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Abstract

We propose a novel interpretation of the
collapsed variational Bayes inference with a
zero-order Taylor expansion approximation,
called CVB0 inference, for latent Dirich-
let allocation (LDA). We clarify the proper-
ties of the CVB0 inference by using the α-
divergence. We show that the CVB0 infer-
ence is composed of two different divergence
projections: α = 1 and −1. This interpreta-
tion will help shed light on CVB0 works.

1. Introduction

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is
a well-known probabilistic latent variable model. It
is used to model the co-occurrence of words by using
latent variables called topics where a document is rep-
resented as a “bag of words” . It has a wide variety of
applications in many fields. Originally, the variational
Bayes (VB) inference was used for learning LDA. The
collapsed variational Bayes (CVB) inference was devel-
oped as an alternative deterministic inference for LDA
(Teh et al., 2007). The CVB inference is a variational
inference improved by marginalizing out parameters
as in a collapsed Gibbs sampler (Griffiths & Steyvers,
2004). (Sung et al., 2008) generalized the CVB infer-
ence for conjugate-exponential family models, called
latent-space variational Bayes (LSVB) inference.

Since the CVB inference requires intractable integrals,
Teh et al. (Teh et al., 2007) used a second-order
Taylor expansion to perform the integrals. Asuncion
et al. (Asuncion et al., 2009; Asuncion, 2010) pro-
posed another approximation that uses only the zero-
order information, called the CVB0 inference. The
CVB0 inference does not have the drawbacks that
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Table 1. Main results: CVB0 is a special case of α-
divergence projection. CVB0 is interpreted as follows:
The (α = 1)-divergence is used to estimate nd,t, which
is the number of times topic t appears in document d. The
(α = 1) divergence is used to estimate nt,v, which is the
number of times word v is generated from topic t. The
(α = −1) divergence is used to estimate nt, which is the
number of times topic t appears in the all documents. “EP”
indicates the expectation propagation proposed for an as-
pect model in (Minka & Lafferty, 2002). In this table, the
approximation by Taylor expansion is not assumed with
“CVB”. “Marginalization” indicates marginalizing out pa-
rameters of LDA.

Inference Marginalization α-divergence

VB NA α → 0
CVB X α → 0

CVB0 X α = 1 for nd,t, nt,v

α = −1 for nt

EP NA α = 1

other inferences do: VB contains digamma functions
which are computationally expensive, while CVB re-
quires the maintenance of variance counts. In contrast,
the stochastic nature of the collapsed Gibbs sampler
causes it to converge more slowly than the determin-
istic algorithms. Asuncion et al.’s empirical results
suggest that the CVB0 inference learns models that
are as good as or better than those learned by the
VB and CVB inferences and the collapsed Gibbs sam-
pler in terms of perplexity. Furthermore, as shown in
(Asuncion, 2010), when the asymmetric Dirichlet pa-
rameters are estimated over document-topic distribu-
tion, the predictive performance of the CVB0 inference
clearly outperforms that of the CVB inference.

We have the question of why CVB0 outperformed
CVB, even though the approximation of CVB is more
accurate than that of CVB0. In this paper, we propose
an interpretation of the CVB0 inference for LDA by
using the α-divergence. Using the α-divergence helps
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clarify the properties of the CVB0 inference. We also
experimentally show the performance of the subspecies
of the CVB0 inference, which is derived with the α-
divergence projection framework. Our analysis of the
relationship between existing inference algorithms and
α-divergence is summarized in Table 1, the meaning of
which is revealed in later sections.

The remainder of this paper is organized as follows.
Sections 3 and 4 review LDA and the CVB / CVB0
inference for LDA, respectively. Sections 5 and 6 ex-
plain α-divergence and its local projection, respec-
tively. The key sections 7 and 8 describe local α-
divergence projection for LDA and its connection to
the CVB0 inference. Section 9 introduces other local
projections inspired by the CVB0 inference. Section
10 evaluates algorithms in terms of document model-
ing. Section 11 concludes this paper.

2. Preliminaries

Suppose that we have N documents, V vocabularies,
and T topics. w = {wd}Nd=1 denotes a set of docu-
ments and z = {zd}Nd=1 is a set of assigned topics. θd,t
denotes the probability of topic t appearing in docu-
ment d. ϕt,v denotes the probability of word v appear-
ing in topic t.

nd,t(z) denotes the number of observations of topic
t in document d. nd denotes the total number of
words in document d. nt,v(w, z) denotes the num-
ber of observations of word v assigned to topic t
and nt,·(z) =

∑
v nt,v(w, z). For simplicity, we de-

note them by nd,t, nt,v and nt,·. The superscription
“\d, i” denotes the corresponding variables or counts
with wd,i and zd,i excluded, e.g., w\d,i = w\{wd,i},
z\d,i = z\{zd,i}, and n

\d,i
t,v is the number of observa-

tions of word v assigned to topic t leaving out zd,i.

E[x] denotes the expectation of x and V[x] = E[x2] −
E[x]2 the variance. Multi(·) denotes the multinomial
distribution. Dir(·) denotes the Dirichlet distribution.

3. Overview of LDA

The following generative process is assumed with LDA.
First, document-topic distribution θd and topic-word
distribution ϕk are generated by

θd ∼ Dir(γ), ϕt ∼ Dir(β), (1)

where γ = (γ1, · · · , γT ) is a T -dimensional vector and
β = (β1, · · · , βV ) is a V -dimensional vector.

For each document d, generate the i-th topic zd,i and

word wd,i:

zd,i ∼ Multi(θd), wd,i ∼ Multi(ϕzd,i
). (2)

Wallach et al. (Wallach et al., 2009) explored the ef-
fects of choosing γ and β in LDA. They found in
Markov chain Monte Carlo (MCMC) simulations that
using asymmetric γ and symmetric β results in bet-
ter predictive performance for held-out documents.
Therefore, we use asymmetric γ = (γ1, · · · , γT ) and
symmetric β = (β, · · · , β).

The assignment probability of topic t to the i-th word
in document d given w\d,i, z\d,i, γ and β is

p(zd,i = t|wd,i = v,w\d,i, z\d,i,γ, β)

∝ p(wd,i = v,w\d,i, z\d,i, zd,i = t|γ, β),
∝ p(wd,i = v|zd,i = t,w\d,i, z\d,i|β)p(zd,i = t|z\d,iγ),

∝
n
\d,i
t,v + β

n
\d,i
t,· + V β

(n
\d,i
d,t + γt). (3)

This is used for the collapsed Gibbs sampler.

4. CVB/CVB0 inference for LDA

(Teh et al., 2007) proposed the CVB inference to LDA
inspired by the collapsed Gibbs sampler and showed
that the CVB-LDA outperformed the VB-LDA in
terms of perplexity. They only introduced a varia-
tional posterior q(z) by marginalizing out θ and ϕ.
The free energy of the CVB-LDA is given by

FCV B [q(z)] =
M∑
d=1

∑
zd

q(zd) log
p(wd,zd|γ, β)

q(zd)
. (4)

Thus, the updates for q(z) are obtained by taking
derivatives of FCV B [q(z)] with respect to {q(zd,i)} and
equating to zero:

q(zd,i = t)

∝ expE[log p(wd,i = v,w\d,i, z\d,i, zd,i = t|γ, β)]q(z\d,i),

∝ exp

{
E

[
log

n
\d,i
t,v + β

n
\d,i
t,· + V β

(n
\d,i
d,t + γt)

]}
,

∝
expE[log(n\d,i

t,v + β)]

expE[log(n\d,i
t,· + V β)]

expE[log(n\d,i
d,t + γt)]. (5)

This update equation for q(z) requires approxima-
tions to compute intractable expectation. By us-
ing the central limit theorem, the expectation should
be closely approximated using Gaussian distributions



Rethinking Collapsed Variational Bayes Inference for LDA

with means and variances, e.g.,

E[nd,t] =

nd∑
i=1

q(zd,i = t), (6)

V[nd,t] =

nd∑
i=1

q(zd,i = t)(1− q(zd,i = t)). (7)

Moreover, using the second order Taylor expansion,
we can approximately calculate

q(zd,i = t) ∝
β + E[n\d,i

t,wd,i
]

V β + E[n\d,i
t,· ]

(γt + E[n\d,i
d,t ])

exp

(
−

V[n\d,i
t,wd,i

]

2(β + E[n\d,i
t,wd,i

])2
+

V[n\d,i
t,· ]

2(V β + E[n\d,i
t,· ])2

)

exp

(
−

V[n\d,i
d,t ]

2(γt + E[n\d,i
d,t ])2

)
, (8)

where the superscription“\d, i” denotes subtracting
q(zd,i = t) and q(zd,i = t)(1− q(zd,i = t)).

(Asuncion et al., 2009) showed the usefulness of an ap-
proximation using only zero-order information, called
the CVB0 inference. The update using only zero-order
information is given by

q(zd,i = t) ∝
β + E[n\d,i

t,wd,i
]

V β +
∑

v E[n
\d,i
t,v ]

(γt + E[n\d,i
d,t ]). (9)

We derive this CVB0 inference by using α-divergence,
which enables us to reveal the relationship among
other inference algorithms.

5. α-Divergence

This section reviews α-divergence. A readable intro-
duction is provided in (Minka, 2005).

Let our task be to approximate a complex probabilistic
distribution p(x) where x = {x1, x2, · · · , xn}. We ap-
proximate p(x) as q(x), which is a simple probabilis-
tic distribution, such as fully factorized distribution,
i.e., q(x) =

∏n
i=1 q(xi). A basic approach to obtaining

q(x) is to minimize information divergence such as the
Kullback-Leibler divergence:

KL[p||q] =
∫

p(x) log
p(x)

q(x)
+

∫
(q(x)− p(x))dx,

(10)

where p(x) and q(x) do not need to be normalized.
By using the KL-divergence, the estimation of q(x) is
defined by the KL-projection of p(x) onto a family of
q(x) as follows:

q∗(x) = argmin
q(x)

KL[p(x)||q(x)]. (11)

α-divergence is a generalization of the KL diver-
gence (Amari, 1985; Trottini & Spezzaferri, 2002;
Zhu & Rohwer, 1995), indexed by α ∈ (−∞,∞). The
α parameter can be used in different ways by different
authors. In this paper, we define α-divergence by the
convention used in (Minka, 2005):

Dα[p||q] =
∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx

α(1− α)
,

(12)

where p(x) and q(x) do not need to be normalized. If
p = q, α-divergence is zero. Some special cases are

D−1[p||q] =
1

2

∫
(q(x)− p(x))2

p(x)
dx (13)

lim
α→0

Dα[p|q] = KL[q(x)||p(x)] (14)

D0.5[p||q] = 2

∫
(
√

q(x)−
√
p(x))2)dx (15)

lim
α→1

Dα[p|q] = KL[p(x)||q(x)] (16)

D2[p||q] =
1

2

∫
(p(x)− q(x))2

q(x)
dx. (17)

The case α = 0.5 is known as the Hellinger distance,
and α = 2 is the χ2 distance. Since α = −1 swaps
the position of p and q of the χ2 distance, we call the
case α = −1 “the inverse χ2 distance”, which is the
key divergence in this paper.

6. Local α-divergence projection

In this section, we introduce a local divergence
projection-based inference.

Suppose that the approximate distribution q(x) is
fully factorized. We derive the update q(xi) mini-
mizing α-divergence as follows. Taking derivatives of
α-divergence (12) with respect to q(xi) and equating
them to zero, we obtain the following fixed point iter-
ation equations:

q(xi) ∝E
[(

p(x)

q(x\i)

)α] 1
α

q(x\i)

(18)

In many cases, this update is intractable and thus we
introduce an approximation for Eq. (18).

Since Eq. (18) is

q(xi) ∝E

[(
p(xi|x\i)

p(x\i)

q(x\i)

)α
] 1

α

q(x\i)

, (19)

we replace p(x\i) with q(x\i), obtaining

q(xi) ∝E
[
p(xi|x\i)α

] 1
α

q(x\i)
. (20)
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In the case α = 1, the update (20) is similar to belief
propagation, and the factorized neighbors algorithm
(Rosen-Zvi et al., 2005).

The update (20) means that it locally minimize α-
divergence, i.e., for each i,

q∗(xi) = argmin
q(xi)

Dα[p(xi|x\i)q(x\i)||q(x)]. (21)

In the case α = 1, i.e., KL divergence, this local
projection-based inference is equal to the EP algo-
rithm. We describe the connection of this α-divergence
projection with the CVB0 inference in the next sec-
tion.

7. CVB0 as α-divergence projection

In this section, we derive the CVB0 inference by using
the local α-divergence projection. First, we describe
how the case α = 1, i.e. EP, cannot be applied for the
collapsed LDA. Second, we derive a divergence projec-
tion applicable to the collapsed LDA and explain the
relationship between this projection and the CVB0 in-
ference.

We apply Eq. (21) with α = 1(EP) to the collapsed
LDA. For each zd,i, we perform

q∗(zd,i) = argmin
q(zd,i)

KL[p(zd,i|w, z\d,i)q(z\d,i)||q(z)].

(22)

The update for q(zd,i) is

q(zd,i = t) ∝E
[
p(zd,i = t|wd,i = v,w\d,i, z\d,i)

]
q(z\d,i)

,

∝E

[
(n

\d,i
d,t + γt)

n
\d,i
t,v + β

n
\d,i
t,· + V β

]
q(z\d,i)

. (23)

The problem is that we cannot analytically execute
this expectation. (Asuncion, 2010) derived Eq.(23) in
a different way where he changed the CVB free en-
ergy by moving the logarithm out of the expectations,
and pointed out the relationship between Eq.(23) and
the CVB0 inference, which inspired this work. How-
ever, the intractable expectation in Eq.(23) was not
executed. This intractability makes interpreting the
CVB0 inference difficult.

Here, we derive another approach by using the α-
divergence projection. The key idea is to construct
q(zd,i) by using the novel three parameters .

We define q(zd,i) as follows:

q(zd,i = t) ∝ a(zd,i)b(zd,i)c(zd,i) (24)

a(zd,i = t) = ñ
\d,i
d,t + γt, (25)

b(zd,i = t) = ñ
\d,i
t,v + β, (26)

c(zd,i = t) =
1

ñ
\d,i
t,· + V β

, (27)

where we do not assume that ñ
\d,i
d,i , ñ

\d,i
t,v and ñ

\d,i
t,· are

expected counts, i.e., these are parameters of q(zd,i).

We also define

q\a(zd,i) = b(zd,i)c(zd,i), (28)

q\b(zd,i) = a(zd,i)c(zd,i) (29)

q\c(zd,i) = a(zd,i)b(zd,i). (30)

Since our definition of α-divergence does not require
normalization of the probabilistic distribution, we can
introduce the following local projection:

a∗(zd,i = t) =

argmin
a(zd,i)

Dα[(n
\d,i
d,t + γt)q

\ad,i(z)||a(zd,i)q\ad,i(z)], (31)

where q\ad,i(z) = q\a(zd,i)q(z
\d,i). Solving the above

optimization (see Appendix A), we obtain

a∗(zd,i = t) =E
[
(n

\d,i
d,t + γt)

α
] 1

α

q(z\d,i)
. (32)

As in a(zd,i), we obtain b∗(zd,i) and c∗(zd,i) by locally
minimizing the α-divergence:

b∗(zd,i = t) =

argmin
b(zd,i)

Dα[(n
\d,i
t,v + β)q\bd,i(z)||b(zd,i)q\bd,i(z)], (33)

c∗(zd,i = t) =

argmin
c(zd,i)

Dα[
1

(n
\d,i
t,· + V β)

q\cd,i(z)||c(zd,i)q\cd,i(z)]. (34)

Thus, we have

b∗(zd,i = t) = E
[
(n

\d,i
t,v + β)α

] 1
α

q(z\d,i)
, (35)

c∗(zd,i = t) = E

[(
1

n
\d,i
t,· + V β

)α] 1
α

q(z\d,i)

. (36)

When we use α-divergence projection with α = 1 for
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estimating a(zd,i) and b(zd,i), we have

a(α=1)(zd,i = t) =E
[
n
\d,i
d,t + γt

]
q(z\d,i)

= E[n\d,i
d,t ] + γt,

(37)

b(α=1)(zd,i = t) =E
[
n
\d,i
t,v + β

]
q(z\d,i)

= E[n\d,i
t,v ] + β.

(38)

When we use α-divergence projection with α = −1 for
estimating c(zd,i), we have

c(α=−1)(zd,i = t) =E

( 1

n
\d,i
t,· + V β

)−1
−1

q(z\d,i)

,

=E
[
n
\d,i
t,· + V β

]−1

q(z\d,i)
,

=
1

E[n\d,i
t,· ] + V β

. (39)

Therefore, we have the following update for q(zd,i)

q(zd,i = t) ∝ a(α=1)(zd,i)b
(α=1)(zd,i)c

(α=−1)(zd,i),

= (E[n\d,i
d,t ] + γ)

E[n\d,i
t,v ] + β

E[n\d,i
t,· ] + V β

. (40)

Although the updates are performed in order, i.e., up-
date a∗ given b and c, b∗ given a∗ and c, and c∗ given
a∗ and b∗, this update is equal to the CVB0 update in
Eq.(9).

8. Discussion

In this section, we explain why the CVB0 inference
outperforms the CVB inference. To sum up this dis-
cussion, in the CVB0 inference, the “zero-forcing ef-
fect” works only with the nt,· estimation, while in the
CVB inference it works with the q(z) estimation.

The previous section showed that the CVB0 inference
is composed of the three projections with a mixture of
α = 1 and α = −1:

D1 = KL[(n
\d,i
d,t (z) + γt)q

\ad,i(z)||q(z)], (41)

D1 = KL[(n
\d,i
t,v (z) + β)q\bd,i(z)||q(z)], (42)

D−1

[
1

(n
\d,i
t,· (z) + V β)

q\cd,i(z)||q(z)

]
. (43)

This projection-based update with a different diver-
gence measure reveals the properties of the CVB0 in-
ference. Ideally, we use the (α = 1)-divergence pro-
jection, i.e., D1[p|q] = KL[p||q], but the integrals

E[ 1

n
\d,i
t,· +V β

] are not easy to evaluate. Instead, we

use the inverse χ2 divergence D−1[p||q] for estimating
c(zd,i).

D−1[p||q] = 1
2

∫ (q(x)−p(x))2

p(x) dx is known as a zero-

forcing divergence (Minka, 2005) which emphasizes q
to be small when p being small, i.e., p(x) = 0 forces
q(x) = 0, which means that it avoids “false positive”.
In our case (43), the zero-forcing effect on the nt,· es-
timation means that the emphasis in the estimation is
on high-frequency topics or low-frequency topics tend
to be estimated as zero in an entire corpus. We think

that affecting n
\d,i
t,· matters much less than affecting

n
\d,i
d,t and n

\d,i
t,v throughout a whole corpus in LDA. We

explain the zero-forcing effect of CVB0 in more detail
in the next section.

Returning to Eq.(20), i.e., q(xi) ∝ E
[
p(xi|x\i)α

] 1
α

q(x\i)
,

we describes the relationship between the CVB infer-
ence and α-divergence projection. First, we introduce
the following theorem:

Theorem 1 (Liapunov’s inequality) If x is a non-
negative random variable, and we have two real num-
bers α2 > α1, then

E[xα2 ]
1

α2 ≥ E[xα1 ]
1

α1 . (44)

and

lim
α→0

E[xα]
1
α = expE[log(x)]. (45)

Using Eq.(20) and Theorem 1, we obtain

q(xi) ∝ lim
α→0

E
[
p(xi|x\i)α

] 1
α

q(x\i)
= exp(E[log p(xi|x\i)])

(46)

This is the variational inference minimizing KL[q||p].

In LDA, we have

q(zd,i = t) ∝ lim
α→0

E
[
p(zi,d|wd,i = v,w\d,i, z\d,i)α

] 1
α

q(z\d,i)

= exp(E[log p(zd,i|wd,i = v,w\d,i, z\d,i)])

∝ expE

[
log

n
\d,i
d,t + γt

n
\d,i
d,· +

∑
t γt

n
\d,i
t,v + β

n
\d,i
t,· + V β

]
q(z\d,i)

,

∝ exp(E[log(n\d,i
d,t + γt)])

exp(E[log(n\d,i
t,v + β)])

exp(E[log(n\d,i
t,· + V β)])

(47)

The update Eq.(47) is the same update as the CVB
inference in Eq.(5). (α → 0)-divergence is also known
to induce the zero-forcing effect.
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9. Subspecies inspired by CVB0

In this section, we consider other projection-based al-
gorithms that help clarify the property of the zero-
forcing effect in CVB0.

9.1. CVB with (α = 1)-divergence

From our view point, the CVB0 inference is com-
posed of two different-type divergence projections:
α = 1,−1. We consider using only α = 1 for the
projections. To do this, we have to calculate the ex-
pectation given by

c(α=1)(zd,i = t) = E

[
1

n
\d,i
t,· + V β

]
q(z\d,i)

. (48)

Since we cannot derive the analytical solution for this
expectation, we propose two approximation methods.
The first is a stochastic approximation called sample
averaging given by

c̃(α=1)(zd,i = t) =
1

S

S∑
s=1

1

n
\d,i
t,· (z(s)) + V β

, (49)

where S denotes the number of samples and z(s) is
the s-th samples generated from q(z). This method is
accurate but not practical when S takes a large value.
We use this approximation to investigate the accuracy
of the next approximation.

The second is a deterministic approximation that uses
the same approximation of CVB with the second-order
Taylor expansion and Gaussian approximation given
by

ĉ(α=1)(zd,i = t) =
1

E[n\d,i
t,· ] + V β

+
V[n\d,i

t,· ]

(E[n\d,i
t,· ] + V β)3

.

(50)

As shown in the experiments (Sec.10), we find
that the second term of Eq.(50) is vanish-
ingly small. ĉ(α=1) in Eq.(50) is calculated

as 1

E[n\d,i
t,· ]+V β

(
1 +

V[n\d,i
t,· ]

(E[n\d,i
t,· ]+V β)2

)
. We find

V[n\d,i
t,· ]

(E[n\d,i
t,· ]+V β)2

= O(1/n) in many cases where n

denotes the number of all words (tokens). For
example, the variance takes the largest value when
q(zd,i = t) = 1/2 for all d and i. In this case,
E[nt] = n/2 and V[nt] = n(1 − 1/2)/2 = n/4.
Therefore, we consider c(α=−1) is similar to c(α=1),
which means that CVB0 is rarely affected by the
zero-forcing effect.

9.2. Type-base CVB0 Inference

We derive a type-based inference as an application of
our framework. In a type-based inference, we only
estimate the probabilistic distribution for each type
in a document not each token; this is beneficial for
computation cost and memory usage.

We exclude all counts of word v from document d,
denoted by superscription “\d, v”. The appearance

probability of word v given w
\d,v
d and z

\d,v
d is

p(wd,∗ = v|w\d,v, z\d,v) =

T∑
t=1

n
\d,v
d,t + γt

n
\d,v
d,· +

∑
t γt

n
\d,v
t,v + β

n
\d,v
t,· + V β

(51)

Moreover, we have

p(zd,v = t|w\d,v) ∝

E

[
n
\d,v
d,t + γt

n
\d,v
d,· +

∑
t γt

n
\d,v
t,v + β

n
\d,v
t,· + V β

]
p(z\d,v|w\d,v)

(52)

Here, we consider obtaining an approximation dis-
tribution q(zd,v). Instead of zd,i, we define
q(z) factorized by using q(zd,v), i.e., q(zd,i) =∑V

v=1 q(zd,v)δ(wd,i = v) and q(z) =
∏V

v=1 q(zd,v)
nd,v .

The update of q(zd,v) is obtained by

q(zd,v = t) ∝ E

[
(n

\d,v
d,t + γt)

n
\d,v
t,v + β

n
\d,v
t,· + V β

]
q(z\d,v)

,

(53)

which is derived by minimizing the α-divergence as in
q(zd,i).

Using the local α-divergence projection with α = 1 for

n
\d,v
d,t + γt and n

\d,v
t,v + β, and α = −1 for 1

n
\d,v
t,· +V β

, we

have

q(zd,v = t) ∝ (E[n\d,v
d,t ] + γ)

E[n\d,v
t,v ] + β

E[n\d,v
t,· ] + V β

. (54)

We call this update the type-based CVB0 (TCVB0)
inference.

10. Experiments

We compared CVB0 with its subspecies on document
modeling in terms of perplexity to investigate the effect
of α = −1. All results are averaged values from five
experimental runs with random initialization. We set
the number of iterations to 100 for each inference.

We use a fixed point equation for updating γ intro-
duced in (Minka, 2000). We set β = 0.01 because
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(Asuncion et al., 2009) showed that CVB0-LDA with
β = 0.01 worked well when compared with other set-
ings (β = 0.01 was also used in (Griffiths & Steyvers,
2004)).

In this section’s figures, “CVB” indicates the second
order approximation of the CVB inference.

“CVB1s” indicates the stochastic approximation in
Eq.(49) with S = 50. “CVB1d” indicates the deter-
ministic approximation in Eq.(50).

We used four sets of text data with different proper-
ties. The first was ‘NIPS corpus (NIPS)” from which
the number of documents was N = 1, 500 and the vo-
cabulary size was V = 12, 245. The second was “The
Wall Street Journal (WSJ)” from which we randomly
chose N = 5, 000 (V = 38, 272) documents. The third
was “Enron email corpus (Enron)” from which we ran-
domly chose N = 5, 000 (V = 14, 758) documents.
The fourth was “20 news group corpus (20ng)” from
which we randomly chose N = 5, 000 (V = 13, 176).
Stop words were eliminated.

The comparison metric we used for document model-
ing was the perplexity used by (Teh et al., 2007; 2008)
that indicates the prediction performance for held-out
words. We randomly split the words in a document
into training words wtrain

d (80%) and test words wtest
d

(20%).

Figure 1 shows the experimental results. The bar
graph indicates the results for test set perplexity in-
terms of (T = 40, 80, 120) in each corpus. CVB0,
CVB1s, CVB1d and TCVB0 outperformed CVB in
terms of perplexity. Although we compared VB with
others, we eliminated the VB results to clarify the dif-
ferences of inference algorithms because CVB outper-
formed VB and the VB results change the scale of a
bar-graph in some corpora.

The performances of CVB1s and CVB1d were similar
to that of CVB0. Since the results of CVB1d were
similar to those of CVB1s, the approximation used in
CVB1d seemed to be accurate. When we analyzed

V[nt,·]
(E[nt,·]+V β)2 in Sec.9.1, the maximum value in all cor-

pus when T = 120 was about 3.17e−4, which is neg-
ligible compared with 1. Therefore, as discussed in
Sec.9.1, CVB0 was not affected by the zero-forcing ef-
fect. We believe this is the reason CVB0 worked better
than CVB. Moreover, the performance of TCVB0 was
similar to that of CVB0. Consequently, the TCVB0
inference was practical.

11. Conclusion

In this paper, we reviewed existing inference algo-
rithms of LDA in terms of the α-divergence projec-
tion. We showed that the CVB0 inference is com-
posed of (α = 1,−1)- divergence projections and that
α = −1 is similar to α = 1 in LDA, which means
that CVB0 is not affected by the zero-forcing effect
in LDA. Combining the marginalization of parameters
and the heterogeneous α-divergence projection is use-
ful because it is easy to apply to other topic models
learned by the collapsed Gibbs sampler. Future work is
to develop an online-update extension, such as that by
(Hoffman et al., 2010; Sato et al., 2010; Wang et al.,
2011). From the relationship between EP and assumed
density filtering, we can extend the local α-divergence
projection into an online algorithm, which leads to the
online CVB0 inference. A convergence analysis is also
important remaining work.

A. Derivation for Eq.(32)

Taking derivatives of

Dα[(n
\d,i
d,t + γt)q

\ad,i(z)||a(zd,i)q\ad,i(z)],

with respect to a(zd,i) and equating them to zero,

0 =
∑
z\d,i

q\ad,i(z)− a(zd,i)
−α

∑
z\d,i

(n
\d,i
d,t + γt)

αq\ad,i(z),

and we obtain the following fixed point iteration equa-
tions:

a(zd,i) =

[∑
z\d,i(n

\d,i
d,t + γt)

αq\ad,i(z)∑
z\d,i q\ad,i(z)

] 1
α

,

=

[∑
z\d,i(n

\d,i
d,t + γt)

αb(zd,i)c(zd,i)q(z
\d,i)∑

z\d,i b(zd,i)c(zd,i)q(z\d,i)

] 1
α

,

=

[
b(zd,i)c(zd,i)

∑
z\d,i(n

\d,i
d,t + γt)

αq(z\d,i)

b(zd,i)c(zd,i)
∑

z\d,i q(z\d,i)

] 1
α

.

(55)

Since
∑

z\d,i q(z\d,i) = 1, we have

a(zd,i) =

[∑
z\d,i

(n
\d,i
d,t + γt)

αq(z\d,i)

] 1
α

. (56)
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