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Abstract

Multitask learning algorithms are typically
designed assuming some fixed, a priori

known latent structure shared by all the
tasks. However, it is usually unclear what
type of latent task structure is the most ap-
propriate for a given multitask learning prob-
lem. Ideally, the “right” latent task struc-
ture should be learned in a data-driven man-
ner. We present a flexible, nonparametric
Bayesian model that posits a mixture of fac-
tor analyzers structure on the tasks. The
nonparametric aspect makes the model ex-
pressive enough to subsume many existing
models of latent task structures (e.g, mean-
regularized tasks, clustered tasks, low-rank
or linear/non-linear subspace assumption on
tasks, etc.). Moreover, it can also learn more
general task structures, addressing the short-
comings of such models. We present a vari-
ational inference algorithm for our model.
Experimental results on synthetic and real-
world datasets, on both regression and classi-
fication problems, demonstrate the effective-
ness of the proposed method.

1. Introduction

Learning problems do not exist in a vacuum. Often
one is tasked with developing not one, but many clas-
sifiers for different tasks. In these cases, there is of-
ten not enough data to learn a good model for each
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task individually—real-world examples are prioritiz-
ing email messages across many users’ inboxes (Ab-
erdeen et al., 2011) and recommending items to users
on web sites (Ning & Karypis, 2010). In these set-
tings it is advantageous to transfer or share informa-
tion across tasks. Multitask learning (MTL) (Caru-
ana, 1997) encompasses a range of techniques to share
statistical strength across models for various tasks and
allows learning even when the amount of labeled data
for each individual task is very small. Most MTL
methods achieve this improved performance either by
assuming some notion of similarity across tasks—for
example, that all task parameters are drawn from a
shared Gaussian prior (Chelba & Acero, 2006), have
a cluster structure (Xue et al., 2007; Jacob & Bach,
2008), live on a low-dimensional subspace (Rai &
Daumé III, 2010), share feature representations (Ar-
gyriou et al., 2007), or by modeling the task covariance
matrix (Bonilla et al., 2007; Zhang & Yeung, 2010).
Choosing the correct notion of task relatedness is cru-
cial to the effectiveness of any MTL method. Incorrect
assumptions can hurt performance and it is desirable
to have a flexible model that can automatically adapt

its assumptions for a given problem.

Motivated by this, we propose a nonparametric
Bayesian MTL model by representing the task param-
eters (e.g., the weight vectors for logistic regression
models) as being generated from a nonparametric mix-
ture of nonparametric factor analyzers. Parameters
are shared only between tasks in the same cluster and,
within each cluster, across a linear subspace that reg-
ularizes what is shared. Moreover, by virtue of this
being a nonparametric model, various existing MTL
models result as special cases of our model; for exam-
ple, the weight vectors are drawn from a single shared
Gaussian prior, or form clusters (equivalently, gener-
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ated from a mixture of Gaussians), or live close to a
subspace, etc. Our model can automatically interpo-
late between these assumptions as needed, providing
the best fit to the given MTL problem.

In addition to offering a general framework for mul-
titask learning, our proposed model also addresses
several shortcomings of commonly used MTL mod-
els. For example, task clustering (Xue et al., 2007),
which fits a full-covariance Gaussian mixture model
over the weight vectors, is prone to overfitting on high
dimensional problems as the number of learning tasks
is usually much smaller than the dimensionality, mak-
ing it difficult to estimate the covariance matrix. A
model based on mixtures of factor analyzers, like ours,
can deal with this issue by adaptively estimating the
dimensionality of each component, using less parame-
ters than in the full rank case. Likewise, models based
on task subspaces (Zhang et al., 2006; Rai & Daumé
III, 2010; Agarwal et al., 2010) assume that the weight
vectors of all the tasks live on or close to a single shared
subspace, which is known to lead to negative transfer
in the presence of outlier tasks. Our model, based on
a mixture of subspaces, circumvents these issues by
allowing different groups of weight vectors to live in
different subspaces when grouping all together them
would not fit the data well. One can also view our
model as allowing the sharing of statistical strengths
at two levels: (1) by exploiting the cluster structure,
and (2) by additionally exploiting the subspace struc-
ture within each cluster.

2. Background

In the context of MTL, since the task relatedness
structure is usually unknown, the standard solution
is to try many different models, covering many simi-
larity assumptions, with many settings of complexity
for each model, and choose the one according to some
model selection criteria. In this paper, we take a non-
parametric Bayesian approach to this problem (using
the Dirichlet Process and the Indian Buffet Process as
building blocks) such that the appropriate MTL model
capturing the correct task relatedness structure and
the model complexity for that model will be learned
in a data-driven manner side-stepping the model se-
lection issues.

2.1. The Dirichlet Process

The Dirichlet Process (DP) is a prior distribution over
discrete distributions (Ferguson, 1973). Discreteness
implies that if one draws samples from a distribution
drawn from the DP, the samples will cluster: new sam-
ples take the same value as older samples with some
positive probability. A DP is defined by two parame-
ters: a concentration parameter α and a base measure

G0. The sampling process defining the DP draws the
first sample from the base measure G0. Each subse-
quent sample would take on a new value drawn from
G0 with a probability proportional to α, or reuse a pre-
viously drawn value with probability proportional to
the number of samples having that value. This prop-
erty makes it suitable as a prior for effectively infi-
nite mixture models, where the number of mixtures
can grow as new samples are observed. Our mixture
of factor analyzers based MTL model uses the DP to
model the mixture components so we do not need to
specify their number a priori.

2.2. The Indian Buffet Process

The Indian Buffet Process (IBP) (Griffiths & Ghahra-
mani, 2006) and the closely related Beta Pro-
cess (Thibaux & Jordan, 2007) define a distribution
on a collection of sparse binary vectors of unbounded
size (or, equivalently, on sparse binary matrices with
one dimension fixed but the other being unbounded).
Such sparse structures are commonly used in applica-
tions such as sparse factor analysis (Paisley & Carin,
2009) where we want to decompose a data matrix X
such that each observation Xn ∈ R

D is represented as
a sparse combination of a set of K ≪ D basis vec-
tors (or factors) but K is not specified a priori. The
generative story in the finite case is (assuming a linear
Gaussian model generation):

Xn ∼ Nor(Λbn, σ
2
XI)

Λk ∼ Nor(0, σ2I)

bkn ∼ Ber(πk)

πk ∼ Bet(α/K, 1)

In the above, Λ is a matrix consisting of K columns
(the factors) and the factor combination is defined
by the sparse binary vector bn of size K. For the
more general case of factor analysis, factor combi-
nation weights are sparse real-valued vectors, so the
model is of the form Xn = Λ(sn⊙ bn)+E, where sn is
a real-valued vector of the same size as bn (Paisley &
Carin, 2009) and can be given a Gaussian prior, and
⊙ is the elementwise product. Our mixture of factor
analyzers based MTL model uses the IBP/Beta Pro-
cess to model each factor analyzer so we do not need
to specify the number of factors K a priori.

3. Mixture of Factor Analyzers based

Generative Model for MTL

Our proposed model assumes that the parameters (i.e.,
the weight vector) of each task are sampled from a mix-
ture of factor analyzers (Ghahramani & Beal, 2000).
Note that our model is defined over latent weight vec-
tors whereas the standard mixture of factor analyzers
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is commonly defined to model observed data.
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Figure 1. A graphical depiction of our model. The task
parameters θ are sampled from a DP-IBP mixture and used
to generate the Y values.

We assume that we are learning T related tasks, where
each task is represented by a weight vector θt ∈ R

D

that is assumed to be sampled from a mixture of F
factor analyzers where each factor analyzer consists
of K ≤ min{T,D} factors (note: our model also al-
lows each factor analyzer to have a different number
of factors). Here D denotes the number of features
in the data. Each task is a set of X and Y values,
and each Y is assumed to be generated from the cor-
responding X value and task weight vector. In our
model, the weight vector θt for task t is generated by
first sampling a factor analyzer (defined by a mean
task parameter µt ∈ R

D and a factor loading matrix
Λt ∈ R

D×K) using the DP, and then generating θt us-
ing that factor analyzer. In equations, this be written
as θt = µt + Λtft + εt.

The weight vector θt is a sparse linear combination of
K basis vectors represented by the columns of Λt (each
column is a “basis task”). The combination weights
are given by ft ∈ R

K which we represent as st ⊙ bt
where st is a real valued vector and bt is a binary
valued vector, both of size K. Our model uses a Beta-
Bernoulli/IBP prior on bt to determine K, the num-
ber of factors in each factor analyzer. The {µt,Λt}
pair for each task is drawn from a DP, also giving the
tasks a clustering property, and there will be a finite
number F ≤ T of distinct factor analyzers. Finally,
εt ∼ Nor(0, 1

σ2 I) represents task-specific noise.

Figure 1 shows a graphical depiction of our model and
Figure 2 shows the generative story for the linear re-
gression case . The DP base measure G0 is a product
of two Gaussian priors for µt,Λt. In our nonparamet-
ric Bayesian model, F and K need not be known a

priori ; these are inferred from the data.

For classification, the only change is that the first line
in the generative model becomes Yt,i ∼ Ber(sig(θt ·

Yt,i ∼ Nor(θTt Xt,i, I)

θt ∼ Nor(µt + Λt · (st ⊙ bt),
1

σ2
I))

µt,Λt ∼ G st ∼ Nor(0, I) bkt ∼ Ber(πk)

G ∼ DP(α1, G0) πk ∼ Bet(α2/K, 1)

Figure 2. The hierarchical model. The indicator variable
z of Fig 1 is implicit in the draw from the DP. The Beta-
Bernoulli draw for bkt approximates the IBP for large K

(actual K will be inferred from the data).

Xt,i)), where sig(x) = 1
1+exp(−x) is the logistic func-

tion and Ber is the Bernoulli distribution.

A number of existing multitask learning models arise
as special cases of our model as it nicely interpolates
between some different and useful scenarios, depending
on the actual inferred values of F and K, for a given
multitask learning dataset:

• Shared Gaussian Prior(F=1,K=0): (Chelba
& Acero, 2006). This corresponds to a single fac-
tor analyzer modeling either a diagonal or full-
rank Gaussian as the prior.

• Cluster-based Assumption(F > 1,K=0):
(Xue et al., 2007; Jacob & Bach, 2008). This cor-
responds to a mixture of identity-covariance or
full-rank Gaussians as the prior.

• Linear Subspace Assumption(F=1,K <
D): (Zhang et al., 2006; Rai & Daumé III, 2010).
This corresponds to a single factor analyzer with
less than full rank. Note that this is also equiva-
lent to the matrix Θ = {θ1, . . . , θT } being a rank-
K matrix (Argyriou et al., 2007).

• Nonlinear Manifold Assumption: A mixture
of linear subspaces allows modeling a nonlinear
subspace (Chen et al., 2010) and can capture the
case when the weight vectors live on a nonlinear
manifold (Ghosn & Bengio, 2003; Agarwal et al.,
2010). Moreover, in our model, the manifold’s in-
trinsic dimensionality can be different in different
parts of the ambient space (since we do not re-
strict K to be the same for each factor analyzer).

Our nonparametric Bayesian model can interpolate be-
tween these cases as appropriate for a given dataset,
without changing the model structure or hyperparam-
eters. From a non-probabilistic analogy, our model
can be seen as doing dictionary learning/sparse cod-
ing (Aharon et al., 2010) over the latent weight vec-
tors (albeit, using an undercomplete dictionary set-
ting since we assume K ≤ min{T,D}). The model
learns M dictionaries of basis tasks (one dictionary
per group/cluster of tasks, and M inferred from the
data) and tasks within each cluster are expressed as a
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sparse linear combination of elements from that dictio-
nary. Our model can also be generalized further, e.g.,
by replacing the Gaussian prior on the low-dimensional
latent task representations st ∈ R

K by a prior of the
form P (st+1|st), one can even relax the exchangeabil-
ity assumption of tasks within each group, and have
tasks that are evolving with time.

3.1. Variational inference

As this model is infinite and combinatorial in nature,
exact inference is intractable and sampling-based in-
ference may take too long to converge (Doshi-Velez
et al., 2009; Blei & Jordan, 2006). Hence, we employ
a variational mean-field algorithm to perform inference
in this model. To do so, we lower-bound the marginal
log-probability of Y given X using a fully factored ap-
proximating distribution Q over the model parameters
θ, µ,Λ, z, b, s:

logP (Y |X) = logEP [P (Y |X, θ, µ,Λ, z, b, s)]

≥ EQ[logP (Y |X)]

−EQ[logQ(Y |X)].

To do so, we approximate the DP and the IBP with
a tractable distribution Q. For the DP we use a fi-
nite stick-breaking distribution, based on the infinite
stick-breaking representation of the DP (Blei & Jor-
dan, 2006). In this representation, we introduce, for
each θt, a multinomial random variable zt that indexes
the infinite set of possible mixture parameters µ and
Λ. The zt vector is nonzero on its i-th component
with probability φi

∏

j<i(1 − φj), where φ is an in-
finite set of independent Bet(1, α1) random variables
(Bet is the Beta distribution). A finite approximation
to the DP is obtained by setting a given φi to 1, which
sets the probability of zj for j > i necessarily to 0.
While there is a similar stick-breaking construction to
the IBP (Teh et al., 2007), it is not in the exponen-
tial family and requires complicated approximations,
so we represent the IBP by its finite Beta-Bernoulli
approximation (Doshi-Velez et al., 2009).

The distribution we are approximating then (for the
linear regression case) is shown in Figure 3 (top). The
stick-breaking distribution SBP which is the prior for
zt is such that P (zt= i) = φi

∏

j<i(1− φj).

In our variational distribution, we set the number of
factor analyzers in the truncated stick-breaking rep-
resentation to a hyperparameter F and the number
of factors in each such analyzer to a truncation level
hyperparameter K. After inference, if the truncation
levels are set high enough, most factor analyzers (and
factors within each factor analyzer) will not be used,
effectively approximating the property of the infinite
model that only a small finite number of components

Yt,i ∼ Nor(θTt Xt,i, I).

θt ∼ Nor(µzt + Λzt(st,zt ⊙ bt,zt),
1

σ2
I)

µf ∼ Nor(0, I), Λf,k ∼ Nor(0, I)

st,f ∼ Nor(0, I), bt,f,k ∼ Ber(βf,k)

zt ∼ SBP (φ), βf,k ∼ Bet(α2/K, 1)

φf ∼ Bet(1, α1)

Q(θt) = Nor(νθt , I)

Q(µf ) = Nor(νµf
, I), Q(Λf ) = Nor(νΛf

, I)

Q(st,f ) = Nor(νst,f , I), Q(b) = Ber(νb)

Q(zt = i) = νzt,i , Q(β) = Bet(ρ1, ρ2)

Q(φ) = Bet(γ1, γ2)

Figure 3. Top: the distribution being approximated. Bot-
tom: Our approximating Q distribution (note: P (Y |θ) is
lower-bounded directly)

is ever used to model a finite data set. It is worthwhile
to note that while the solution found by the variational
approximation is necessarily finite and with complex-
ity bounded by the truncation parameters, it will still
implicitly perform model selection. Therefore, more
often than not, it will concentrate most of its posterior
mass on models with less complexity than the trunca-
tion parameters suggest. Ishwaran & James (2001)
present two theorems to help choose these truncation
levels, as using smaller values of F and K (particularly
K, as the update equations are quadratic in K) can
lead to significant savings of computing time (in our
experiments, we simply set these to min{D,T}) which
we found to be sufficient).

Our approximating Q distribution is shown in Figure 3
(bottom). For the linear regression case, we treat
P (Y |θ) by lower-bounding it directly, without intro-
ducing an approximating distribution for Y . In the
case of logistic regression, we use the lower bound by
(Jaakkola & Jordan, 1996) that allows us to integrate
out the logistic function.

Apart from approximating the DP with the truncated
stick-breaking prior, approximating the IBP with a set
of symmetric, finite Beta distributed variables, and
lower-bounding the logistic function with a quadratic,
all the computations involved in deriving the varia-
tional lower bound are straightforward exponential-
family computations. Note that for Q we could use
more general covariances instead of the identity ma-
trices. In practice, we found that this did not improve
classification performance, and it would imply on a
significantly higher computational cost. Another less
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expensive option however would be to use the same
hyperparameter for each feature, i.e., a spherical (in-
stead of diagonal) covariance τ2I which would require
optimizing w.r.t. a single hyperparameter τ . The vari-
ational parameter updates are:

γf,1 = 1 +
∑

t

νzt,f

γf,2 = α1 +
∑

t

∑

j>f

νzt,j

νzt,f ∝ exp
(

Ψ(γf,1)−Ψ(γf,1 + γf,2)

+
∑

j<f

(Ψ(γj,2)−Ψ(γj,1 + γj,2))

+EQ[logP (θt|zt = f)]
)

ρf,k,1 =
α2

K
+
∑

t

νbt,f,k , ρf,k,2 = 1 +
∑

t

(1− νbt,f,k)

νbt,f,k = sig
(

Ψ(ρf,k,1)−Ψ(ρf,k,2)

+ σνzt,f

([

νθt − νµf
− (νst,i + 1)νΛf,i

−
∑

j 6=i

νst,jνbt,f,jνΛf,j

]T

νΛf,i
νst,i

−
D

2
ν2st,i −

DF

2

))

νst,i = (1 + σνzt,f νbt,f,i(D + ||νΛf,i
||2))−1

νzt,fσ
((

νθt − νµf

− 0.5
∑

j 6=i

νst,f,jνbt,f,jνΛf,j
)
T
νΛf,i

νbt,f,i

)

νµf
=

∑

t νzt,fσ(νθt − νΛf
(νst,f ⊙ νbt,f ))

1 + σ
∑

t νzt,f

νΛf,i
=

(

1 + σ
∑

t

νzt,f νbt,f,i(1 + ν2st,f,i)
)−1

σ
∑

t

νzt,f νst,f,iνbt,f,i

(

νθt − νµf

−
1

2

∑

j 6=i

νst,f,jνbt,f,jνΛf,j

)

In the above Ψ denotes the digamma function. While
it is possible to update νθt analytically, the update
requires inverting a matrix, and in our experiment this
matrix was often ill-conditioned, so we updated νθt
by optimizing the lower bound with the L-BFGS-B
optimizer (Zhu et al., 1997). The optimizer is run until
convergence at each iteration, warm-started with the
previous value. We note that it could be replaced by
any other optimizer, including gradient methods, with
no changes in the above equations.

The complete derivations are provided in the the sup-
plementary material.

For regression, the gradient of the lower bound with
respect to νθt is

∇L(νθt) = σ
∑

f

νzt,f
(

νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )
)

+

Nt
∑

i

(

Yt,iXt,i −Xt,iX
T
t,iνθt

)

.

For classification the gradient is similar, the main
difference being that there is an extra factor in the
Xt,iX

T
t,iνθt term involving the variational parameter

for the lower bound of the logistic function.

We also optimize the lower bound w.r.t the precision
parameter σ to obtain an empirical Bayes estimate:

1

σ
=
∑

t

∑

f

νzt,f

(

||νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )||
2

KDF

+

∑

i νbt,f,i(ν
2
st,f,i

+ ||νΛf,i
||2)

KF
+

1

K

)

.

The hyperparameters α1 and α2 are held fixed and can
be optimized by cross-validation. We initialize the in-
ference process with νθt set to the maximum likelihood
solution to each task’s regression or classification prob-
lem. Then we alternate updating all other parameters
to convergence and updating νθt given the other pa-
rameters. The value of νθt , and hence the regression or
classification accuracy, usually stabilizes after the first
couple of iterations, and the only changes observed
are further improvements to the lower bound. This
matches behavior observed in Ando & Zhang (2005).
All our experiments were run on three iterations.

4. Experiments

We present results on both synthetic and real-world
datasets, and on linear regression and classification
settings. As a sanity check to show that our model can
learn the underlying latent task structures correctly,
we generated a synthetic data consisting of 5 clusters
of tasks. Each cluster consists of 10 binary classifi-
cation tasks, having 100 examples each. We used a
50/50 split for train/test data. Each task is repre-
sented by a weight vector of length D = 20. Figure 4
(left) shows the true correlation structure of the tasks
and Figure 4 (right) shows the recovered structure by
our model: it correctly infers the correct number (5)
of clusters. Our model resulted in a classification ac-
curacy of 83.2%, whereas independently learned tasks
resulted in an accuracy of 79.2%.

Our next set of experiments compare our model with
a number of baseline methods on several synthetic and
real-world multitask regression and multitask classifi-
cation problems. Our baselines include:
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Figure 4. Left: Plot of the correlation matrix of the
ground-truth weight vectors of the 50 tasks. Right: In-
ferred correlation matrix

• Independently learned tasks - STL: assumes the
tasks are independent (no information sharing).

• Multitask Feature Learning - MTFL: assumes
the tasks share a common set of features (Ar-
gyriou et al., 2007).

• Shared Gaussian prior over the weight vectors -
PRIOR (Chelba & Acero, 2006): assumes the
tasks are drawn from a shared Gaussian prior with
a unknown but fixed mean and covariance.

• Single shared subspace - RANK (Zhang et al.,
2006; Rai & Daumé III, 2010): assumes the tasks
live close to a linear subspace (also equivalent to
the matrix of the weight vector being low-rank).

• DP mixture model based task clustering - DP-

MTL (Xue et al., 2007): assumes the weight vec-
tors are generated from a mixture model, each
component being a full-rank Gaussian.

• Learning with Whom to Share - LWS (Kang
et al., 2011). It is an integer programming based
method that learn the task grouping structure
(with pre-specified number of groups) and encour-
ages the tasks within each group to share features.

Of these baselines, MTFL and LWS were used for re-
gression problems only since the publicly available im-
plementations are for regression. In the experiments,
we would refer to our model as MFA-MTL (Mixture
of Factor Analyzers for MultiTask Learning). In all
our experiments, we set the hyperparameters α1 = 1
and α2 = 5, as these values performed reasonably in
preliminary experiments. The truncation level for the
DP can be chosen to be equal to the number of tasks
T , and for the IBP, to be the minimum of T and the
number of features D in the data. This is often more
than necessary and in most of our experiments, much
smaller truncation levels were found to be sufficient.

For our multitask regression experiments, we com-
pared MFA-MTL with STL, MTFL, and LWS (we
skip the other baselines as they performed compara-
bly or worse than MTFL/LWS). For this experiment,

Synthetic School Computer

STL 1.35 468.7 153.3
MTFL 0.36 376.1 30.4
LWS 0.37 430.9 30.2

MFA-MTL 0.18 374.5 29.8

Table 1. Mean squared error (MSE) of various methods on
multitask regression problems

Landmine 20ng

STL 52.9% 69.3%
PRIOR 52.9% 75.8%
RANK 53.8% 75.8%

DP-MTL 53.8% 75.7%
MFA-MTL 62.4% 76.9%

Table 2. Multitask classification accuracies of various
methods on the Landmine and 20ng datasets

we used three datasets - one synthetic dataset used
in (Kang et al., 2011), and two real-world datasets
used commonly in the multitask learning literature:
(1) School: This dataset consists of the examination
scores of 15362 students from 139 schools in London.
Each school is a task so there are a total of 139 tasks for
this dataset. (2) Computer: This dataset consists of
a survey of 190 students about the chances of purchas-
ing 20 different personal computers. There are a total
of 190 tasks, 20 examples per task, and 13 features
per example. For the synthetic data, we followed the
similar procedure for train/test split as used by (Kang
et al., 2011). For School and Computer datasets, we
split the data equally into training and test set and
further only used 20% of the training data (training
set deliberately kept small as is often the case with
multitask learning problems in practice). The average
mean squared errors (i.e., across tasks) in predicting
the responses by each method are shown in Table 1.
As shown in Table 1, MFA-MTL outperforms the other
baselines on all the datasets. Moreover, for the syn-
thetic data, we found that it also inferred the number
of task groups (3) correctly (the LWS baseline needs
this number to be specified - we ran it with the ground
truth). On the school and computer datasets, MFA-
MTL outperforms STL and LWS and does slightly
better than MTFL. For LWS on these two datasets,
we report the best results as obtained by varying the
number of groups from 1 to 20.

We next experiment with the classification setting.
For this, we chose two datasets: (1) Landmine: The
landmine detection dataset is a subset of the dataset
used in the symmetric multitask learning experiment
by (Xue et al., 2007). It contains 19 classification tasks
and the tasks are known to be clustered for this data.
(2) 20ng: We did the standard training/test split of
20 Newsgroups for multitask learning, following Raina
et al. (2006), and used a 50/50 split for the landmine
data. The classification accuracies reported by our
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Figure 5. Average accuracies w.r.t. varying amount of
training data (left: landmine data, right: 20ng data).

model and the various baselines on landmine and 20
Newsgroups datasets are shown in Table 2. As shown
in Table 2, our method outperforms the various base-
lines. We note that 3 of them (PRIOR, RANK, and
DP-MTL), which are methods proposed in prior work,
are special cases of our model (as discussed in Sec-
tion 3). In particular, RANK performs worse than our
method, potentially because all weight vectors share
the same subspace which may not be desirable if not
all the tasks are related with each other. DP-MTL
performs worse than our method, potentially because
it fits a full-rank Gaussian for each mixture compo-
nent and is especially prone to overfit if the number of
tasks is smaller than the number of features.

Finally, we investigated the behavior of different algo-
rithms in the small training data regimes. For this, we
varied the amount of training examples per task (for
landmine data, we varied the fraction from 20% to
100%; for 20 Newsgroup, we varied the number of ex-
amples from 20 to 100). Results are shown in Figure 5.
To uncrowd the figure, we compare only with STL and
DP-MTL (the best performing baseline). In the small
data regimes, our algorithm performs better as com-
pared to both STL and DP-MTL. Another important
aspect of an MTL algorithm is its asymptotic behavior
in the limit of large training data per task. For this
experiment, we compared MFA-MTL with STL on the
school multitask regression dataset by providing each
algorithm the complete training data. MFA-MTL re-
sulted in an MSE of 261.4 as compared to STL which
gave an MSE of 271.1. Therefore our algorithm tends
to do comparably (in fact, marginally better) to in-
dependently learned tasks even when the amount of
training data per task is sufficiently large.

5. Related Work

Apart from the prior work on multitask learning dis-
cussed in Section 1, our model is based on a somewhat
similar motivation as the model proposed in (Argyriou
et al., 2008). Their model assumes that tasks can be
partitioned into groups and tasks within each group
share a kernel. Their assumption is an extension of the
earlier work on Multitask Feature Learning (Argyriou

et al., 2007) (one of the baselines we used in our ex-
periments) that assumes all tasks share the common
kernel. In (Kumar & Daumé III, 2012), the authors as-
sume that there is single set of task basis vectors (i.e.,
a task dictionary) and each task is a sparse combina-
tion of these basis vectors. In their model, the number
of basis vectors shared between two tasks (i.e., their
“overlap”) can be seen as the pairwise task similarity.
In Kang et al. (2011), the authors proposed a model
based on the assumption that the tasks exist in groups
and the tasks within each group share features, which
is again similar in spirit to our work (this model was
one of our baselines in the experiments). In contrast,
the generative model we presented in this paper of-
fers a number of advantages over these models such as
the ability to deal with missing data in a principled
manner, doing automatic model complexity control in
a nonparametric Bayesian setting, and being flexible
enough to subsume these and many other notions as
task relatedness used in multitask learning.

Among other related work, Canini et al. (2010) pro-
pose hierarchical Dirichlet process models as good
models for human categorical learning. The idea is
that one can model transfer learning by assuming
that people unsupervisedly learn subgroups of known
classes and use these groups to refine the knowledge
of new classes by sharing subgroups via a hierarchical
Dirichlet process. Our model can be seen as a discrim-
inative analog of their generative model, where aspects
of the task parameter—instead of the distribution of
the test examples—are shared among similar tasks and
the sharing structure is discovered automatically.

6. Future Work and Discussion

We proposed and evaluated a nonparametric Bayesian
multitask learning model that usefully interpolates be-
tween many different previously proposed models for
estimating task parameters of multiple related learn-
ing problems, such as a shared Gaussian prior (Chelba
& Acero, 2006), a clustering structure (Xue et al.,
2007), reduced dimensionality (Argyriou et al., 2007;
Zhang et al., 2006), manifold structure (Ghosn & Ben-
gio, 2003; Agarwal et al., 2010), etc. We presented a
variational mean-field algorithm for this model that
exhibits competitive results on a set of synthetic as
well as real-world multitask learning datasets. The
proposed model, by using the flexibility afforded by
nonparametric Bayesian techniques, requires only min-
imal assumptions to be applied to any given multitask
learning problem. A possible future work is studying
a hierarchical Dirichlet process variant of this model
where different tasks are allowed to share exactly the
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same θ parameters, which might be beneficial in cases
where training data is especially sparse or the tasks
are more strongly clustered.
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