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Abstract

This paper presents an improvement to mod-
el learning when using multi-class LogitBoost
for classification. Motivated by the statisti-
cal view, LogitBoost can be seen as additive
tree regression. Two important factors in this
setting are: 1) coupled classifier output due
to a sum-to-zero constraint, and 2) the dense
Hessian matrices that arise when computing
tree node split gain and node value fittings.
In general, this setting is too complicated for
a tractable model learning algorithm. How-
ever, too aggressive simplification of the set-
ting may lead to degraded performance. For
example, the original LogitBoost is outper-
formed by ABC-LogitBoost due to the lat-
ter’s more careful treatment of the above two
factors.

In this paper we propose techniques to ad-
dress the two main difficulties of the Log-
itBoost setting: 1) we adopt a vector tree
(i.e., each node value is vector) that enforces
a sum-to-zero constraint, and 2) we use an
adaptive block coordinate descent that ex-
ploits the dense Hessian when computing tree
split gain and node values. Higher classifi-
cation accuracy and faster convergence rates
are observed for a range of public data sets
when compared to both the original and the
ABC-LogitBoost implementations.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

1. Introduction

Boosting is successful for both binary and multi-class
classification (Freund & Schapire, 1995; Schapire &
Singer, 1999). Among those popular variants, we are
particularly focusing on LogitBoost (Friedman et al.,
1998) in this paper. Originally, LogitBoost is motivat-
ed by statistical view (Friedman et al., 1998), where
boosting algorithms consists of three key components:
the loss, the function model, and the optimization al-
gorithm. In the case of LogitBoost, these are the Logit
loss, the use of additive tree models, and a stage-wise
optimization, respectively. There are two important
factors in the LogitBoost setting. Firstly, the posteri-
or class probability estimate must be normalised so as
to sum to one in order to use the Logit loss. This lead-
s to a coupled classifier output, i.e., the sum-to-zero
classifier output. Secondly, a dense Hessian matrix
arises when deriving the tree node split gain and node
value fitting. It is challenging to design a tractable
optimization algorithm that fully handles both these
factors. Consequently, some simplification and/or ap-
proximation is needed. Friedman et al. (1998) propos-
es a “one scalar regression tree for one class” strate-
gy. This breaks the coupling in the classifier output
so that at each boosting iteration the model updat-
ing collapses to K independent regression tree fittings,
where K denotes the number of classes. In this way,
the sum-to-zero constraint is dropped and the Hessian
is approximated diagonally.

Unfortunately, Friedman’s prescription turns out to
have some drawbacks. A later improvement, ABC-
LogitBoost, is shown to outperform LogitBoost in
terms of both classification accuracy and conver-
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Figure 1. A newly added tree at some boosting iteration for
a 3-class problem. (a) A class pair (shown in brackets) is
selected for each tree node. For each internal node (filled),
the pair is for computing split gain; For terminal nodes
(unfilled), it is for node vector updating. (b) The feature
space (the outer black box) is partitioned by the tree in
(a) into regions {R1, R2, R3}. On each region only two
coordinates are updated based on the corresponding class
pair shown in (a).

gence rate (Li, 2008; 2010a). This is due to ABC-
LogitBoost’s careful handling of the above key prob-
lems of the LogitBoost setting. At each iteration, the
sum-to-zero constraint is enforced so that only K − 1
scalar trees are fitted for K−1 classes. The remaining
class – called the base class – is selected adaptively
per iteration (or every several iterations), hence the
acronym ABC (Adaptive Base Class). Also, the Hes-
sian matrix is approximated in a more refined manner
than the original LogitBoost when computing the tree
split gain and fitting node value.

In this paper, we propose two novel techniques to ad-
dress the challenging aspects of the LogitBoost set-
ting. In our approach, one vector tree is added per
iteration. We allow a K dimensional sum-to-zero vec-
tor to be fitted for each tree node. This permits us
to explicitly formulate the computation for both node
split gain and node value fitting as a K dimensional
constrained quadratic optimization, which arises as a
subproblem in the inner loop for split seeking when
fitting a new tree. To avoid the difficulty of a dense
Hessian, we propose that for each of these subprob-
lems, only two coordinates (i.e., two classes or a class
pair) are adaptively selected for updating, hence the
name AOSO (Adaptive One vS One) LogitBoost. Fig-
ure 1 gives an overview of our approach. In Section 2.5
we show that first order and second order approxima-
tion of loss reduction can be a good measure for the
quality of selected class pair.

Following the above formulation, ABC-LogitBoost, al-
though derived from a somewhat different framework
in (Li, 2010a), can thus be shown to be a special case of
AOSO-LogitBoost, but with a less flexible tree model.
In Section 3.1 we compare the differences between the
two approaches in detail and provide some intuition

for AOSO’s improvement over ABC.

The rest of this paper is organised as follows: In Sec-
tion 2 we first formulate the problem setting for Log-
itBoost and then give the details of our approach.
In Section 3 we compare our approach to (ABC-
)LogitBoost. In Section 4, experimental results in
terms of classification errors and convergence rates are
reported on a range of public datasets.

2. The Algorithm

We begin with the basic setting for the LogitBoost
algorithm. ForK-class classification (K ≥ 2), consider
anN example training set {xi, yi}Ni=1 where xi denotes
a feature value and yi ∈ {1, . . . ,K} denotes a class
label. Class probabilities conditioned on x, denoted
by p = (p1, . . . , pK)T , are learned from the training
set. For a test example with known x and unknown
y, we predict a class label by using the Bayes rule:
y = argmaxk pk, k = 1, . . . ,K.

Instead of learning the class probability directly, one
learns its “proxy” F = (F1, . . . , FK)T given by the
so-called Logit link function:

pk =
exp(Fk)∑K
j=1 exp(Fj)

(1)

with the constraint
∑K

k=1 Fk = 0 (Friedman et al.,
1998). For simplicity and without confusion, we here-
after omit the dependence on x for F and for other
related variables.

The F is obtained by minimizing a target function on
training data:

Loss =

N∑
i=1

L(yi,F i), (2)

where F i is shorthand for F (xi) and L(yi,F i) is the
Logit loss for a single training example:

L(yi,F i) = −
K∑

k=1

rik log pik, (3)

where rik = 1 if yi = k and 0 otherwise. The proba-
bility pik is connected to Fik via (1).

To make the optimization of (2) feasible, a model is
needed to describe how F depends on x. For exam-
ple, linear model F = W Tx is used in traditional
Logit regression, while Generalized Additive Model is
adopted in LogitBoost:

F (x) =
∑M

m=1 fm(x), (4)



AOSO-LogitBoost

where each fm(x), a K dimensional sum-to-zero vec-
tor, is learned by greedy stage-wise optimization. That
is, at each iteration fm(x) is added only based on

F =
∑m−1

j=1 f j . Formally,

fm(x) = argmin
f

N∑
i=1

L(yi,F i + f(xi))

s.t.
∑
k

fk(xi) = 0, i = 1, ..., N.

(5)

This procedure repeats M times with initial condition
F = 0. Owing to its iterative nature, we only need
to know how to solve (5) in order to implement the
optimization.

2.1. Vector Tree Model

The f(x) in (5) is typically represented by K scalar
regression trees (e.g., in LogitBoost (Friedman et al.,
1998) or the Real AdaBoost.MH implementation in
(Friedman et al., 1998)) or a single vector tree (e.g., the
Real AdaBoost.MH implementation in (Kégl & Busa-
Fekete, 2009)). In this paper, we adopt a single vec-
tor tree. We further restrict that it is a binary tree
(i.e., only binary splits on internal node are allowed)
and the split must be vertical to coordinate axis, as in
(Friedman et al., 1998) or (Li, 2010a). Formally,

f(x) =

J∑
j=1

tjI(x ∈ Rj) (6)

where {Rj}Jj=1 describes how the feature space is par-

titioned, while tj ∈ RK with a sum-to-zero constraint
is the node values/vector associated with Rj . See Fig-
ure 1 for an example.

2.2. Tree Building

Solving (5) with the tree model (6) is equivalent to
determining the parameters {tj , Rj}Jj=1 at the m-th
iteration. In this subsection we will show how this
problem reduces to solving a collection of convex op-
timization subproblems for which we can use any nu-
merical method. Following Friedman’s LogitBoost set-
tings, here we use Newton descent1. Also, we will show
how the gradient and Hessian can be computed incre-
mentally.

We begin with some shorthand notation for the node

1We use Newtown descent as there is evidence in
(Li, 2010a) that gradient descent, i.e., in Friedmans’s
MART (Friedman, 2001), leads to decreased classification
accuracy.

loss:

NodeLoss(t; I) =
∑
i∈I

L(yi,F i + t)

t1 + . . .+ tK = 0, t ∈ RK

(7)

where I denotes the index set of the training examples
on some either internal or terminal node (i.e., those
falling into the corresponding region). Minimizing (7)
is the bridge to {tj , Rj} in that:

1. To obtain {tj} with given {Rj}, we simply take
the minimizer of (7):

tj = argmin
t

NodeLoss(t; Ij), (8)

where Ij denotes the index set for Rj .

2. To obtain {Rj}, we recursively perform binary s-
plit until there are J-terminal nodes.

The key to the second point is to explicitly give the n-
ode split gain. Suppose an internal node with n train-
ing examples (n = N for the root node), we fix on
some feature and re-index all the n examples accord-
ing to their sorted feature values. Now we need to find
the index n′ with 1 < n′ < n that maximizes the node
gain defined as loss reduction after a division between
the n′-th and (n′ + 1)-th examples:

NodeGain(n′) = NodeLoss(t∗; I)−
(NodeLoss(t∗L; IL) +NodeLoss(t∗R; IR))

(9)

where I = {1, . . . , n}, IL = {1, . . . , n′} and IR =
{n′+1, . . . , n}; t∗, t∗L and t∗R are the minimizers of (7)
with index sets I, IL and IR, respectively. Generally,
this searching applies to all features. The best division
resulting to largest (9) is then recorded to perform the
actual node split.

Note that (9) arises in the context of an O(N × D)
outer loop, where D is number of features. However, a
näıve summing of the losses for (7) incurs an additional
O(N) factor in complexity, which finally results in an
unacceptable O(N2D) complexity for a single boosting
iteration.

A workaround is to use a Newton descent method for
which both the gradient and Hessian can be incremen-
tally computed. Let g, H respectively be the K × 1
gradient vector and K × K Hessian matrix at t = 0.
By dropping the constant NodeLoss(0; I) that is ir-
relevant to t, the Taylor expansion of (7) w.r.t. t up
to second order is:

loss(t; I) = gT t+
1

2
tTHt

t1 + . . .+ tK = 0, t ∈ RK
(10)
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By noting the additive separability of (10)
and using some matrix derivatives, we have

g = −
∑
i∈I

gi (11) H =
∑
i∈I

Hi (12)

gi = ri − pi (13) Hi = P̂ − pip
T
i (14)

where the diagonal matrix P̂ = diag(pi1, . . . , piK).
We then use (10) to compute the approximated node
loss in (9). Thanks to the additive form, both (11) and
(12) can be incrementally/decrementally computed
in constant time when the split searching proceeds
from one training example to the next. Therefore, the
computation of (10) eliminates the O(N) complexity
in the näıve summing of losses.2

2.3. Properties of Approximated Node Loss

To minimise (10), we give some properties for (10) that
should be taken into account when seeking a solver.
We begin with the sum-to-zero constraint. The proba-
bility estimate pk in the Logit loss (3) must be non-zero
and sum-to-one, which is ensured by the link function
(1). Such a link, in turn, means that pk is unchanged
by adding an arbitrary constant to each component in
F . As a result, the single example loss (3) is invariant
to moving it along an all-1 vector 1. That is,

L(yi,F i + c1) = L(yi,F i), (15)

where c is an arbitrary real constant (Note that 1 is,
coincidentally, the orthogonal complement to the space
defined by sum-to-zero constraint). This property also
carries over to the approximated node loss (10):

Property 1 loss(t; I) = loss(t+ c1; I).

This is obvious by noting the additive separability in
(10), as well as that gT

i 1 = 0, 1THi1 = 0 holds since
pi is sum-to-one.

For the Hessian, we have rank(H) ≤ rank(Hi) by
noting the additive form in (11). In (Li, 2010a) it
is shown that detHi = 0 by brute-force determinant
expansion. Here we give a stronger property:

2In Real AdaBoost.MH, such a second order approxi-
mation is not necessary (although possible, cf. (Zou et al.,
2008)). Due to the special form of the exponential loss
and the absence of a sum-to-zero constraint, there exists
analytical solution for the node loss (7) by simply setting
the derivative to 0. Here also, the computation can be
incremental/decremental. Since the loss design and Ad-
aBoost.MH are not our main interests, we do not discuss
this further.

Property 2 Hi is a positive semi-definite matrix
such that 1) rank(Hi) = κ−1, where κ is the number
of non-zero elements in pi; 2) 1 is the eigenvector for
eigenvalue 0.

The proof can be found in this paper’s extended ver-
sion (Sun et al., 2012).

The properties shown above indicate that 1) H is sin-
gular, so that unconstrained Newton descent is not
applicable here, and 2) rank(H) could be as high as
K−1, which prohibits the application of the standard
fast quadratic solver designed for low rank Hessian-
s. In the following we propose to address this prob-
lem via block coordinate descent, a technique that has
been successfully used in training SVMs (Bottou &
Lin, 2007).

2.4. Block Coordinate Descent

For the variable t in (10), we only choose two (the least
possible number due to the sum-to-zero constraint) co-
ordinates, i.e., a class pair, to update while keeping the
others fixed. Suppose we have chosen the r-th and the
s-th coordinate (how to do so is deferred to next sub-
section). Let tr = t and ts = −t be the free variables
(such that tr + ts = 0) and tk = 0 for k ̸= r, k ̸= s.
Plugging these into (10) yields an unconstrained one
dimensional quadratic problem with regards to the s-
calar variable t:

loss(t) = gT t+
1

2
ht2 (16)

where the gradient and Hessian collapse to scalars:

g = −
∑
i∈I

((ri,r − pi,r)− (ri,s − pi,s)) (17)

h =
∑
i∈I

(pi,r(1− pi,r) + pi,s(1− pi,s) + 2pi,rpi,s) ,

(18)
To this extent, we are able to obtain the analytical
expression for the minimizer and minimum of (16):

t∗ = argmin
t

loss(t) = − g

h
(19)

loss(t∗) = − g2

2h
(20)

by noting the non-negativity of (18).

Based on (19), node vector (8) can be approximated
as

tmj =


+(−g/h) k = r

−(−g/h) k = s

0 otherwise

(21)
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where g and h are respectively computed by using (17)
and (18) with index set Imj . Based on (20), the node
gain (9) can be approximated as

NodeGain(n′) =
g2L
2hL

+
g2R
2hR

− g2

2h
, (22)

where g (or gL, gR) and h (or hL, hR) are computed
by using (17) and (18) with index set I (or IL, IR).

2.5. Class Pair Selection

In (Bottou & Lin, 2007) two methods for selecting
(r, s) are proposed. One is based on a first order ap-
proximation. Let tr and ts be the free variables and
the rest be fixed to 0. For a t with sufficiently small
fixed length, let tr = ϵ and ts = −ϵ where ϵ > 0 is some
small enough constant. The first order approximation
of (10) is:

loss(t) ≈ loss(0) + gT t = loss(0)− ϵ(−gr − (−gs))
(23)

It follows that the indices r, s resulting in largest decre-
ment to (23) are:

r = argmax
k

{−gk}

s = argmin
k

{−gk} .
(24)

Another method that can be derived in a similar way
takes into account the second order information:

r = argmax
k

{−gk}

s = argmax
k

{
(gr − gk)

2

hrr + hkk − 2hrk

}
,

(25)

Both methods are O(K) procedures that are better
than the K × (K − 1)/2 näıve enumeration. However,
in our implementation we find that (25) achieves better
results for AOSO-LogitBoost.

Pseudocode for AOSO-LogitBoost is given in Algorith-
m 1.

3. Comparison to (ABC-)LogitBoost

In this section we compare the derivations of Logit-
Boost and ABC-LogitBoost and provide some intu-
ition for observed behaviours in the experiments in
Section 4.

3.1. ABC-LogitBoost

To solve (5) with a sum-to-zero constraint, ABC-
LogitBoost uses K − 1 independent trees:

fk =

{∑
j tjkI(x ∈ Rjk) k ̸= b

−
∑

l ̸=b fl k = b.
(26)

Algorithm 1 AOSO-LogitBoost. v is shrinkage factor
that controls learning rate.

1: Fik = 0, k = 1, . . . ,K, i = 1, . . . , N
2: for m = 1 to M do
3: pi,k =

exp(Fi,k)∑K
j=1 exp(Fi,j)

, k = 1, . . . ,K, i = 1, . . . , N .

4: Obtain {Rmj}Jj=1 by recursive region partition.
Node split gain is computed as (22), where the
class pair (r, s) is selected using (25) .

5: Compute {tmj}Jj=1 by (21), where the class pair
(r, s) is selected using (25) .

6: Fi = Fi + v
∑J

j=1 tmjI(xi ∈ Rmj), i =
1, . . . , N .

7: end for

In (Li, 2010a), the so-called base class b is selected by
exhaustive search per iteration, i.e., trying all possible
b, which involves growing K(K − 1) trees. To reduce
the time complexity, Li also proposed other methods.
In (Li, 2010c), b is selected only every several itera-
tions, while in (Li, 2008), b is, intuitively, set to be
the class that leads to largest loss reduction at last
iteration.

In ABC-LogitBoost the sum-to-zero constraint is ex-
plicitly considered when deriving the node value and
the node split gain for the scalar regression tree. In-
deed, they are the same as (21) and (22) in this paper,
although derived using a slightly different motivation.
In this sense, ABC-LogitBoost can be seen as a spe-
cial form of the AOSO-LogitBoost since: 1) For each
tree, the class pair is fixed for every node in ABC,
while it is selected adaptively in AOSO, and 2) K − 1
trees are added per iteration in ABC (using the same
set of probability estimates {pi}Ni=1), while only one
tree is added per iteration by AOSO (and {pi}Ni=1 are
updated as soon as each tree is added).

Since two changes are made to ABC-LogitBoost, an
immediate question is what happens if we only make
one? That is, what happens if one vector tree is added
per iteration for a single class pair selected only for
the root node and shared by all other tree nodes, as in
ABC, but the {pi}Ni=1 are updated as soon as a tree is
added, as in AOSO. This was tried but unfortunately,
degraded performance was observed for this com-
bination so the results are not reported here.

From the above analysis, we believe the more flexi-
ble model (as well as the model updating strategy)
in AOSO is what contributes to its improvement over
ABC, as seen section 4).
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Table 1. Datasets used in our experiments.
datasets K #features #training #test
Poker525k 10 25 525010 500000
Poker275k 10 25 275010 500000
Poker150k 10 25 150010 500000
Poker100k 10 25 100010 500000
Poker25kT1 10 25 25010 500000
Poker25kT2 10 25 25010 500000
Covertype290k 7 54 290506 290506
Covertype145k 7 54 145253 290506
Letter 26 16 16000 4000
Letter15k 26 16 15000 5000
Letter2k 26 16 2000 18000
Letter4K 26 16 4000 16000
Pendigits 10 16 7494 3498
Zipcode 10 256 7291 2007
(a.k.a. USPS)
Isolet 26 617 6238 1559
Optdigits 10 64 3823 1797
Mnist10k 10 784 10000 60000
M-Basic 10 784 12000 50000
M-Image 10 784 12000 50000
M-Rand 10 784 12000 50000
M-Noise1 10 784 10000 2000
M-Noise2 10 784 10000 2000
M-Noise3 10 784 10000 2000
M-Noise4 10 784 10000 2000
M-Noise5 10 784 10000 2000
M-Noise6 10 784 10000 2000

3.2. LogitBoost

In the original LogitBoost (Friedman et al., 1998), the
Hessian matrix (14) is approximated diagonally. In
this way, the f in (5) is expressed by K uncoupled
scalar tress:

fk =
∑
j

tjkI(x ∈ Rjk), k = 1, 2, . . . ,K (27)

with the gradient and Hessian for computing node val-
ue and node split gain given by:

gk = −
∑
i∈I

(ri,k − pi,k), hk = −
∑
i∈I

pi,k(1− pi,k).

(28)
Here we use the subscript k for g and h to emphasize
the k-th tree is built independently to the other K− 1
trees (i.e., the sum-to-zero constraint is dropped). Al-
though this simplifies the mathematics, such an ag-
gressive approximation turns out to harm both clas-
sification accuracy and convergence rate, as shown in
Li’s experiments (Li, 2009).

4. Experiments

In this section we compare AOSO-LogitBoost with
ABC-LogitBoost, which was shown to outperform o-
riginal LogitBoost in Li’s experiments (Li, 2010a;
2009). We test AOSO on all the datasets used in
(Li, 2010a; 2009), as listed in Table 1. In the top
section are UCI datasets and in the bottom are M-
nist datasets with many variations (see (Li, 2010b)

Table 2. Test classification errors on Mnist10k. In each
J-v entry, the first entry is for ABC-LogitBoost and the
second for AOSO-LogitBoost. Lower one is in bold.

v = 0.04 v = 0.06 v = 0.08 v = 0.1
J = 4 2630 2515 2600 2414 2535 2414 2522 2392
J = 6 2263 2133 2252 2146 2226 2146 2223 2134
J = 8 2159 2055 2138 2046 2120 2046 2143 2055
J = 10 2122 2010 2118 1980 2091 1980 2097 2014
J = 12 2084 1968 2090 1965 2090 1965 2095 1995
J = 14 2083 1945 2094 1938 2063 1938 2050 1935
J = 16 2111 1941 2114 1928 2097 1928 2082 1966
J = 18 2088 1925 2087 1916 2088 1916 2097 1920
J = 20 2128 1930 2112 1917 2095 1917 2102 1948
J = 24 2174 1901 2147 1920 2129 1920 2138 1903
J = 30 2235 1887 2237 1885 2221 1885 2177 1917
J = 40 2310 1923 2284 1890 2257 1890 2260 1912
J = 50 2353 1958 2359 1910 2332 1910 2341 1934

for detailed descriptions).3 To exhaust the learning
ability of (ABC-)LogitBoost, Li let the boosting stop
when either the training converges (i.e., the loss (2)
approaches 0, implemented as ≤ 10−16) or a maxi-
mum number of iterations, M , is reached. Test er-
rors at last iteration are simply reported since no ob-
vious over-fitting is observed. By default, M = 10000,
while for those large datasets (Covertype290k, Pok-
er525k, Pokder275k, Poker150k, Poker100k)
M = 5000 (Li, 2010a; 2009). We adopt the same cri-
teria, except that our maximum iterations MAOSO =
(K − 1) × MABC , where K is the number of classes.
Note that only one tree is added at each iteration in
AOSO, while K−1 are added in ABC. Thus, this cor-
rection compares the same maximum number of trees
for both AOSO and ABC.

The most important tuning parameters in LogitBoost
are the number of terminal nodes J , and the shrink-
age factor v. In (Li, 2010a; 2009), Li reported results
of (ABC-)LogitBoost for a number of J-v combina-
tions. We report the corresponding results for AOSO-
LogitBoost for the same combinations. In the follow-
ing, we intend to show that for nearly all J-v com-
binations, AOSO-LogitBoost has lower classifi-
cation error and faster convergence rates than
ABC-LogitBoost.

4.1. Classification Errors

Table 2 shows results of various J-v combinations for a
representative datasets. Results on more datasets can
be found in this paper’s extended version (Sun et al.,
2012).

In Table 3 we summarize the results for all dataset-
s. In (Li, 2010a), Li reported that ABC-LogitBoost
is insensitive to J , v on all datasets except for Pok-

3Code and data are available at
http://ivg.au.tsinghua.edu.cn/index.php?n=People.PengSun
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Table 3. Summary of test classification errors. Lower one is in bold. Middle panel: J = 20,v = 0.1 except for Poker25kT1
and Poker25kT2 on which J , v are chosen by validation (See the text in 4.1); Right panel: the overall best. Dash ”-”
means unavailable in (Li, 2010a)(Li, 2009). Relative improvements (R) and P -values (pv) are given.

Datasets #tests ABC AOSO R pv ABC∗ AOSO∗ R pv
Poker525k 500000 1736 1537 0.1146 0.0002 - - - -
Poker275k 500000 2727 2624 0.0378 0.0790 - - - -
Poker150k 500000 5104 3951 0.2259 0.0000 - - - -
Poker100k 500000 13707 7558 0.4486 0.0000 - - - -
Poker25kT1 500000 37345 31399 0.1592 0.0000 37345 31399 0.1592 0.0000
Poker25kT2 500000 36731 31645 0.1385 0.0000 36731 31645 0.1385 0.0000
Covertype290k 290506 9727 9586 0.0145 0.1511 - - - -
Covertype145k 290506 13986 13712 0.0196 0.0458 - - - -
Letter 4000 89 92 -0.0337 0.5892 89 88 0.0112 0.4697
Letter15k 5000 109 116 -0.0642 0.6815 - - - -
Letter4k 16000 1055 991 0.0607 0.0718 1034 961 0.0706 0.0457
Letter2k 18000 2034 1862 0.0846 0.0018 1991 1851 0.0703 0.0084
Pendigits 3498 100 83 0.1700 0.1014 90 81 0.1000 0.2430
Zipcode 2007 96 99 -0.0313 0.5872 92 94 -0.0217 0.5597
Isolet 1559 65 55 0.1538 0.1759 55 50 0.0909 0.3039
Optdigits 1797 55 38 0.3091 0.0370 38 34 0.1053 0.3170
Mnist10k 60000 2102 1948 0.0733 0.0069 2050 1885 0.0805 0.0037
M-Basic 50000 1602 1434 0.1049 0.0010 - - - -
M-Rotate 50000 5959 5729 0.0386 0.0118 - - - -
M-Image 50000 4268 4167 0.0237 0.1252 4214 4002 0.0503 0.0073
M-Rand 50000 4725 4588 0.0290 0.0680 - - - -
M-Noise1 2000 234 228 0.0256 0.3833 - - - -
M-Noise2 2000 237 233 0.0169 0.4221 - - - -
M-Noise3 2000 238 233 0.0210 0.4031 - - - -
M-Noise4 2000 238 233 0.0210 0.4031 - - - -
M-Noise5 2000 227 214 0.0573 0.2558 - - - -
M-Noise6 2000 201 191 0.0498 0.2974 - - - -

Table 4. #trees added when convergence on selected
datasets. R stands for the ratio AOSO/ABC.

Mnist10k M-Rand M-Image
ABC 7092 15255 14958
R 0.7689 0.7763 0.8101

Letter15k Letter4k Letter2k
ABC 45000 20900 13275
R 0.5512 0.5587 0.5424

er25kT1 and Poker25kT2. Therefore, Li summa-
rized classification errors for ABC simply with J = 20
and v = 0.1, except that on Poker25kT1 and Pok-
er25kT2 errors are reported by using the other’s test
set as a validation set. Based on the same criteria we
summarize AOSO in the middle panel of Table 3 where
the test errors as well as the improvement relative to
ABC are given. In the right panel of Table 3 we pro-
vide the comparison for the best results achieved over
all J-v combinations when the corresponding results
for ABC are available in (Li, 2010a) or (Li, 2009).

We also tested the statistical significance between
AOSO and ABC. We assume the classification error
rate is subject to some Binomial distribution. Let z
denote the number of errors and n the number of tests,
then the estimate of error rate p̂ = z/n and its vari-
ance is p̂(1− p̂)/n. Subsequently, we approximate the
Binomial distribution by a Gaussian distribution and
perform a hypothesis test. The p-values are reported
in Table 3.

For some problems, we note LogitBoost (both ABC

Table 5. #trees added when convergence on Mnist10k for
a number of J-v combinations. For each J-v entry, the first
number is for ABC, the second for the ratio AOSO/ABC.

v = 0.04 v = 0.06 v = 0.1
J = 4 90000 1.0 90000 1.0 90000 1.0
J = 6 90000 0.7740 63531 0.7249 38223 0.7175
J = 8 55989 0.7962 38223 0.7788 22482 0.7915
J = 10 39780 0.8103 27135 0.7973 16227 0.8000
J = 12 31653 0.8109 20997 0.8074 12501 0.8269
J = 14 26694 0.7854 17397 0.8047 10449 0.8160
J = 16 22671 0.7832 11704 1.0290 8910 0.8063
J = 18 19602 0.7805 13104 0.7888 7803 0.7933
J = 20 17910 0.7706 11970 0.7683 7092 0.7689
J = 24 14895 0.7514 9999 0.7567 6012 0.7596
J = 30 12168 0.7333 8028 0.7272 4761 0.7524
J = 40 9846 0.6750 6498 0.6853 3870 0.6917
J = 50 8505 0.6420 5571 0.6448 3348 0.6589

and AOSO) outperforms other state-of-the-art classi-
fier such as SVM or Deep Learning. (e.g., the test
error rate on Poker is 40% for SVM and < 10%
for both ABC and AOSO (even lower than ABC); on
M-Image it is 16.15% for DBN-1, 8.54% for ABC
and 8.33% for AOSO). See this paper’s extended ver-
sion (Sun et al., 2012) for details. This shows that
the AOSO’s improvement over ABC does deserve the
efforts.

4.2. Convergence Rate

Recall that we stop the boosting procedure if either
the maximum number of iterations is reached or it
converges (i.e. the loss (2) ≤ 10−16). The fewer trees
added when boosting stops, the faster the convergence
and the lower the time cost for either training or test-
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Figure 2. Errors vs. iterations on selected datasets and
parameters. Top row: ABC (copied from (Li, 2010a));
Bottom row: AOSO (horizontal axis scaled to compensate
the K − 1 factor).

ing. We compare AOSO with ABC in terms of the
number of trees added when boosting stops for the re-
sults of ABC available in (Li, 2010a; 2009). Note that
simply comparing number of boosting iterations is un-
fair to AOSO, since at each iteration only one tree is
added in AOSO and K − 1 in ABC.

Results are shown in Table 4 and Table 5. Excep-
t for when J-v is too small, or particularly difficult
datasets where both ABC and AOSO reach maximum
iterations, we found that trees needed in AOSO are
typically only 50% to 80% of those in ABC.

Figure 2 shows plots for test classification error vs.
iterations in both ABC and AOSO and show that
AOSO’s test error decreases faster. More plots for
AOSO can be found in this paper’s extended version
(Sun et al., 2012).

5. Conclusions

We present an improved LogitBoost, namely AOSO-
LogitBoost, for multi-class classification. Compared
with ABC-LogitBoost, our experiments suggest that
our adaptive class pair selection technique results in
lower classification error and faster convergence rates.
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