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Abstract

We propose graph kernels based on subgraph
matchings, i.e. structure-preserving bijec-
tions between subgraphs. While recently pro-
posed kernels based on common subgraphs
(Wale et al., 2008; Shervashidze et al., 2009)
in general can not be applied to attributed
graphs, our approach allows to rate mappings
of subgraphs by a flexible scoring scheme
comparing vertex and edge attributes by ker-
nels. We show that subgraph matching ker-
nels generalize several known kernels. To
compute the kernel we propose a graph-
theoretical algorithm inspired by a classical
relation between common subgraphs of two
graphs and cliques in their product graph ob-
served by Levi (1973). Encouraging experi-
mental results on a classification task of real-
world graphs are presented.

1. Introduction

Graphs are well-studied versatile representations of
structured data and have become ubiquitous in many
application domains like chem- and bioinformatics.
Comparing graphs is a fundamental problem and com-
puting meaningful similarity measures is a prerequisite
to apply a variety of machine learning algorithms to
the domain of graphs. Consequently related problems
have been extensively studied involving essential graph
theoretical questions, which are typically NP-hard,
like, e.g, the maximum common subgraph problem.
However, graph similarity can be defined in various
ways and its computation not necessarily requires to
solve these problems exactly to yield a similarity mea-
sure appropriate for a wide range of applications.

To become applicable to the wealth of so-called ker-
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nel methods, including Support Vector Machines as
the most prominent example, similarity measures must
satisfy the additional constraints to be symmetric
and positive semidefinite (p.s.d.). While recent de-
velopment of graph kernels primarily focuses on large
datasets of graphs with simple labels (cf. Table 1), it
has been observed on several occasions that the predic-
tion accuracy can be increased by annotating vertices
or edges with additional attributes (see, e.g., Borg-
wardt et al., 2005; Fröhlich et al., 2005; Harchaoui
& Bach, 2007). Since attributes in many cases in-
clude continuous values, a meaningful similarity mea-
sure must tolerate certain divergence. Therefore, ker-
nels designed for graphs with simple labels often are
not suitable for attributed graphs.

We propose a new graph kernel which is related to the
maximum common subgraph problem. Instead of de-
riving a similarity measure from a maximum common
subgraph our approach counts the number of match-
ings between subgraphs up to a fixed size and there-
fore has polynomial runtime. Attributes of mapped
vertices and edges are assessed by a flexible scoring
scheme and, thus, the approach can be applied to gen-
eral attributed graphs.

1.1. Related Work

In recent years various graph kernels have been pro-
posed, see (Vishwanathan et al., 2010) and references
therein. Gärtner et al. (2003) and Kashima et al.
(2003) devised graph kernels based on random walks,
which count the number of labeled walks two graphs
have in common. Subsequently random walk ker-
nels were extended to avoid repeated consecutive ver-
tices and were combined with vertex label enrichment
techniques by Mahé et al. (2004). The runtime was
improved particularly for graphs with simple labels
(Vishwanathan et al., 2010). Random walk kernels
have been extended to take vertex and edge attributes
into account and were thereby successfully applied to
protein function prediction (Borgwardt et al., 2005).

A drawback of random walks is that walks are struc-
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Table 1. Summary on (selected) graph kernels regarding
computation by explicit feature mapping (exp. φ) and
support for attributed graphs (Attr.).

Graph Kernel exp. φ Attr.

RW (Gärtner et al., 2003) ×
√

TP (Ramon & Gärtner, 2003) ×
√

SP (Borgwardt & Kriegel, 2005) × (
√

)
Graphlet (Shervashidze et al., 2009)

√
×

NSPDK (Costa & De Grave, 2010)
√

×
WL (Shervashidze et al., 2011)

√
×

turally simple. However, computing kernels by count-
ing common subgraphs of unbounded size is known
to be NP-complete (Gärtner et al., 2003). Thus, an-
other direction in the development of graph kernels
focuses on small subgraphs of a fixed size k ∈ {3, 4, 5},
referred to as graphlets, which primarily apply to unla-
beled graphs (Shervashidze et al., 2009). Furthermore
tree patters, which are allowed to contain repeated ver-
tices just like random walks, were proposed by Ramon
& Gärtner (2003) and later refined by Mahé & Vert
(2009). While these approaches are based on all com-
mon subtree patterns of a specified height, others only
take the entire neighborhood of each vertex up to given
distance into account (Shervashidze et al., 2011), thus
reducing the number of features and the required run-
time significantly. Menchetti et al. (2005) proposed
a weighted decomposition kernel, which determines
matching substructures by a restrictive kernel (selec-
tor) and weights each matching by a kernel defined
on the context of the matching. A kernel based on
shortest-paths was developed by Borgwardt & Kriegel
(2005), which first computes the length of shortest-
paths between all pairs of vertices and then counts
pairs with similar labels and distance. Instead of com-
paring pairs of individual vertices, the kernel proposed
by Costa & De Grave (2010) associates a string encod-
ing the neighborhood subgraph with each vertex.

Several graph kernels were tailored especially to chem-
ical compound. For attributed molecular graphs
Fröhlich et al. (2005) proposed a similarity measure
based on an optimal assignment of vertices. How-
ever, the proposed function was shown not be p.s.d.
(Vishwanathan et al., 2010). Established techniques in
cheminformatics are based on features which can be 1.
directly generated from the molecular graph, e.g. all
paths or subgraphs up to a certain size (Wale et al.,
2008), similar to graphlets, 2. taken from a predefined
dictionary or 3. generated in a preceding data-mining
phase, e.g. using frequent subgraph mining.

The proposed techniques can be classified into ap-
proaches that use explicit feature mapping and those
that directly compute a kernel function. If explicit rep-
resentations are manageable, these approaches usually
outperform other kernels regarding runtime on large
datasets, since the number of vector representations
scales linear with the dataset size. However, these ap-
proaches do not support attributed graphs, cf. Ta-
ble 1. The computation technique proposed for ran-
dom walk and tree pattern kernels, in contrast, can
be extended to compare vertex and edge attributes by
kernels. However, compared to graphlet kernels these
approaches are based on simple features including re-
peated vertices.

We propose a technique that uses small subgraphs con-
tained in the two graphs under comparison, similar to
graphlets, but simultaneously provide the flexibility to
compare vertex and edge attributes by means of arbi-
trary kernel functions.

2. Preliminaries

In this section basic concepts of graph theory are
introduced. We refer to simple undirected graphs.
Given a graph G = (V,E) we denote by V (G) = V
and E(G) = E the set of vertices and edges, respec-
tively. The set of vertices adjacent to a vertex v is
denoted by N(v) = {u ∈ V : (u, v) ∈ E}. A path of
length n is a sequence of vertices (v0, . . . , vn) such that
(vi, vi+1) ∈ E for 0 ≤ i < n. A graph is connected if
at least one path between any pair of vertices exists
and disconnected otherwise. A graph G′ = (V ′, E′) is
a subgraph of a graph G = (V,E), written G′ ⊆ G, iff
V ′ ⊆ V and E′ ⊆ E. If E′ = (V ′ × V ′) ∩ E holds,
G′ = G[V ′] is said to be induced by V ′ in G. Note
that a subgraph of a connected graph may be discon-
nected. In the following we will always refer to in-
duced subgraphs and assume graphs to be labeled or
attributed, i.e. a graph is a 3-tuple G = (V,E, l), where
l : V ∪ E → L is a labeling function associating the
label l(v) to the vertex v and l(e) to the edge e. All
labels are from the set L and may as well consist of
tuples of attribute-value pairs.

A graph isomorphism between two labeled graphs
G1 = (V1, E1, l1) and G2 = (V2, E2, l2) is a bijec-
tion ϕ : V1 → V2 that preserves adjacencies, i.e.
∀u, v ∈ V1 : (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2, and
labels: Let ψϕ : V1 × V1 → V2 × V2 be the map-
ping of vertex pairs implicated by the bijection ϕ such
that ψϕ((u, v)) = (ϕ(u), ϕ(v)). Then to preserve la-
bels the conditions ∀v ∈ V1 : l1(v) ≡ l2(ϕ(v)) and
∀e ∈ E1 : l1(e) ≡ l2(ψϕ(e)) must hold, where ≡ de-
notes that two labels are considered equivalent. Two
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graphs G1, G2 are said to be isomorphic, written
G1 ' G2, if a graph isomorphism between G1 and
G2 exists. An automorphism of a graph G = (V,E) is
a graph isomorphism ϕ : V → V . The set of automor-
phisms of G is denoted by Aut(G).

3. A Subgraph Matching Kernel

Several graph kernels count the number of isomorphic
subgraphs contained in two graphs. A common sub-
graph isomorphism in contrast denotes a mapping be-
tween such subgraphs that preserves their structure.

Definition 1 (Common Subgraph Isomorphism)
Let G1 = (V1, E1, l1), G2 = (V2, E2, l2) be two graphs
and V ′1 ⊆ V1, V ′2 ⊆ V2 subsets of their vertices. A
graph isomorphism ϕ of G1[V ′1 ] and G2[V ′2 ] is called
common subgraph isomorphism (CSI) of G1 and G2.2

Based on this definition we define the following kernel
and will see later that the function is p.s.d.

Definition 2 (CSI Kernel) Let I(G1, G2) denote
the set of all CSIs of two graphs G1 and G2 and
λ : I(G1, G2)→ R+ a weight function. The function

kcsi(G1, G2) =
∑

ϕ∈I(G1,G2)

λ(ϕ) (1)

is called common subgraph isomorphism kernel. 2

When vertices and edges are annotated with arbitrary
attributes it is inappropriate to require a mapping to
preserve the structure and the labels of the two graphs
exactly. To this end, we generalize Def. 2 to allow for a
more flexible scoring of bijections referred to as graph
matching.

Definition 3 (Subgraph Matching Kernel)
Given two graphs G1 = (V1, E1, l1), G2 = (V2, E2, l2),
let B(G1, G2) denote the set of all bijections between
sets V ′1 ⊆ V1 and V ′2 ⊆ V2 and let λ : B(G1, G2)→ R+

be a weight function. The subgraph matching kernel
is defined as

ksm(G1, G2) =
∑

ϕ∈B(G1,G2)

λ(ϕ)
∏
v∈V ′1

κV (v, ϕ(v))
∏

e∈V ′1×V ′1

κE(e, ψϕ(e)),

where V ′1 = dom(ϕ) and κV , κE kernel function de-
fined on vertices and pairs of vertices, respectively. 2

Theorem 1 The subgraph matching kernel is p.s.d.2

Proof The structure of a graph G = (V,E) with
n vertices can be encoded by a tuple (~v, e), where
~v = (vi)n is a sequence of the vertices in V and
e = [ei,j ]n×n is a matrix of elements E ∪ {ε}, such
that ei,j = (vi, vj) if (vi, vj) ∈ E and ε otherwise. By

extending ~v and e by additional ε-elements we can en-
code graphs of different size into the same space. Each
permutation of the vertices of a graph yields a valid
encoding and a graph can be decomposed into all its
encodings. This allows us to define a graph kernel
by specifying an R-convolution (Haussler, 1999). Let
R(~v, e, G) be a relation, where ~v and e are defined as
above, G is a graph and R(~v, e, G) = 1 iff (~v, e) is an
encoding of G. Let R−1(G) = {(~v, e) : R(~v, e, G) = 1}
be the set of encodings of G. We can now specify the
R-convolution kernel

kenc(G1, G2) =
∑

(~u,e)∈R−1(G1)

(~v,f)∈R−1(G2)

∏
i

κV (ui, vi)
∏
i,j

κE(ei,j , fi,j),

where κV (ε, ·) = 0. Combining this kernel with a con-
volution kernel based on subgraph decomposition and
a suitable weight function yields

k(G1, G2) =
∑

G′1⊆G1

∑
G′2⊆G2

1

|V (G′1)|!
kenc(G

′
1, G

′
2). (2)

This kernel is equivalent to ksm with λ(ϕ) = 1, since
there are exactly n! pairs of encodings of two graphs
with n vertices corresponding to the same bijection.�

We can identify Def. 2 as a special case of Def. 3, where

κV (v1, v2) =

{
1 if l1(v1) ≡ l2(v2),

0 otherwise and

κE(e1, e2) =


1 if e1 ∈ E1 ∧ e2 ∈ E2 ∧ l1(e) ≡ l2(e)

or e1 /∈ E1 ∧ e2 /∈ E2,

0 otherwise.

These kernels assure that exactly the conditions of
graph isomorphism are fulfilled. Therefore the CSI
kernel is a special case of the subgraph matching ker-
nel and we may state the following corollary.

Corollary 1 The CSI kernel is p.s.d. 2

3.1. Relation to the Subgraph Kernel

The definitions of subgraph kernels proposed slightly
differs. Here we refer to induced subgraphs of un-
bounded size.

Definition 4 (Subgraph Kernel) Given two
graphs G1, G2 ∈ G and a weight function λs : G → R+.
The subgraph kernel is defined as

ks(G1, G2) =
∑

G′1⊆G1

∑
G′2⊆G2

λs(G
′
1)k'(G′1, G

′
2), (3)

where k' : G × G → {0, 1} is the isomorphism kernel,
i.e. k'(G′1, G

′
2) = 1 iff G′1 ' G′2. 2
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The subgraph kernel basically counts isomorphic sub-
graphs, while the CSI kernel counts the number of iso-
morphisms between subgraphs. Since there may be
more than one isomorphism between a pair of isomor-
phic subgraphs, both concepts differ in detail.

Theorem 2 Let ks be a subgraph kernel with weight
function λs and kcsi a CSI kernel with weight func-

tion λcsi(ϕ) = λs(G)
|Aut(G)| , where G = G1[dom(ϕ)]. Then

kcsi(G1, G2) = ks(G1, G2) for all graphs G1, G2 ∈ G. 2

Proof For each pair (G′1, G
′
2) that contributes to the

sum of Eq. (3), G′1 ' G′2 holds. CSIs exist for these
pairs of graphs only. There are |Aut(G′1)| = |Aut(G′2)|
isomorphism between G′1 and G′2, each of which is con-
tained in I(G1, G2) and contributes to Eq. (1). This
is compensated by the correction term |Aut(G′1)|−1.�

3.2. Relation to the Pharmacophore Kernel

Mahé et al. (2006) proposed a kernel to compare
chemical compounds based on characteristic features
together with their relative spatial arrangement, so-
called pharmacophores. To this end, a molecule is rep-
resented by a set of pairs M = {(xi, li) ∈ R3 × L}i,
where xi are the coordinates of a feature i in a 3-
dimensional space and li is an associated label. The
set of pharmacophores of a molecule M is P(M) =
{(a1, a2, a3) ∈ M3 : a1 6= a2, a1 6= a3, a2 6= a3}. The
pharmacophore kernel is then defined as

kp(M1,M2) =
∑

p1∈P(M1)

∑
p2∈P(M2)

ki(p1, p2)ks(p1, p2)

and measures the similarity of two molecules based
on triples of similar characteristic features with a sim-
ilar spatial arrangement, which is quantified by the
two kernels ki and ks, respectively. These are de-
fined as ki(p, p

′) =
∏3
i=1 kfeat(li, l

′
i) and ks(p, p

′) =∏3
i=1 kdist(||xi, xi+1||, ||x′i, x′i+1||), where || · || denotes

the Euclidean distance and the index i + 1 is taken
modulo 3.

From the representation M of a molecule as used
by the pharmacophore kernel we can construct a
graph G(M) = (VM , EM , lM ), such that VM =
{v1, . . . , v|M |} with lM (vi) = li and EM = VM × VM
with lM ((vi, vj)) = ||xi, xj ||.
Theorem 3 Let kp be a pharmacophore kernel and
ksm a subgraph matching kernel with weight func-
tion λ(ϕ) = 6 if |dom(ϕ)| = 3 and 0 otherwise
and vertex and edge kernels defined as κV (v1, v2) =
kfeat(l(v1), l(v2)) and κE(e1, e2) = kdist(l(e1), l(e2)).
Then kp(M1,M2) = ksm(G(M1), G(M2)) holds. 2

Proof The weight function λ ensures that only sub-
graphs with three vertices contribute to the value of

O3

C2

N1

(a) G1

O

1

C

2

N

3

C

4

C5

O6

(b) G2

(1, 3)

(3, 1) (2, 2)

(2, 4)

(3, 6) (2, 5)

(c) Product graph GP

Figure 1. Two labeled graphs (a), (b) and their product
graph GP (c); dashed lines represent d-edges.

ksm. Since G(M) is a complete graph by definition,
each common subgraph induced by three vertices is a
triangle, i.e. all triples of vertices with their pairwise
distances are taken into account. For each subset with
three vertices there are six different triples represent-
ing all possible permutations. Comparing two subsets
with three elements, 3! = 6 combinations of associ-
ated triples correspond to the same mapping of three
vertices. Thus, multiplying the value of 3-element sub-
graph matchings by 6 compensates for this. �

3.3. Kernel Computation

In this section we propose an algorithm to compute the
CSI and subgraph matching kernel. Our technique is
inspired by a classical result of Levi (1973) who ob-
served a relation between common subgraphs of two
graphs and cliques in their product graph. Given two
graphs G1 = (V1, E1, l1) and G2 = (V2, E2, l2), the
(modular) product graph GP = (VP , EP ) of G1 and G2

is defined by VP = {(v1, v2) ∈ V1×V2 : l1(v1) ≡ l2(v2)}
and EP containing an edge connecting two vertices
(u1, u2), (v1, v2) ∈ VP iff u1 6= v1, u2 6= v2 and ei-
ther e1 = (u1, v1) ∈ E1 and e2 = (u2, v2) ∈ E2 and
l1(e1) ≡ l2(e2) (c-edge) or e1 /∈ E1 and e2 /∈ E2 (d-
edge). The distinction of c-edges and d-edges is due to
Koch (2001); c-edges represent common adjacency and
d-edges common non-adjacency1. Thus, two vertices
of the product graph are adjacent iff the correspond-
ing vertex mappings can be part of the same CSI, see
Fig. 1 for an example.

Levi (1973) observed that each maximum clique in the
product graph is associated with a maximum common
subgraph of the factor graphs. Furthermore, the ver-
tex set C is a clique in GP iff there is a correspond-
ing CSI ϕ ∈ I(G1, G2). As a consequence we can
enumerate (or count) all CSIs by enumerating (count-
ing) the cliques of the product graph. To compute

1The concept of product graphs has been used for the
computation of graph kernels before. Note that the defini-
tion used here is different from the direct product graph,
which contains only c-edges, proposed by Gärtner et al.
(2003) to compute a random walk kernel.
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the subgraph matching kernel we extend the approach
by means of a weighted product graph, where vertices
and edges are annotated with the values of κV and
κE , respectively. Each clique is then associated with
the product of the weights of all vertices and edges
contained in it.

Definition 5 (Weighted Product Graph) Given
two graphs G1 = (V1, E1, l1), G2 = (V2, E2, l2) and
vertex and edge kernels κV and κE , the weighted
product graph (WPG) GP = (VP , EP , c) of G1 and G2

is defined by

VP = {(v1, v2) ∈ V1 × V2 : κV (v1, v2) > 0}
EP = {((u1, u2), (v1, v2)) ∈ VP × VP : u1 6= v1 ∧

u2 6= v2 ∧ κE((u1, v1), (u2, v2)) > 0}
c(v) = κV (v1, v2) ∀v = (v1, v2) ∈ VP
c(e) = κE((u1, v1), (u2, v2)) ∀e ∈ EP ,

where e = ((u1, u2), (v1, v2)). 2

If we assume κE(e1, e2) = 0 if e1 ∈ E1 and e2 /∈ E2

or vice versa, the distinction of c- and d-edges carries
over to weighted product graphs.

Algorithm 1: SMKernel(w, C, P )

Input : WPG GP = (VP , EP , c), weight function λ
Initial : value← 0; SMKernel(1, ∅, VP )
Param.: Weight w of the clique C, candidate set P
Output: Result of the kernel function value

1 while |P | > 0 do
2 v ← arbitrary element of P
3 C ′ ← C ∪ {v}
4 w′ ← w · c(v) . multiply by vertex weight
5 forall the u ∈ C do
6 w′ ← w′ · c(u, v) . multiply by edge weights

7 value← value+ w′ · λ(C ′)
8 SMKernel(w′, C ′, P ∩N(v)) . extend clique
9 P ← P \ {v}

Algorithm 1 computes the subgraph matching kernel
by enumeration of cliques. A current clique is extended
stepwise by all vertices preserving the clique property.
These vertices form the candidate set P . Whenever
the current clique C is extended by a new vertex v, the
weight of the vertex itself (line 4) and all the edges con-
necting v to a vertex in C (line 6) are multiplied with
the weight of the current clique w to obtain the weight
of the new clique. The algorithm effectively avoids du-
plicates by removing a vertex from the candidate set
after all cliques containing it have been exhaustively
explored (line 9).

3.3.1. Restriction to Subgraph Classes

In this section we discuss restrictions to certain classes
of subgraphs, their relation to cliques in the product
graph and appropriate modifications of the enumer-
ation algorithm. Since finding a maximum clique or
a maximum CSI is known to be an NP-hard prob-
lem, it may be required in practice to restrict the size
of the subgraphs considered. Modifying Algorithm 1
to stop the recursion whenever a fixed maximum size
k has been reached, effectively restricts the size of the
cliques and thereby the size of the matched subgraphs,
which is quantified by the number of vertices.

Restricting to connected subgraphs may also signifi-
cantly reduce the search space, especially when graphs
are sparse. Moreover disconnected subgraphs con-
vey less structural information and may therefore be
considered less relevant. This constraint can be real-
ized by an adaption of a technique proposed by Koch
(2001). A clique that is spanned by c-edges, a so-called
c-clique, corresponds to a connected CSI. Algorithm 1
can be modified to only enumerate c-cliques by mak-
ing sure that only vertices are added that are adjacent
to a vertex in the current clique via at least one c-
edge. The restricted variants remain p.s.d., since they
are equivalent to the general subgraph matching kernel
with a suitably chosen weight function.

3.3.2. Runtime Analysis

Complexity The runtime of Algorithm 1 depends
on the number of cliques in the product graph. Since
there is a one-to-one correspondence between cliques
and bijections contributing to the kernel value, we can
derive an upper bound for the number of cliques in
GP by considering the number of possible bijections.
There are

(
n
k

)
induced subgraphs of size k in a graph

with n vertices and up to k! isomorphisms between
graphs of size k. Thus, we have

C(k) =

k∑
i=0

i!

(
n1
i

)(
n2
i

)
≤

k∑
i=0

(
n1n2
i

)
cliques of size up to k in GP . Therefore the worst-case
runtime of Algorithm 1 (modified to stop recursion at
depth k) is O(nC(k)) = O(knk+1), where n = n1n2.

Practical considerations The analysis of the com-
plexity shows that a reasonable performance in prac-
tice can only be expected when the maximum size of
the subgraphs considered is restricted. Therefore, the
approach competes against subgraph or graphlet ker-
nels. Besides the differences described in Sec. 3.1, the
methods of computation exhibit substantially different
characteristics: The runtime of our algorithm heavily
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depends on the number of allowed mappings of sub-
graphs. For instances with diverse labels in combina-
tion with a restrictive vertex kernel (e.g. Dirac kernel)
the size of the product graph is typically substantially
reduced, such that |VP | � |V1| · |V2|. In a similar way
diverse edge labels may diminish the number of edges.
Due to d-edges sparse graphs tend to have dense prod-
uct graphs and contain a large number of cliques. How-
ever, in this case the number of enumerated cliques can
be significantly reduced by restricting to c-cliques.

The computation of subgraph kernels is based on ex-
plicit mapping into feature space. While this is ben-
eficial for certain datasets, the number of subgraphs
quickly becomes very large for graphs with diverse
labels rendering explicit mapping prohibitive (Sher-
vashidze et al., 2009). Furthermore, subgraph kernels
are not applicable to attributed graphs. In these re-
spects, our approach is complementary to subgraph
kernels and shows promise for instances for which these
approaches fall short.

4. Experimental Evaluation

4.1. Method & Datasets

We performed classification experiments using the C-
SVM implementation LIBSVM2. We report mean pre-
diction accuracies as well as standard deviations ob-
tained by 10-fold cross-validation repeated 10 times
with random fold assignment. Within each fold the
parameter C was chosen from {10−3, 10−2, . . . , 103} by
cross-validation based on the training set.

We compared the subgraph matching kernel (SM and
CSM with connection constraint) to kernels based on
fixed length random walks (FLRW) and tree patterns3

(TP), both supporting attributed graphs. Our imple-
mentation is similar to the efficient dynamic program-
ming approach proposed by Harchaoui & Bach (2007).
Furthermore, we compare to the Geometric Random
Walk (GRW), Shortest Path (SP), Weisfeiler-Lehman
Subtree (WL) and Weisfeiler-Lehman Shortest Path
(WLSP) kernel. WLSP is similar to NSPDK recently
proposed by Costa & De Grave (2010).

These graph kernels can be tuned by several param-
eters. The maximum size of (C)SM was chosen from
k ∈ {1, 2, . . . , 7} and a uniform weight function was
used. FLRW was computed for walks of length l ∈
{1, 2, . . . , 8} and the parameter λ for GRW was cho-

2http://www.csie.ntu.edu.tw/~cjlin/libsvm
3The definition by Ramon & Gärtner (2003) is vague

regarding subtrees without children. We require subtrees
to have at least one child, see (Mahé & Vert, 2009) for a
detailed discussion of this issue.

sen from {10−5, 10−4, . . . , 10−2}. For TP we used a
uniform weight λ chosen from {10−5, 10−4, . . . , 10−2}
with height h ∈ {1, 2, 3, 4}. The number of itera-
tions of WL/WLSP was chosen from h ∈ {0, 1, . . . , 5}.
All parameters were selected by cross-validation on
the training datasets only. As remarked before (Wale
et al., 2008; Costa & De Grave, 2010) kernels using
features of different size are typically biased towards
large features. Therefore, we also normalized kernel
values separately for each feature size where applica-
ble. Since the runtimes may depend on the selected
parameters, we report the time required to compute a
complete Gram matrix for each dataset using param-
eters frequently selected by the optimization process.

For a fair comparison all kernels were adapted to take
vertex and edge labels into account and implemented
in Java. For the pharmacophore kernel (PH) we used
the implementation provided by the authors4. Exper-
iments were conducted using Sun Java JDK v1.6.0 on
an Intel Xeon E5430 machine at 2.66GHz with 8GB of
RAM using a single processor only.

Graphs with simple labels We employed bench-
mark datasets containing molecules5 and proteins:
The MUTAG dataset consists of 188 chemical com-
pounds divided into two classes according to their mu-
tagenic effect on a bacterium. The PTC dataset con-
tains compounds labeled according to carcinogenic-
ity on rodents divided into male mice (MM), male
rats (MR), female mice (FM) and female rats (FR).
Molecules can naturally be represented by graphs,
where vertices represent atoms and edges represent
chemical bonds. We have removed explicit hydrogen
atoms and labeled vertices by atom type and edges by
bond type (single, double, triple or aromatic).

We have obtained the dataset ENZYME from Borg-
wardt et al. (2005), which is associated with the task
of assigning 600 enzymes to one of the 6 EC top level
classes. Vertices represent secondary structure ele-
ments (SSE) and are annotated by their type, i.e. he-
lix/sheet/turn. Two vertices are connected by an edge
if they are neighbors along the amino acid sequence or
one of three nearest neighbors in space. Edges are
annotated with their type, i.e. structural/sequential.

Attributed graphs Benchmark datasets containing
attributed graphs are less wide-spread. We used the
ENZYME dataset adding an attribute representing
the 3d length of the SSE in Å to each vertex. The ver-
tex kernel was defined as the product of a Dirac kernel

4ChemCPP v1.0.2, http://chemcpp.sourceforge.net
5Both datasets are widely used (see, e.g., Kashima et al.,

2003) and can be obtained from http://cdb.ics.uci.edu

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://chemcpp.sourceforge.net
http://cdb.ics.uci.edu
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on the type attributes and the Brownian bridge kernel
with parameter c = 3 originally used on the length at-
tribute, see (Borgwardt et al., 2005). The edge kernel
remains a Dirac kernel on the type attribute.

Further classification problems were derived from the
chemical compound datasets BZR, COX2, DHFR and
ER which come with 3D coordinates, and were used by
Mahé et al. (2006) to study the pharmacophore kernel.
We generated complete graphs from the compounds,
where edges are labeled with distances6 as described in
Sect. 3.2 and vertex labels correspond to atom types.
We used a triangular kernel to compare distances de-
fined by k(d1, d2) = 1

c ·max{0, c−|d1− d2|} and chose
c from {0.1, 0.25, 0.5, 1.0} by cross-validation.

4.2. Results & Discussion

The classification accuracies and runtimes are summa-
rized in Tables 2 and 3. In terms of classification accu-
racy on graphs with simple labels no general suggestion
which kernel performs best can be derived. CSM per-
forms best on FM, where walk-based kernels perform
slightly worse. For the multiclass classification prob-
lem ENZYME with simple labels CSM yields results
comparable to WL and WLSP, while others perform
worse. This observation also holds for ENZYME with
attributes, where WL and WLSP can no longer be
applied. All approaches benefit significantly from the
additional vertex annotations, which indicates the im-
portance of attributes, and CSM reaches the highest
classification accuracy. On molecular distance graphs
we observed that SM performs best in two of four cases
and competitive on the other datasets. However, the
differences here are rather small. Mahé et al. (2006)
suggested to extend the pharmacophore kernel to take
more than 3 points into account. At least for the in-
stances we have tested, we observed that this does not
lead to a significant increase in classification accuracy.
Nevertheless, this might prove useful where more com-
plex binding mechanism must be considered.

The runtime results on graphs with simple labels
clearly show that computation schemes based on ex-
plicit mapping outperform other approaches. These
all lie in the same order of magnitude and CSM is
slower than FLRW and TP. For attributed graphs SP
no longer allows explicit mapping. This leads to a con-
siderable increase in runtime of SP on the ENZYME
dataset, where it is now the slowest of the four tested
approaches, while the other kernels noticeably benefit
from the sparsity introduced by the vertex kernel tak-
ing the length attribute into account. TP could not

6These distances were directly used for SP, which then
reduces to a kernel basically comparing edges.

be employed to molecular distance graphs, since the
runtime to compute a Gram matrix here exceeded 24h
even for the most restrictive edge kernel with c = 0.1.
This can be explained by the fact that this class of
graphs contains vertices with large sets of matching
neighbors, all subsets of which are considered by TP.
The runtime of PH also is very high rendering the ap-
proach infeasible for large datasets. We observed that
the runtime of SM increased with the parameter c,
which is as expected, since the product graph becomes
more dense when the threshold parameter is raised.
Therefore, we have also compared the runtime of PH
and SM both using a Gaussian RBF kernel to compare
distances, which leads to a very dense product graph.
We found SM to be nevertheless approximately five
times faster than PH, suggesting that our method of
computation is superior in general. We also compared
CSM to SM and observed that CSM is significantly
faster on sparse graphs, while still reaching a compa-
rable prediction accuracy.

5. Conclusion & Future Work

We have proposed a new graph kernel, which takes
complex graph structures not containing repeated ver-
tices into account and supports attributed graphs
without restriction. The experimental evaluation
shows promising results for attributed graphs from
chem- and bioinformatics. Improving the runtime for
large-scale datasets and large graphs remains future
work. However, our approach already works well in
practice for medium-sized graphs, large graphs when
vertex and edge kernels are sparse, or when restricted
to small or connected subgraphs. Thus, we believe
subgraph matching kernels are a viable alternative to
existing approaches for attributed graphs.
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