unpractical
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for real-world problems.

In this work, we aim to develop a simple algorithm
for semi-supervised learning that on one hand is easy
to implement, and on the other hand is guaranteed
to improve the generalization performance of super-
vised learning under appropriate assumptions. The
main idea of the proposed algorithm is to estimate the
top eigenfunctions of the integral operator from the
both labeled and unlabeled examples, and learn from
the labeled examples the best prediction function in
the subspace spanned by the estimated eigenfunction-
s. Unlike the previous studies of exploring eigenfunc-
tions for semi-supervised learning (Fergus et al., 2009;
Sinha & Belkin, 2009), we show that under appro-
priate assumptions, the proposed algorithm achieves
a better generalization error bound than supervised
learning algorithms.

To derive the generalization error bound, we make
a different set of assumptions from previous stud-
ies. First, we assume a skewed eigenvalue distribu-
tion and bounded eigenfunctions of the integral oper-
ator. The assumption of skewed eigenvalue distribu-
tions has been verified and used in multiple studies
of kernel learning (Koltchinskii, 2011; Steinwart et al.,
2006; Minh, 2010; Zhang & Ando, 2005), while the as-
sumption of bounded eigenvectors was mostly found
in the study of compressive sensing (Candès & Tao,
2006). Second, we assume that a sufficient num-
ber of labeled examples are available, which is also
used by the other analysis of semi-supervised learn-
ing (Rigollet, 2007). It is the combination of these
assumptions that allow us to derive better generaliza-
tion error bound for semi-supervised learning.

The rest of the paper is arranged as follows. Section 2
presents the proposed algorithm and verifies its effec-
tiveness by an empirical study. Section 3 shows the
improved generalization error bound for the proposed
semi-supervised learning, and Section 4 outlines the
proofs. Section 5 concludes with future work.

2. Algorithm and Empirical Validation

Let X be a compact domain or a manifold in the Eu-
clidean space Rd. Let D = {xi, i = 1, . . . , N |xi ∈ X}
be a collection of training examples. We randomly s-
elect n examples from D for labeling. Without loss
of generality, we assume that the first n examples are
labeled by yl = (y1, . . . , yn)

⊤ ∈ Rn. We denote by
y = (y1, . . . , yN )⊤ ∈ RN the true labels for all the
examples in D. In this study, we assume y = f(x) is
decided by an unknown deterministic function f(x).
Our goal is to learn an accurate prediction function by

Algorithm 1 A Simple Algorithm for Semi-
supervised Learning

1: Input
• D = {x1, . . . ,xN}: labeled and unlabeled ex-
amples

• yl = (y1, . . . , yn)
⊤: labels for the first n ex-

amples in D
• s: the number of eigenfunctions to be used

2: Compute (ϕ̂i, λ̂i), i = 1, . . . , s, the first s eigen-
functions and eigenvalues for the integral operator
L̂N defined in (4).

3: Compute the prediction ĝ(x) in (5), where γ∗ =
(γ∗

1 , . . . , γ
∗
s )

⊤ is given by solving the following re-
gression problem

γ∗ = argmin
γ∈Rs

n∑
i=1

 s∑
j=1

γj ϕ̂j(xi)− yi

2

(1)

4: Output prediction function ĝ(·)

exploiting both labeled and unlabeled examples. Be-
low we first present our algorithm and then verify its
empirical performance by comparing to the state-of-
the-art algorithms for supervised and semi-supervised
learning.

2.1. A Simple algorithm for Semi-Supervised
Learning

Let κ(·, ·) : X × X → R be a Mercer kernel, and let
Hκ be a Reproducing Kernel Hilbert space (RKHS)
of functions X → R endowed with kernel κ(·, ·). We
assume that κ is a bounded function, i.e., |κ(x,x)| ≤
1, ∀x ∈ X . Similar to most semi-supervised learning
algorithms, in order to effectively exploit the unlabeled
data, we need to relate the prediction function f(x) to
the unlabeled examples (or the marginal distribution
PX ). To this end, we assume there exists an accurate
prediction function g(x) ∈ Hκ with ∥g∥Hκ ≤ R. More
specifically, we define

ε2 = min
h∈Hκ,∥h∥Hκ≤R

Ex[(f(x)− h(x))2], (2)

g(x) = argmin
h∈Hκ,∥h∥Hκ≤R

Ex[(f(x)− h(x))2]. (3)

Our basic assumption (A0) is that the regression error
ε2 ≪ R2 is small, and the maximum regression error
of g(x) for any x ∈ X is also small, i.e.,

sup
x∈X

(f(x)− g(x))2 , ε2max = O(nε2/ lnN).

To present our algorithm, we define an integral oper-
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ator over the examples in D:

L̂N (f)(·) = 1

N

N∑
i=1

κ(xi, ·)f(xi), (4)

where f ∈ Hκ. Let (ϕ̂i(x), λ̂i), i = 1, 2, . . . , N be the

eigenfunctions and eigenvalues of L̂N ranked in the de-
scending order of eigenvalues, where ⟨ϕ̂i(·), ϕ̂j(·)⟩Hκ =
δ(i, j) for any 1 ≤ i, j ≤ N . According
to (Guo & Zhou, 2011), the prediction function g(x)
can be well approximated by a function in the subspace
spanned by the top eigenfunctions of L̂N . Hence, we
propose to learn a target prediction function ĝ(x) as a
linear combination of the first s eigenfunctions, i.e.,

ĝ(x) =
s∑

j=1

γ∗
j ϕ̂j(x), (5)

where s is a parameter that needs to be determined
empirically. Coefficients {γ∗

i }si=1 in (5) are learned
through a simple regression by minimizing the squared
error of the labeled examples as shown in (1). Algo-
rithm 1 shows the basic steps of the proposed algorith-
m.

Implementation In step 2 of Algorithm 1, we need
to compute the eigenvalues and eigenfunctions of L̂N ,
which is given as follows (Smale & Zhou, 2009). Let
K = [κ(xi,xj)]N×N be the kernel matrix for the ex-
amples in D, and let {(vi, σi)}si=1 be the first s eigen-
vectors and eigenvalues of K. Then, the eigenvalues
and eigenfunctions of L̂N are given by

λ̂i =
σi

N
, ϕ̂i(·) =

1
√
σi

N∑
j=1

vijκ(xj , ·), i = 1, . . . , s,

where vij is the j-th element of vector vi. Finally, in
step 3 of Algorithm 1, we need to compute the optimal
coefficient γ∗, which, according to (Bishop, 2006), is
given by

γ∗ = D1/2[V ⊤KBK
⊤
BV ]−1V ⊤KByl,

where D = diag(σ1, . . . , σs), KB = [κ(xi,xj)]N×n in-
cludes the kernel similarity between all the examples
in D and labeled examples, and V = (v1, . . . ,vs).

2.2. Empirical study

Three real-world data sets, i.e., insurance, wine, and
temperature 1, are used in our empirical study. The s-
tatistics of these datasets are given in Table 1. The
first two datasets are from the UC Irvine Machine

1http://www.remss.com/msu

Table 1. Statistics of datasets

Name #Objects #Features
insurance 9, 822 85
wine 4, 898 11
temperature 9, 504 2

Learning Repository (Frank & Asuncion, 2010), while
the task of the last dataset is to predict the tempera-
ture based on the coordinates (latitude, longitude) on
the earth surface. All three datasets are designed for
regression tasks with real-valued outputs. We choose
these three datasets because they fit in with our as-
sumptions that will be elaborated in section 3.2.

We randomly choose 90% of the data for training,
and use the rest 10% for testing. We randomly se-
lect 2%, 3%, . . . , 9% of the entire dataset as labeled
examples. We evaluate the performance by measur-
ing the regression error of the testing data. Each ex-
periment is repeated ten times and the regression er-
rors averaged over the ten trials are reported. Two
supervised regression algorithms, i.e., Kernel Ridge
Regression (KRR) (Saunders et al., 1998) and Sup-
port Vector Regression (SVR) (Drucker et al., 1996),
and a state-of-the-art algorithm for semi-supervised
regression, i.e., Laplacian Regularized Least Squares
(LapRLS) (Belkin et al., 2006), are used as the base-
lines. We did not include other baseline algorithm-
s for semi-supervised learning because Laplacian reg-
ularization yields the state-of-the-art performance of
semi-supervised learning. More importantly, our goal
is to verify that the proposed algorithm can effectively
improve the generalization performance of supervised
learning. We refer to the proposed algorithm as Sim-
ple Semi-Supervised Learning, or SSSL for short. A
RBF kernel function is used for all algorithms, and all
the parameters are chosen by cross validation.

Tables 2-4 show the regression errors for the three
datasets, respectively. First, as we expected, the per-
formance of all learning algorithms improves as the
number of labeled examples increases. It is also not
surprising to see that the two semi-supervised learn-
ing algorithms perform better than the two supervised
learning algorithms. Second, the proposed algorith-
m (SSSL) outperforms the baseline semi-supervised
learning algorithm for almost all the cases, indicating
that it is effective for semi-supervised learning. Note
that SVR does not perform well on the temperature
dataset since this dataset has a perfect manifold struc-
ture (the earth surface is a sphere), and SVR fails to
capture the manifold structure when the percentage of
labeled data is very small.
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Table 2. Regression error for the insurance data set (mean ± std)
% labeled data 2% 3% 4% 5% 6% 7% 8% 9%

KRR
0.0804
±0.0084

0.0778
±0.0088

0.0779
±0.0125

0.0747
±0.0099

0.0739
±0.0100

0.0711
±0.0071

0.0672
±0.0065

0.0675
±0.0065

SVR
0.0546
±0.0038

0.0546
±0.0040

0.0546
±0.0040

0.0549
±0.0039

0.0550
±0.0038

0.0548
±0.0040

0.0549
±0.0041

0.0550
±0.0040

LapRLS
0.0550
±0.0044

0.0563
±0.0060

0.0580
±0.0068

0.0559
±0.0048

0.0564
±0.0052

0.0547
±0.0039

0.0538
±0.0053

0.0543
±0.0046

SSSL
0.0544
±0.0051

0.0527
±0.0038

0.0527
±0.0041

0.0526
±0.0042

0.0523
±0.0038

0.0518
±0.0041

0.0518
±0.0040

0.0517
±0.0040

Table 3. Regression error for the wine dataset (mean ± std)
% labeled data 2% 3% 4% 5% 6% 7% 8% 9%

KRR
0.931
±0.104

0.927
±0.1289

0.799
±0.102

0.759
±0.149

0.714
±0.056

0.681
±0.086

0.650
±0.086

0.668
±0.079

SVR
0.669
±0.038

0.642
±0.037

0.656
±0.035

0.613
±0.023

0.613
±0.029

0.606
±0.017

0.600
±0.020

0.592
±0.028

LapRLS
0.682
±0.038

0.653
±0.042

0.650
±0.035

0.613
±0.025

0.611
±0.022

0.597
±0.023

0.592
±0.017

0.580
±0.022

SSSL
0.612
±0.027

0.606
±0.029

0.599
±0.029

0.593
±0.030

0.587
±0.027

0.582
±0.026

0.584
±0.033

0.581
±0.029

Table 4. Regression error for the temperature dataset (mean ± std)
% labeled data 2% 3% 4% 5% 6% 7% 8% 9%

KRR
8.69
±0.84

7.61
±0.63

7.16
±0.33

7.04
±0.45

6.81
±0.50

6.61
±0.46

6.46
±0.33

6.29
±0.36

SVR
82.3
±2.8

79.0
±3.2

74.0
±2.5

72.5
±2.1

68.1
±1.9

63.9
±2.5

61.5
±2.5

59.1
±2.9

LapRLS
6.78
±0.62

6.05
±0.36

5.88
±0.25

5.76
±0.28

5.73
±0.32

5.63
±0.38

5.54
±0.28

5.42
±0.28

SSSL
3.52
±0.57

2.73
±0.31

2.55
±0.17

2.55
±0.17

2.54
±0.11

2.47
±0.14

2.40
±0.16

2.35
±0.11

3. Generalization Error Bounds

To analyze the generalization performance of the pro-
posed algorithm, we first consider the simple scenario
where we have access to an infinite number of unla-
beled examples (i.e., the marginal distribution PX ).
We then present the generalization error bound for a
finite number of unlabeled examples. Detailed analysis
can be found in Section 4.

3.1. Generalization error for an infinite
number of unlabeled examples

Given the marginal distribution PX , we define an in-
tegral operator L as L(f)(·) = Ex[κ(x, ·)f(x)]. We
denote by {(ϕi(·), λi), i = 1, 2, . . .} the eigenfunction-
s and eigenvalues of L ranked in the descending
order of the eigenvalues, where the eigenfunction-
s are normalized according to the distribution, i.e.,∫
x∈X ϕi(x)ϕj(x)dPX = δij . We note that L̂N , defined

in (4), is the empirical version of L, and ∥L− L̂N∥HS

approaches to zero as the number of examples goes to
infinity, where ∥ · ∥HS is Hilbert Schmidt norm of a
linear operator (Smale & Zhou, 2009).

In order to achieve a better generalization error bound

for the proposed semi-supervised learning algorithm,
we make the following assumptions about eigenvalues
and eigenfunctions:

• A1 Skewed eigenvalue distribution. Similar
to many studies (Koltchinskii & Yuan, 2010;
Steinwart et al., 2006; Minh, 2010), we assume
the eigenvalues follow a power law distribution,
i.e., there exists a small constant a > 0 and a
power index p > 2, such that

λk ≤ a2k−p, k = 1, 2, . . . .

• A2 Bounded eigenfunctions. There exists a small
constant C such that maxx∈X max

i
|ϕi(x)| ≤ C.

This is similar to the incoherence condition speci-
fied in compressive sensing (Candès & Tao, 2006).

• A3 Sufficient number of labeled examples. We re-
quire the number of labeled examples to be larger
than n0 which is defined as

n0 = 64C2 ln2(2N3)

(
Ra

ε

)4/(p−1)

, (6)
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where N > 0 is some large number that corre-
sponds to the number of unlabeled examples when
we come to the case of finite samples.

Remark 1 Assumption (A1) ensures that the tar-
get function can be approximated, with a small er-
ror, by a function in the subspace spanned by the top
eigenfunctions of L. This is the foundation behind Al-
gorithm 1.

Remark 2 Assumptions (A2) and (A3) are intro-
duced to ensure that all the coefficients {γ∗

i }si=1 in
(5) can be estimated accurately. More specifically, as-
sumption (A3) makes it possible to obtain an accurate
estimation of the coefficients {γ∗

i }si=1. Assumption A2
ensures that labeled examples are associated with all
the top eigenfunctions, and therefore a reliable esti-
mation can be obtained for all the coefficients through
the regression analysis. Intuitively, assumption (A2)
ensures that |ϕi(xj)|, j ∈ [n] on the labeled examples
are not zeros, which is due to E[ϕi(x)] is fixed and
maxx |ϕi(x)| is small, otherwise we cannot obtain an
accurate estimation of γ∗. Actually, it is notable that
we only need to bound the first s eigenfunctions in
M(s) = maxx

∑s
i=1 ϕ

2
i (x), a key quantity in Propo-

sition 2. From another point of view, if we bound
maxx |ϕi(x)| ≤ ∥ϕi∥Hκ = 1/

√
λi (Smale & Zhou,

2009, pg. 9), then if the first s eigenvalues are large,
we can expect the maximum value of the first s eigen-
funcitons is small. An example satisfying this property
is the Sobolev space of functions defined on the domain
[0, 1]d with uniform distribution (see (Koltchinskii,
2011, pg. 16)).

The following theorem shows the generalization error
of Algorithm 1 for an infinite number of unlabeled ex-
amples provided that assumptions (A0∼A3) hold.

Theorem 1. Assume (A0 ∼ A3) hold. Set s =
(aR/ε)2/(p−1). Then, with a probability 1− 2N−3, we
have

Ex

[
(ĝ(x)− f(x))

2
]
≤ O(ε2),

where ĝ(·) is the function learned by Algorithm 1.

Remark 3 According to (2), ε2 is the optimal re-
gression error that can be achieved by a prediction
function in Hκ. Hence, Theorem 1 shows that given
an infinite number of unlabeled examples, the predic-
tion function learned by Algorithm 1 achieves almost
the optimal performance (up to a constant).

Remark 4 It is also useful to compare the bound
in Theorem 1 to the generalization error bound of su-
pervised learning. According to (Tsybakov, 2008), the

minimax optimal error if supervised regression (i.e.,
the best possible regression error of the worst possible
distribution) is bounded by Ω(n−p/(p+1)) 2. So if we
take the value in assumption (A3) for n ∝ ϵ−4/(p−1),
then the generalization error for supervised regression
is Ω(ε4p/(p

2−1)). Compared to our bound (i.e., O(ε2)),
when p > 1 +

√
2, we have 4p/(p2 − 1) < 2, implying

that the generalization error bound of Algorithm 1 is
better than that for supervised regression.

3.2. Generalization error for a finite number of
unlabeled examples

We now consider the scenario where only a finite num-
ber (i.e., N) of unlabeled examples are available. The
key challenge arising from the finite sample analysis is
that we do not have access to the eigenfunctions and
eigenvalues of L. Instead, we have to approximate
the eigenfunctions and eigenvalues of L by its empiri-
cal counterpart L̂N . These approximation errors make
the analysis more involved. To ensure that the approx-
imation does not significantly increase the regression
error, we make the following assumptions:

• B1 Skewed eigenvalue distribution of L̂N . We as-
sume eigenvalues λ̂i, i = 1, 2, . . . follow a power
law distribution, i.e., there exists a small constant
a and power index p > 2, such that

λ̂k ≤ a2k−p, k = 1, 2, . . . ..

• B2 Bounded eigenfunctions. There exists a small
constant Ĉ such that maxx∈X max

i
|ϕ̂i(x)/

√
λi| ≤

Ĉ.

• B3 Sufficient number of labeled examples. We re-
quire the number of labeled examples to be larger
than n0 where n0 is defined as

n0 = 64Ĉ2 ln2(2N3)

(
Ra

ε

)4/(p−1)

.

• B4 Sufficiently large eigengap. Let rs = λs−λs+1

be the gap between the s-th eigenvalue and (s+1)-
th eigenvalue of L. We assume the eigengap rs is
sufficiently large for s = (Ra/ε)2/(p−1), i.e., rs ≥
3τ

2/3
N , where τN = 12 lnN√

N
.

Remark 5 Assumptions (B1∼B3) are the “empiri-
cal” versions of assumptions (A1∼A3). Note that un-
like assumption (A2) where |ϕi(x)| is assumed to be

2We use Ω(·), instead of O(·), since it is a minimax
optimal bound.
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Figure 1. Eigenvalue distribution for the insurance and
wine datasets

bounded, in assumption (B2), we assume |ϕ̂i(x)/
√
λi|

to be bounded. This is because ϕi(x) is normalized

with respect to the distribution PX , while ϕ̂i(x) is nor-
malized with respect to the functional norm since the
marginal distribution PX is unknown. The most im-
portant feature of the finite sample analysis is that we
introduce a new assumption (B4), where the number
of unlabeled examples N plays an important role to
bound the eigengap. This additional assumption is
designed to address the approximation error in replac-
ing the eigenfunctions of L with the eigenfunctions of
L̂N .

Theorem 2. Assume (A0) and (B1∼B3) hold. Set
s = (aR/ε)2/(p−1), and assume

N ≥ max
(
144R2[lnN ]2r−2

s ε−2, 144R4a2[lnN ]2ε−4
)
.

Then, with a probability 1− 4N−3, we have

Ex[(ĝ(x)− f(x))2] ≤ O(ε2).

As indicated by Theorem 2, the prediction function
learned by Algorithm 1 achieves almost the optimal
regression error (up to a constant) provided that al-
l the assumptions hold and the number of unlabeled
examples is sufficiently large.

Finally, to partially verify the assumptions, we exam-
ine the eigenvalue distributions for the chosen datasets
(described in Section 2.2), as shown in Figure 1. Due
to space limitation, we put the figure for the temper-
ature dataset in the supplementary material. We also
show in Figure 1 the curves of a2k−p with p = 2.1.
It is very clear that the eigenvalues follow a skewed
distribution with the power index p > 2.

4. Analysis

We present the full analysis for the case of infinite
number of unlabeled examples, and only sketch the
analysis for finite number of unlabeled examples due
to lack of space. More detailed analysis can be found
in the supplementary materials.

4.1. Analysis for an infinite number of
unlabeled examples

When we have an infinite number of unlabeled ex-
amples, the learned prediction function is given by
ĝ(x) =

∑s
j=1 γ

∗
j ϕj(x), where γ∗ = (γ1, · · · , γ∗

s )
⊤ is

obtained by solving the following optimization prob-
lem:

γ∗ = argmin
γ

L(γ) = n∑
i=1

 s∑
j=1

γjϕj(xi)− f(xi)

2
 .

(7)

Using the eigenfunctions of L, we write g(x), the op-
timal prediction function defined in (3), as g(x) =∑

j αjϕj(x). We define gs(x), the projection of g(x)
into the subspace spanned by the top s eigenfunctions,
as

gs(x) =
s∑

j=1

αjϕj(x).

Using gs(x), we decompose the generalization error of
ĝ(x) into two parts, i.e.,

Ex[(ĝ(x)− f(x))2]

≤ 2Ex[(ĝ(x)− gs(x))
2] + 2Ex[(gs(x)− f(x))2].

The following lemmas bound the two terms on the
R.H.S. of the above inequality, separately.

Lemma 1. Under assumption (A1), for any s ≥ 1,
we have

Ex

[
(gs(x)− f(x))2

]
≤ 2ε2 +

2a2R2

sp−1
, ε2s.

Lemma 2. Under assumptions (A2∼A3) and s =
(aR/ϵ)2/(p−1), with a probability at least 1−2N−3, we
have

Ex

[
(ĝ(x)− gs(x))

2
]
≤ 2η2,

where η2 = 2

(
ε2s + 2εsεmax

√
3 lnN

n
+

ε2max lnN

n

)
.

As indicated by Lemma 1, assumption (A1) guaran-
tees an additional small regression error when con-
straining the solution to the subspace spanned by the
top eigenfunctions of L. As indicated by Lemma 2,
assumptions (A2∼A3) ensure that gs(x), the projec-
tion of g(x) into the subspace spanned by the top
eigenfunctions, can be accurately estimated from the
labeled examples. It is easy to see that Theorem 1
immediately follows Lemma 1 and Lemma 2 by not-
ing that ε2s = O(ε2) and η2 = O(ε2) when we set
s = (Ra/ε)2/(p−1). Below, we show how to prove both
lemmas.
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Proof of Lemma 1 We first show that
∑∞

i=s+1 α
2
i

is bounded. Since ∥g∥Hκ ≤ R, we have

R2 ≥ ⟨g, g⟩Hκ =
∞∑
i=1

α2
i ∥ϕi∥2Hκ

=
∞∑
i=1

α2
i

λi
,

and therefore

∞∑
i=s+1

α2
i ≤ R2

+∞∑
i=s+1

λi ≤
a2R2

(p− 1)sp−1
≤ a2R2

sp−1
.

Then we bound the regression error of gs(x) as follows:

Ex

[
(gs(x)− f(x))2

]
≤ 2Ex

[
(g(x)− f(x))2

]
+2Ex

 ∞∑
i,j=s+1

αiαjϕi(x)ϕj(x)


= 2ε2 + 2

∞∑
i=s+1

α2
i ≤ 2ε2 +

2a2R2

sp−1
, ε2s.

Proof of Lemma 2 The proof of Lemma 2 is signif-
icantly more involved. We first introduce some nota-
tions. Let zi = (ϕ1(xi), . . . , ϕs(xi))

⊤ be the vector
representation of xi derived from the first s eigen-
functions. Let Z = (z1, . . . , zn) include the rep-
resentations of all labeled examples, and let yl =
(f(x1), . . . , f(xn))

⊤. Using Z, we rewrite L(γ) in (7)
as

L(γ) = γ⊤ZZ⊤γ − 2γ⊤Zyl + ∥yl∥22.
The following proposition bounds Ex[(ĝ(x)− gs(x))

2]
using the minimum eigenvalue of ZZ⊤.

Proposition 1. Assume ZZ⊤ is nonsingular. With
a probability at least 1−N−3, we have

Ex

[
(ĝ(x)− gs(x))

2
]
= ∥αs − γ∗∥22 ≤ nη2

λmin(ZZ⊤)
.

The following proposition bounds the minimum eigen-
value of ZZ⊤.

Proposition 2. With a probability at least 1 −N−3,
where N > 0 is a large number, we have

1

n
λmin(ZZ⊤) ≥ 1− 4M(s) ln(2N3)√

n
,

where M(s) = maxx∈X
∑s

i=1 ϕ
2
i (x).

The proof for Proposition 1 and 2 can be found in the
supplementary materials. Now we are ready to prove
Lemma 2.

According to assumptions A2∼A3 and Proposition 2,
we have, with a probability at least 1−N−3

1

n
λmin(ZZ⊤) ≥ 1− 4M(s) ln(2N3)√

n
≥ 1

2
.

Combining the above inequality with Proposition 1,
we have, with a probability at least 1− 2N−3,

Ex

[
(ĝ(x)− gs(x))

2
]
≤ 2η2.

4.2. Analysis for a finite number of unlabeled
examples

Define γ∗ the optimal solution that minimizes the re-
gression error using the eigenfunctions of L̂N , i.e.,

γ∗ = argmin
γ∈Rs

n∑
i=1

(
f(xi)−

s∑
k=1

γkϕ̂k(xi)

)2

.

We further define γ̂∗
i = γ∗

i

√
λi, i = 1, · · · , s, and write

ĝ(x) learned in the presence of a finite number of un-

labeled examples as ĝ(x) =
∑s

i=1 γ̂
∗
i
ϕ̂i(x)√

λi
. We also in-

troduce hs(x) as follows

hs(x) =
s∑

i=1

αi
ϕ̂i(x)√

λi

.

where {αi}si=1 are the coefficients defined in g(x). Sim-
ilar to the previous analysis, we bound the generaliza-
tion error of ĝ(x) by

Ex[(ĝ(x)− f(x))2]

≤ 2Ex[(ĝ(x)− hs(x))
2] + 2Ex[(hs(x)− f(x))2].

We follow the same path as in the infinite case and
present two lemmas to bound the two terms on R.H.S.
of the above inequality.

Lemma 3. Under assumptions B1, B3 and N ≥
144s2p−2[lnN ]2a−2, with a probability at least 1 −
2N−3, we have

Ex[(hs(x)− f(x))2] ≤ 4ε2s +
36R2τ2N

r2s
, ε̂2s.

Lemma 4. Under assumptions B1∼B3, with a prob-
ability at least 1− 4N−3, we have

Ex

[
(ĝ(x)− hs(x))

2
]
≤ 4η̂2.

where η̂2 = 2

(
ε̂2s + 2ε̂sεmax

√
3 lnN

n
+

ε2max lnN

n

)
.

The proof for Lemma 4 and Lemma 3 can be found in
the supplementary materials.

Proof of Theorem 2. Using the condition N ≥
144R2[lnN ]2/[r2sε

2], we have 36R2τ2N/r2s ≤ O(ε2).
When we set s = (Ra/ε)2/(p−1), we have ε2s = O(ε2),
ε̂2s = O(ε2) and η̂ = O(ε2) . By Lemma 3 and Lem-
ma 4, we have, with a probability 1− 4N−3,

Ex[(ĝ(x)− f(x))2] ≤ 2ε̂2s + 8η̂2 = O(ε2).
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5. Conclusions

In this work, we present a very simple algorithm for
semi-supervised learning. Our analysis shows that un-
der appropriate assumptions about the integral oper-
ator, the proposed algorithm achieves a better gener-
alization error than a supervised learning algorithm.
In the future, we plan to further improve the scala-
bility of the proposed algorithm by exploring different
approaches (e.g., the Nyström method) for efficient-
ly estimating eigenfunctions from a large number of
unlabeled examples.
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