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Abstract

We study the task of online boosting — com-
bining online weak learners into an online
strong learner. While batch boosting has a
sound theoretical foundation, online boost-
ing deserves more study from the theoretical
perspective. In this paper, we carefully com-
pare the differences between online and batch
boosting, and propose a novel and reason-
able assumption for the online weak learner.
Based on the assumption, we design an on-
line boosting algorithm with a strong theo-
retical guarantee by adapting from the of-
fline SmoothBoost algorithm that matches
the assumption closely. We further tackle the
task of deciding the number of weak learners
using established theoretical results for on-
line convex programming and predicting with
expert advice. Experiments on real-world
data sets demonstrate that the proposed al-
gorithm compares favorably with existing on-
line boosting algorithms.

1. Introduction

Boosting is one of the most powerful and popular
ensemble-learning techniques in the setting of batch
learning. The technique is an important topic from
both the theoretical and practical perspective. On the
theoretical side, boosting identifies the least (weak-
est) assumption on the learner to make learning pos-
sible (Freund & Schapire, 1996; Schapire et al., 1998;
Mukherjee et al., 2011), and the assumption can be
used to facilitate the analysis of existing algorithms
and the design of new ones. On the practical side,
boosting allows re-using of existing (weak) learning
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algorithms in an efficient manner to improve perfor-
mance, which matches the needs of many real-world
applications (Schapire & Singer, 2000; Kudo et al.,
2004; He & Thiesson, 2007).

Online learning, as opposed to batch learning, is an-
other important topic in machine learning. Online
learning does not require a fixed set of training data
on hand but processes streaming examples one by one,
which also fits the needs of many real-world applica-
tions. For example, a spam filtering system might need
to continuously adjust its filtering rules based on the
ever-changing spam tactics. Online learning also has
its advantages in handling large-scale data sets, since
it does not need to load the whole data set into the
memory. The success of boosting in batch learning and
the many merits of online learning inspire the study of
online boosting — a combination of the two. For in-
stance, consider an online spam classifier that has been
working reasonably well, can we “boost” the perfor-
mance by combining a couple of those classifiers?

The work of Oza & Russell (2001) is one of the first
to use boosting in the online setting, and it was ar-
gued that the given algorithm under some condition
could converge to the popular Adaptive Boosting ap-
proach (AdaBoost; Freund & Schapire, 1997) as the
number of weak learners and training examples ap-
proaches infinity. Online boosting also achieved great
success in many real-world applications, especially in
the field of computer vision (Grabner & Bischof, 2006),
due to its simplicity and efficiency. Many other on-
line boosting algorithms have been proposed to tackle
different application needs, such as semi-supervised
learning (Grabner et al., 2008), multi-instance learn-
ing (Babenko et al., 2009b), and feature selection (Liu
& Yu, 2007).

Nevertheless, relatively few existing studies discuss the
theoretical behaviors of online boosting algorithms, as
opposed to their offline counterparts. While many
works on online boosting try to approximate AdaBoost
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or other batch boosting algorithms as closely as possi-
ble, they ignore the intrinsic differences between online
learning and batch learning. In this paper, we care-
fully compare these differences, which in turn leads to
different design strategies of the algorithms.

We start by re-examining the foundation of boosting
algorithms — the weak learning assumption, which
says that under any distribution of the data, the
weak learner can perform better than random guess-
ing. While this is a slightly strong but reasonable as-
sumption in the batch setting, it is far from realistic
in the online setting because the online weak learners
are more restricted regarding the information avail-
able. We thus propose a new and more reasonable
assumption that requires the online weak learners to
perform well only with respect to “smoother” distri-
butions. Based on this new assumption, we try to find
a boosting algorithm that assigns example weights in
a more “conservative” and online manner. One partic-
ular boosting algorithm that not only fits our require-
ments with slight modifications but also comes with
simple and elegant theoretical analysis is SmoothBoost
(Servedio, 2003). In this paper, we extend it to an
online boosting algorithm.

Another difficulty of online boosting is that we have
to determine beforehand the number of weak learn-
ers we would like to combine. The danger is that
if we include too many weak learners, the outcome
may be dominated by the poor predictions made by
the many redundant weak learners which do not learn
well. We mitigate this problem by giving different vot-
ing weights to different weak learners and we deter-
mine these weights dynamically using Online Convex
Programming (Zinkevich, 2003) and the framework of
Predicting with Expert Advice (Cesa-Bianchi & Lugosi,
2006), both of which are well-established techniques in
online learning.

Our final online boosting algorithms have the nice fea-
ture that theoretical guarantees can actually be shown,
just as in the batch setting. In particular, we show that
given online weak learners which can predict slightly
better than random guessing with respect to “smooth”
distributions, our online boosting algorithms can com-
bine them to achieve a small error rate. In addition, we
also perform experiments on several benchmark data
sets, and the results show that our algorithms not only
are theoretically well-founded, but also work well em-
pirically on these real-world data sets.

2. Online versus Batch Boosting

We consider the online learning problem in which
an online learner must process a stream of examples

(x1, y1), . . . , (xT , yT ) ∈ Rd × {−1, 1} in the following
way. In step t, the online learner receives xt and is
required to predict its label, and after the prediction
the true label yt is revealed. We study the possibility
of designing such an online learner using the boost-
ing approach. That is, if we have online weak learners
which can make predictions slightly better than ran-
dom guessing, can we combine them to obtain an on-
line strong learner which can make correct predictions
for all but a small fraction of the examples?

Before formally describing our online boosting frame-
work, let us first recall that of batch boosting. In the
batch setting, the whole set S of labeled examples is
available at the beginning, and the boosting algorithm
proceeds for some N rounds as follows. In round i, it
chooses a distribution p(i) over S and gives S and p(i)

to a batch weak learner, which has the whole S and
p(i) available and produces a weak hypothesis h(i). Af-
ter the N rounds, it combines the N weak hypotheses
to produce the final strong hypothesis, which takes the
form of H(x) = sign(

∑N
i=1 α

(i)h(i)(x)), where α(i) ∈ R
is the voting weight of h(i). There are boosting algo-
rithms which can achieve a small error rate, defined as
1
T |{t : H(xt) 6= yt}|, if each weak hypothesis h(i) has
a positive advantage, defined as

∑T
t=1 p

(i)
t yth

(i)(xt).

Now, in our online boosting framework, the exam-
ples of S only become available one at a time, and
the boosting algorithm as well as the weak learners
must work in an online fashion. Thus, the boost-
ing algorithm cannot call the weak learner sequen-
tially in N rounds as in the batch setting and must
run N weak learners in parallel. That is, for each re-
ceived example (xt, yt), the boosting algorithm must
update the N weak learners right away before see-
ing the remaining examples. To do that, one would
like the boosting algorithm to send a measure p(i)

t of
(xt, yt) to the i-th weak learner. However, it does
not seem easy to determine a good “measure” of an
example without seeing the remaining examples, and
a somewhat easier but sufficient task is to send a
“weight” w

(i)
t of (xt, yt), so that w(i)

t /
∑T
t=1 w

(i)
t cor-

responds to the measure p
(i)
t of (xt, yt) for the i-

th weak learner. Then, after the update, the i-th
weak learner returns a weak hypothesis h(i)

t+1, and the
boosting algorithm predicts the next example xt+1

by Ht+1(xt+1) = sign(
∑N
i=1 α

(i)
t+1h

(i)
t+1(xt+1)), where

α
(i)
t+1 ∈ R is the voting weight of h(i)

t+1. As in the batch
setting, we would like to have an online boosting al-
gorithm which can achieve a small error rate, defined
as 1

T |{t : Ht(xt) 6= yt}|, if each weak learner has some
positive advantage, defined as

∑T
t=1 p

(i)
t yth

(i)
t (xt).
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However, there appear to be some difficulties in de-
signing such an online boosting algorithm. First, for
each example, its weight for each weak learner must
be determined before seeing the remaining examples.
This rules out the use of the weighting schemes of some
batch boosting algorithms. Next, the weights must
satisfy some additional property in order to expect an
online weak learner to have a positive advantage. To
see this, if we take the extreme case that the first ex-
ample has weight 1 and all others have weight 0, it is
unrealistic to expect an online weak learner to have
a positive advantage. Note that this would not be a
problem in the batch setting, since the weak learner
can read all the examples as well as their labels before
coming up with a hypothesis. Finally, it is not clear
how the online boosting algorithm can choose the ap-
propriate number N of weak learners. We only know
an upper bound for N which may be much larger than
the appropriate one, but if we combine too many weak
learners, the result may be dominated by the poor pre-
dictions of the many weak learners which should not be
included. This is not a problem in the batch setting, as
the boosting algorithm proceeds in rounds, including a
new hypothesis in each round, and stops once the new
weak hypothesis fails to have the required advantage.

For simplicity, let us assume that each xt lies within
the unit L2-ball, so that ‖xt‖2 ≤ 1, and each weak hy-
pothesis h(i)

t comes from some set H of functions map-
ping from the unit L2-ball to the interval [−1, 1]. We
will use the notation [T ] to denote the set {1, . . . , T}
for a positive integer T .

3. Online Weak Learners

In this section, we address the second difficulty dis-
cussed in the previous section and study the condition
for an online weak learner to have a positive advantage.
Let us consider the case that H, the weak hypotheses
space, consists of linear functions, so that each h ∈ H
can be seen as a vector in Rd, with h(x) defined as
〈h, x〉, the inner product of the vectors h and x. For
simplicity, let us assume ‖h‖2 ≤ 1 for every h ∈ H.

We can reduce the problem of finding a good online
weak learner to the well-known online linear optimiza-
tion problem as follows. With the T examples of S
arriving sequentially, the weak learner in round t is
given the data xt as well as its weight wt, and it then
produces a hypothesis ht ∈ H and after that receives
a reward rt(ht) = wtytht(xt) = wtyt〈ht, xt〉. Note that
the reward function rt is linear in ht. Therefore, we
can apply the gradient descent algorithm of (Zinke-
vich, 2003) to produce ht in round t, and a standard

regret analysis shows that for some constant c > 0,

T∑
t=1

wtytht(xt) ≥
T∑
t=1

wtyth(xt)−

√√√√c

T∑
t=1

w2
t , (1)

for any fixed hypothesis h ∈ H chosen by an offline
algorithm. Let |w| =

∑T
t=1 wt, and by dividing both

sides above by |w|, we have

T∑
t=1

ptytht(xt) ≥
T∑
t=1

ptyth(xt)−

√√√√c

T∑
t=1

w2
t /|w|2,

where pt = wt/|w| is the measure of (xt, yt). The term∑T
t=1 ptytht(xt) is the advantage of the online weak

learner. The term
∑T
t=1 ptyth(xt) is the advantage of

the offline hypothesis h, and let us assume for now that
this advantage is at least 3γ > 0. Moreover, suppose
the weights are large in the sense that they satisfy the
following condition:

|w| ≥ c/γ2 and wt ∈ [0, 1] for every t, (2)

where c is the constant in (1). Then the advantage of
the online weak learner becomes

T∑
t=1

ptytht(xt) ≥ 3γ −
√
c|w|/|w|2 ≥ 2γ, (3)

where in the inequality we use
∑T
t=1 w

2
t ≤ |w| as wt ∈

[0, 1]. Note that in addition to being sufficient, one
can also show that the condition (2) is necessary to
guarantee (3), using standard approaches for proving
regret lower bounds. This motivates us to introduce
the following assumption.
Assumption 1. There exists an online weak learner
which can achieve advantage 2γ > 0 for any sequence
of examples and weights satisfying the condition (2).

Based on the discussion above, we have the following.
Lemma 1. Suppose for any sequence of examples and
weights satisfying the condition (2), there exists an of-
fline linear hypothesis with advantage 3γ > 0. Then
Assumption 1 holds.

Note that large weights satisfying (2) give rise to dis-
tributions which are “smooth” in the sense that each
example has measure at most 1/|w| ≤ γ2/c. This ex-
cludes the extreme case discussed in the previous sec-
tion and makes possible for an online weak learner to
have a positive advantage. The concept of smoothness
has also been applied to boosting in several frame-
works, such as noise-tolerant learning (Servedio, 2003)
and agnostic learning (Feldman, 2010), but to the best
of our knowledge, this is the first work that incorpo-
rates this idea into the problem of online boosting.
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4. Our Online Boosting Algorithm

In this section, we show how to choose weights for
examples and how to combine hypotheses from weak
learners in order to obtain an online boosting algo-
rithm. Recall the framework of online boosting de-
scribed in Section 2. Suppose Assumption 1 holds and
let WL be such an online weak learner with advan-
tage 2γ. We will run N copies of WL as our N weak
learners, for some N to be determined later.

First, we would like to produce weights satisfying the
condition (2). It is known that AdaBoost does not
always produce such weights (Bshouty et al., 2002).
One may try to scale up or down the weights to satisfy
the condition, but the scaling factors often can only be
determined after seeing all the examples, which does
not work in the online setting. Fortunately, we can
adopt the weighting scheme similar to SmoothBoost
(Servedio, 2003) by choosing

w
(i+1)
t = min

{
(1− γ)z

(i)
t /2, 1

}
, (4)

where z(i)
t = z

(i−1)
t +yth

(i)
t (xt)−θ, with θ = γ/(2+γ),

and z
(0)
t = 0 for t ∈ [T ]. It is easy to verify that

given (xt, yt) at step t, one can compute the weights
w

(1)
t , . . . , w

(N)
t . Moreover, the following lemma shows

that we only need hypotheses from those weak learners
associated with large weights.

Lemma 2. For any i ∈ [N ] and t ∈ [T ], define

f
(i)
t (x) =

1
i

i∑
j=1

h
(j)
t (x) and H(i)

t (x) = sign
(
f

(i)
t (x)

)
.

Let δ ∈ [0, 1] and let k be the largest number such that
|w(i)| ≥ δT for every i < k. Then

1
T

∣∣∣{t : H(k)
t (xt) 6= yt}

∣∣∣ ≤ 1
T

∣∣∣{t : ytf
(k)
t (xt) ≤ θ}

∣∣∣ < δ.

The idea is that the algorithm assigns large weights
to those incorrectly predicted examples, so there can
not be many of them if the sum of weights is small.
Note that when T ≥ c/(δγ2), for the constant c in
(2), the weights for the i-th weak learner, for i < k,
are then large enough to satisfy the condition (2) since
|w(i)| ≥ δT ≥ c/γ2. The next lemma gives an upper
bound for the parameter k.

Lemma 3. Suppose Assumption 1 holds and T ≥
c/(δγ2). Then the parameter k in Lemma 2 is at most
O(1/(δγ2)).

We omit the proofs of these two lemmas because they
are almost identical to those for Theorem 2 and The-
orem 3 in Servedio (2003) respectively.

Lemma 3 provides us an upper bound on the num-
ber N of weak learners. However, the problem in the
online setting is that we have to determine N before-
hand, and empirically we see that setting N to this
upper bound and using the function H(N) in Lemma 2
for prediction would not get very good performance.
The reason is that if N exceeds the actual number k
in Lemma 3, we could include too many weak learners
which receive examples with small weights and would
not update much. These weak learners might not learn
well enough and taking them into the ensemble would
therefore hinder the performance. Next, we describe
two approaches to solve this problem.

The first is to give different voting weights for differ-
ent weak learners, intuitively with larger weights to
better weak learners. We set N to the upper bound
given in Lemma 3, and at step t, we find some voting
weight α(i)

t for the i-th weak learner, and predict xt
by

Ht(xt) = sign

(
N∑
i=1

α
(i)
t h

(i)
t (x)

)
.

To find appropriate αt = (α(1)
t , . . . , α

(N)
t ), we reduce

the task to the Online Convex Programming (OCP)
problem, using the N -dimensional probability simplex
as the feasible set and defining the loss function at
step t as

`t(α) = max

{
0, θ −

N∑
i=1

α(i)yth
(i)
t (xt)

}
,

which is a convex function of α = (α(1), . . . , α(N)).
From Lemma 2, we know the existence of an ᾱ =
(ᾱ(1), . . . , ᾱ(N)), with ᾱ(i) = 1/k for i < k and ᾱ(i) = 0
for i ≥ k, such that

T∑
t=1

`t(ᾱ) < (θ + 1)δT.

Thus, if we use the gradient descent algorithm of
(Zinkevich, 2003) to produce αt at step t, we can have

T∑
t=1

`t(αt) < (θ + 1)δT +
√
cT .

To relate this bound with the error rate of Ht, note
that if Ht(xt) 6= yt, then `t(αt) ≥ θ, which implies
|{t : Ht(xt) 6= yt}| ≤ 1

θ

∑T
t=1 `t(αt). Thus, we have

1
T
|{t : Ht(xt) 6= yt}| <

θ + 1
θ

δ +
√
c

θ
√
T
.

The complete algorithm is given in Algorithm 1.
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Algorithm 1 Online Boosting with OCP
Input: streaming examples (x1, y1), . . . , (xT , yT )

parameters 0 < δ < 1, 0 ≤ θ < γ < 1
2

online weak learner WL
Initialize: z(0)

t = 0 for t ∈ [T ]
w

(1)
t = 1 for t ∈ [T ]

α
(i)
1 = 1

N for i ∈ [N ]
select random h

(i)
1 ∈ H for i ∈ [N ]

for t = 1 to T do
Define ft(x) =

∑N
i=1 α

(i)
t h

(i)
t (x)

Predict with Ht(x) = sign (ft(x))
if ytft(xt) < θ then
α

(i)
t+1 = α

(i)
t + ηtyth

(i)
t (xt), for i ∈ [N ]

project αt+1 back into probability simplex
end if
for i = 1 to N do
h

(i)
t+1 ←WL

(
h

(i)
t , (xt, yt), w

(i)
t

)
z
(i)
t = z

(i−1)
t + yth

(i)
t (xt)− θ

w
(i+1)
t = min

{
(1− γ)z

(i)
t /2, 1

}
end for

end for

The second approach to combine weak learners is to
use the framework of Predicting with Expert Advice.
However, if we simply use each weak learner as an
expert, we can only perform comparably to the best
weak learner, which is inadequate for our goal of com-
peting with the best combination of weak learners. So
we instead construct another N experts, with the i-th
expert using the function H

(i)
t in Lemma 2 to predict

xt. Then, by running the weighted majority algorithm
(Littlestone & Warmuth, 1994; Freund & Schapire,
1997) on these N experts, the expected regret with
respect to the best expert is at most 2

√
T lnN . Since

the best expert according to Lemma 3 has error rate at
most δ, the expected error rate of our algorithm is thus
at most δ+ 2

√
(lnN)/T . The resulting boosting algo-

rithm based on this approach can be easily modified
from Algorithm 1.

We summarize our result as follows.

Theorem 1. Suppose Assumption 1 holds and T ≥
c/(δγ2) for a large enough constant c. Then there is
an online boosting algorithm which uses O(1/(δγ2))
copies of weak learners and achieves an error rate of
O(δ).

Theorem 1 works for any set of weak hypotheses, as-
suming the existence of online weak learners which can
predict with such hypotheses with a positive advan-
tage when given examples with large enough weights
(Assumption 1). When specialized to linear weak hy-

potheses, we can lift the assumption of having an algo-
rithm for finding good hypotheses, and replace it with
the assumption of the mere existence of good hypothe-
ses. More precisely, using Lemma 1 together with The-
orem 1, we have the following.

Corollary 1. Suppose for any sequence of examples
and weights satisfying the condition (2), there is an
offline linear hypothesis with advantage 3γ, and T ≥
c/(δγ2) for a large enough constant c. Then there is
an online algorithm which achieves an error rate of
O(δ).

5. Experiments

In this section, we compare the empirical performance
of the proposed algorithms with two other leading ones
in online boosting. We do not compare with some
other leading algorithms because of the different set-
tings between those and our proposed ones. For in-
stance, Grbovic & Vucetic (2011) proposed the incre-
mental boosting algorithm, which is allowed to store
previous examples while our proposed algorithms only
rely on the newest arriving example. Another case
is the algorithm in Pelossof et al. (2008), which as-
sumes the weak learners to be static, i.e. pre-trained
offline, and only updates the weights for combining
the learners, while our proposed algorithms allows on-
line, dynamic weak learners. Yet another family of
online boosting algorithms are proposed in Babenko
et al. (2009a), which requires the weak learners to be
updated using stochastic gradient descent so that the
weak learners can be chained with optimizing a choice
of loss function, while our proposed algorithms treat
weak learners in a black-box manner with minimum
assumptions. Below we briefly describe the two algo-
rithms we compare with.

5.1. Compared Algorithms

1. Online AdaBoost (Oza & Russell, 2001) uses
a Poisson sampling process to approximate the
weighting method of AdaBoost. It guarantees
that by using lossless online weak learner, which
outputs the same hypothesis when trained online
and offline for the same training set, their algo-
rithm will converge to AdaBoost as the number
of models and training examples approaches in-
finity. Nevertheless, the algorithm only ensures a
good hypothesis asymptotically, but is not proved
to achieve low regret during online learning. We
will denote the algorithm as OzaBoost.

2. Online GradientBoost (Leistner et al., 2009)
is an online variant of GradientBoost (Friedman,
2000), which uses functional gradient descent to
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decide the optimal example weights and greedily
minimizes the loss function of interest. One spe-
cial trick in the algorithm is to use some “selec-
tors.” Each selector builds on top of a set of K
weak learners to choose the best learner for the
ensemble at each online learning iteration. The
idea of using selectors is mainly for doing feature
selection (Grabner & Bischof, 2006) along the on-
line learning process, and only fits the setting of
our proposed algorithm when K = 1. We take
such a K for a fair comparison, and run the algo-
rithm with the logit loss function that has consis-
tently been the best choice in existing experimen-
tal studies (Leistner et al., 2009). We will denote
the algorithm as OGBoost.

5.2. Weak Learners

We choose two different weak learners in our experi-
ments in order to take a closer look at the boosting
ability of our proposed algorithms. The first one is
Perceptron (Rosenblatt, 1962), a standard and famous
online learning algorithm which, like our analysis in
Section 3, takes a hypothesis set of linear functions.
The second weak learner we choose is Naive Bayes,
which is a lossless online algorithm, a crucial condi-
tion for ensuring the convergence of OzaBoost.

5.3. Results

We tested our algorithms using 12 binary classifica-
tion benchmark data sets (Frank & Asuncion, 2010),
downloaded in the processed format from the LIBSVM
repository.1 For each online boosting algorithm, we
couple it with 100 weak learners and record its er-
ror in an online setting for 5 trials, where each trial
consists of a different random ordering of the exam-
ples. We then report the average error over the 5 tri-
als. We have tried some different values of γ and have
confirmed that the performance of the proposed algo-
rithms is quite stable to the choice of γ. Therefore, for
simplicity we only show the results with γ = 0.1.

We first show that our algorithm can really boost the
performance of the two different weak learners and
outperform the other online boosting algorithms for
most data sets, which are summarized in Tables 1
and 2. The proposed algorithm, when using only the
uniform weighting scheme, is denoted as OSBoost (On-
line Smooth-Boost). Other variants will be examined
later in this section. The bold entries in the OSBoost
column indicates that OSBoost improves the perfor-
mance over a single weak learner, and a ‘*’ in the col-

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets.

umn indicates the best performing boosting algorithm.

For the Perceptron weak learner in Table 1, our pro-
posed OSBoost is consistently better than a single
weak learner across all the data sets. Furthermore, on
8 out of the 12 data sets, OSBoost is better than the
other two leading algorithms in online boosting. The
performance difference is especially evident on large
data sets. For the Naive Bayes weak learner in Table 2,
our proposed OSBoost remains to be the best choice:
boosting the performance of a single weak learner and
continuing to be superior to the other two algorithms
with a big difference in performance.

We then discuss the effectiveness of OSBoost.OCP and
OSBoost.EXP, the two variants of our algorithm us-
ing Online Convex Programming and Predicting with
Expert Advice as described in Section 4, respectively.
The results are shown in Table 3 and 4. The bold
entries in the OCP and EXP columns indicate that
the variant improves the performance of the basic,
uniformly-weighted OSBoost. First of all, we see that
the basic OSBoost readily performs quite well, while
the variants can sometimes result in a marginal gain
of performance. The improvements of OSBoost.EXP
over the basic OSBoost is more prominent when the
data set is small, which is because OSBoost.EXP can
be implicitly adapted to use fewer weak learners in
a randomized manner to avoid overfitting the small
set. The improvements of OSBoost.OCP over the ba-
sic OSBoost, on the other hand, happen mostly on
larger data sets, which is in accordance to our analysis
since the average error would diminish in Online Con-
vex Programming only when the number of rounds T
is large enough.

While having a clear advantage in performance, our al-
gorithms also run as fast as other online boosting algo-
rithms. In fact, each iteration of all our algorithms ex-
cept OSBoost.OCP can be carried out easily in O(N)
time with N weak learners. For OSBoost.OCP, an ex-
tra projection step is needed, for which we implement
an O(N logN)-time algorithm by Duchi et al. (2008);
in fact, a more sophisticated method in Duchi et al.
(2008) can achieve this in expected O(N) time.

6. Conclusion

We propose a novel online boosting algorithm. The al-
gorithm is simple in its formulation, but nevertheless
carefully designed from the theoretical perspective to
avoid many intrinsic difficulties when adapting boost-
ing algorithms to the online setting. In particular, we
define the notion of weak learning for online boost-
ing, and exploit the notion to extend one promising
offline boosting algorithm to its online version. We

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Table 1. Comparison (error rate) with other online boosting algorithms using Perceptron weak leaner

Data Set # of examples Perceptron OzaBoost OGBoost OSBoost

Heart 270 0.2489 0.2356 0.2267* 0.2356
Breast-Cancer 683 0.0592 0.0501 0.0445* 0.0466

Australian 690 0.2099 0.2012 0.1962 0.1872*
Diabetes 768 0.3216 0.3169* 0.3313 0.3185
German 1000 0.3256 0.3364 0.3142* 0.3148
Splice 3175 0.2717 0.2759 0.2625 0.2605*

Mushrooms 8124 0.0148 0.0080 0.0068 0.0060*
Adult 48842 0.2093 0.2045 0.2080 0.1994*
Ijcnn1 141691 0.1070 0.1014 0.1046 0.0943*

WebPage 412943 0.0225 0.0203 0.0205 0.0182*
Cod-RNA 488565 0.2096 0.2170 0.2241 0.2075*
Covertype 581012 0.3437 0.3449 0.3482 0.3334*

Table 2. Comparison (error rate) with other online boosting algorithms using Naive Bayes weak leaner

Data Set Naive Bayes OzaBoost OGBoost OSBoost

Heart 0.1904 0.2570 0.3037 0.2059*
Breast-Cancer 0.0474 0.0635 0.1004 0.0489*

Australian 0.1751 0.2133 0.2826 0.1849*
Diabetes 0.2664 0.3091 0.3292 0.2622*
German 0.2988 0.3206 0.3598 0.2730*
Splice 0.2520 0.1563 0.1863 0.1370*

Mushrooms 0.0076 0.0049 0.0229 0.0029*
Adult 0.2001 0.1912 0.1878 0.1581*
Ijcnn1 0.1040 0.0805 0.0773 0.0764*

Web Page 0.0339 0.0221 0.0184* 0.0189
Cod-RNA 0.2206 0.0796 0.0568* 0.0581
Covertype 0.3518 0.3293* 0.3732 0.3634

Table 3. Results (error rate) of our 3 variant algorithms
(with Perceptron)

Data Set OSBoost OSBoost.OCP OSBoost.EXP

Heart 0.2356 0.2311 0.2407
Breast-Cancer 0.0466 0.0515 0.0451

Australian 0.1872 0.2078 0.1852
Diabetes 0.3185 0.3315 0.3193
German 0.3148 0.3174 0.3090
Splice 0.2605 0.2590 0.2645

Mushrooms 0.0060 0.0062 0.0062
Adult 0.1994 0.1991 0.1991
Ijcnn1 0.0943 0.0945 0.0949

WebPage 0.0182 0.0181 0.0182
Cod-RNA 0.2075 0.2059 0.2071
Covertype 0.3334 0.3338 0.3341

also tackle the problem of choosing a suitable num-
ber of weak learners with a careful use of established
theoretical results.

The proposed algorithm is not only solid in its theoret-
ical justifications, but leads to promising experimental
results. We demonstrate that the proposed algorithm

Table 4. Results (error rate) of our 3 variant algorithms
(with Naive Bayes)

Data Set OSBoost OSBoost.OCP OSBoost.EXP

Heart 0.2059 0.2852 0.2022
Breast-Cancer 0.0489 0.0665 0.0442

Australian 0.1849 0.2629 0.1838
Diabetes 0.2622 0.3284 0.2482
German 0.2730 0.3300 0.2796
Splice 0.1370 0.1615 0.1426

Mushrooms 0.0029 0.0045 0.0032
Adult 0.1581 0.1711 0.1582
Ijcnn1 0.0764 0.0851 0.0770

WebPage 0.0189 0.0171 0.0189
Cod-RNA 0.0581 0.0484 0.0583
Covertype 0.3634 0.3646 0.3408

can indeed boost online weak learners on real-world
data sets. Most importantly, the proposed approach
is significantly better than existing approaches while
they do not come with such solid theoretical justifi-
cations. Future works include extending the proposed
approach to other problems, including online multi-
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class or multi-label classification.
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