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Abstract

In this paper we relate the partition function
to the max-statistics of random variables.
In particular, we provide a novel framework
for approximating and bounding the parti-
tion function using MAP inference on ran-
domly perturbed models. As a result, we can
use efficient MAP solvers such as graph-cuts
to evaluate the corresponding partition func-
tion. We show that our method excels in the
typical “high signal - high coupling” regime
that results in ragged energy landscapes dif-
ficult for alternative approaches.

1. Introduction

Learning and inference in complex models drives much
of the research in machine learning applications, from
computer vision, natural language processing, to com-
putational biology. Examples include object detec-
tion (Felzenszwalb et al., 2009), stereo vision (Szeliski
et al., 2007), parsing (Koo et al., 2010), or protein
design (Sontag et al., 2008). The inference problem
in such cases involves assessing the likelihood of pos-
sible structures, whether objects, parsers, or molecu-
lar structures. The structures are specified by assign-
ments of random variables that need to be maximized
or summed over. However, it is often feasible to only
find the most likely or maximum a-posteriori (MAP)
assignment rather than considering all possible assign-
ments. Indeed, substantial effort has gone into devel-
oping algorithms for recovering MAP assignments, ei-
ther based on specific structural restrictions such as
super-modularity (Kolmogorov, 2006) or by devising
approximate methods based on linear programming re-
laxations (Sontag et al., 2008; Werner, 2008).

MAP inference is limited when there are other likely
assignments. For example, in pose estimation the re-
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covery of the 3D joint positions from 2D images is of-
ten inherently ambiguous. Similarly, in parsing there
might be equally likely parse trees for the same sen-
tence. In a fully probabilistic treatment, all possible
alternative assignments are considered. This requires
summing over the assignments with their respective
weights – evaluating the partition function – which is
considerably harder. In fact, any algorithm for com-
puting the partition function would be able to approx-
imate the MAP value arbitrarily well via a tempera-
ture argument (Landau & Lifshitz, 1980). In contrast,
MAP inference (maximization) can be tractable even
when the problem of evaluating the partition function
(weighted counting) is not.

The main surprising result of our work is that MAP in-
ference can be used to approximate the partition func-
tion. In other words, given an algorithm for computing
the MAP value, we can approximate or bound the par-
tition function. The MAP values in our case arise from
randomly perturbed models. While models based on
random perturbations have been considered recently
(Papandreou & Yuille, 2011; Keshet et al., 2011; Tar-
low et al., 2012), their relation to the partition function
has not. Specifically, we relate the partition function
to the expected MAP value of perturbations. This
result enables us for the first time to directly use ef-
ficient MAP solvers such as graph-cuts or MPLP in
calculating the partition function. The approach ex-
cels in regimes where there are several but not expo-
nentially many prominent assignments. For example,
this happens in cases where observations carry strong
signals (local evidence) but are also guided by strong
consistency constraints (couplings).

We begin by introducing the notation and the count-
ing and maximization problems of interest. We sub-
sequently relate the partition function to the max-
statistics of random variables, and introduce new ap-
proximations and bounds on the partition function
based on random MAP perturbations. Finally, we de-
scribe how to use this method in the context of condi-
tional random fields and demonstrate the effectiveness
of the approach.
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2. Background

Here we briefly define the counting and maximization
problems of interest. Throughout the paper we assume
real valued potentials φ(y) = φ(y1, ..., yn) <∞ defined
over a discrete product space Y = Y1 × · · · × Yn. The
domain is implicitly defined through φ(y) via exclu-
sions φ(y) = −∞ whenever y 6∈ dom(φ).

The Gibbs distribution maps the real valued potential
functions to the probability scale

p(y1, ..., yn) =
1

Z
exp(φ(y1, ..., yn)) (1)

Z =
∑

y1,...,yn

exp(φ(y1, ..., yn)). (2)

where the normalization constant Z is also known as
the partition function. The feasibility of using such
a distribution for inference and learning is inherently
tied to the ability to evaluate the partition function. In
the special case, where φ(y) ∈ {−∞, 0} the partition
function reduces to counting the number of allowed
configurations, namely |dom(φ)|. In general, counting
problems are considered very hard, many belonging to
the complexity class #P (Valiant, 1979).

We can also express the maximum a-posteriori (MAP)
inference problem in the same notation as

(MAP) max
y1,...,yn

φ(y1, ..., yn). (3)

where, again, the domain of φ(y) is implicitly consid-
ered since the maximization avoids all configurations
outside the domain. Although the MAP problem is
NP-hard in general (Shimony, 1994), it is easier than
computing the partition function. It can be solved ef-
ficiently in many cases of practical interest, e.g. when
φ(y) is a super-modular function. A number of algo-
rithms based on linear programming relaxations have
recently been developed for solving MAP problems.
Although the run-time of these solvers can be expo-
nential, they are often surprisingly effective in prac-
tice.

3. Max-Statistics

In the following we describe the basis of our frame-
work. We show how to realize the partition func-
tion as the expected value of random MAP pertur-
bations. Analytic expressions for the statistics of a
random MAP perturbation can be derived for gen-
eral discrete sets, whenever independent and identi-
cally distributed random perturbations are applied for
every assignment y ∈ Y . Let {γ(y)}y∈Y be a col-
lection of random variables. Assume these random

variables are independent and identically distributed
with F (t) as their cumulative distribution function,
i.e. F (t) = P [γ(y) ≤ t] for each y ∈ Y . The indepen-
dence of γ(y) across y ∈ Y implies that the cumulative
distribution function of the random MAP perturba-
tion maxy∈Y {φ(y)+γ(y)} is the product of cumulative
distribution functions of the individual perturbations
φ(y) + γ(y). Therefore P [maxy∈Y {φ(y) + γ(y)} ≤ t]
equals to

∏
y∈Y F (t − φ(y)). Below we describe the

max-stability of the Gumbel distribution and its ex-
pect value.

Lemma 1. Let {γ(y)}y∈Y be a collection of indepen-
dent random variables γ(y) indexed by y ∈ Y , each
following the Gumbel distribution whose cumulative
distribution function is F (t) = exp(− exp(−(t + c))),
where c is the Euler constant. Then the random vari-
able maxy∈Y {φ(y) + γ(y)} is distributed according to
the Gumbel distribution and its expected value is the
logarithm of the partition function:

logZ = Eγ

[
max
y∈Y
{φ(y) + γ(y)}

]
. (4)

Proof: The Gumbel cumulative distribution function
is closed under multiplication, namely∏

y∈Y
F (t− φ(y)) = exp(−

∑
y∈Y

exp(−(t− φ(y) + c)))

= exp(− exp(−(t+ c))Z) = F (t− logZ).

Therefore the random variable maxy∈Y {φ(y) + γ(y)}
has the Gumbel distribution whose expected value is
the logarithm of the partition function. �

In general each y = (y1, ..., yn) represents an assign-
ment to n variables. In this case the theorem suggests
introducing an independent perturbation γ(y) for each
such n−dimensional assignment y ∈ Y . The complex-
ity of evaluating the log-partition function in this man-
ner would be exponential in n. In the following we use
lower dimensional random MAP perturbations as the
main tool for approximating and bounding the parti-
tion function.

4. Low Dimensional Perturbations

In this section, we develop efficient approximations
and bounds for the partition function based on low
dimensional random MAP perturbations. We com-
mence with rewriting the previous result by exploiting
the structure of the product space.

Theorem 1. Let {γi(yi)}yi∈Yi,i=1,...,n, be a collection
of independent and identically distributed (i.i.d.) ran-
dom variables following the Gumbel distribution with
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F (t) = exp(− exp(−(t+ c))) where c is the Euler con-
stant. Define γi = {γi(yi)}yi∈Yi . Then

logZ = Eγ1 max
y1
· · ·Eγn max

yn
{φ(y) +

n∑
i=1

γi(yi)}.

Proof: The result follows from applying equation (4)
iteratively. Intuitively, Z =

∑
y1
· · ·
∑
yn

exp(φ(y))
and equation (4) encodes the correspondence between
summation and expectation-maximization, namely∑
yi
↔ Eγi(yi) maxyi . More formally, consider the re-

cursion φi−1(y1, ..., yi−1) = Eγi maxyi{φi(y1, . . . , yi) +
γi(yi)}, where φn(y1, . . . , yn) = φ(y1, . . . , yn). Equa-
tion (4) implies that for each i, φi−1(y1, ..., yi−1) =
log
∑
yi

exp(φi(y1, ..., yi)). The rest of the proof now
follows by induction. �

The computational complexity of the alternating pro-
cedure is still exponential in n. For example, the in-
ner iteration Eγn maxyn{φ(y1, .., yn) + γn(yn)} needs
to be estimated exponentially many times, i.e., for ev-
ery y1, ..., yn−1. Thus from computational perspective
the alternating formulation in Theorem 1 is just as in-
efficient as the formulation in equation (4). We show
next how Theorem 1 can be used to derive effective
bounds and approximations.

4.1. Upper Bounds on the Partition Function

Theorem 1 directly provides easily computable upper
bounds on the log-partition function. Intuitively, these
bounds correspond to moving expectations outside the
maximization operations, each move resulting in an
additional bound but also reducing the computational
effort needed for the evaluation. For example,

logZ ≤ Eγ max
y
{φ(y) +

∑
i

γi(yi)} (5)

follows immediately from moving all the expectations
in front. In this case the bound is a simple average of
MAP values corresponding to models with only sin-
gle node perturbations {γi(yi)}yi∈Yi,i=1,...,n. If the
maximization over φ(y) is feasible (e.g., due to super-
modularity), it will typically be feasible after such per-
turbations as well. The upper bound can thus be eval-
uated efficiently as a sample average. We generalize
this basic result further below.

Corollary 1. Consider a family of subsets α ∈ A such
that ∪α∈Aα = {1, ..., n}, and let yα be a set of variables
{yi}i∈α restricted to the indexes in α. Assume that
the random variables γα(yα) are i.i.d. according to the
Gumbel distribution, for every α, yα. Then

logZ ≤ Eγ
[

max
y1,...,yn

{
φ(y) +

∑
α∈A

γα(yα)
}]
.

Proof: If the subsets α are disjoint, then {yα}α∈A
simply defines a partition of the variables in the model.
We can therefore use equation (5) over these grouped
variables. In the general case, α, α′ ∈ A may over-
lap. We lift the variables y1, . . . , yn to a larger set
y′ = {y′α}α∈A where an independent set of variables is
introduced for each α ∈ A. We lift the potentials to
φ′(y′) by including consistency constraints among the
lifted variables

φ′(y′) =

{
φ(y1, ..., yn) if ∀α, i ∈ α : y′α,i = yi
−∞ otherwise

Thus, logZ =
∑
y′ exp(φ′(y′)) since inconsistent set-

tings receive zero weight. Moreover, maxy′{φ′(y′) +∑
α γα(y′α)} equals maxy{φ(y) +

∑
α γα(yα)} for each

realization of the perturbation. This equality holds
after expectation over γ as well. Now, given that the
perturbations are independent for each lifted coordi-
nate, the basic result in equation (5), guarantees that
Eγ
[

maxy′
{
φ′(y′) +

∑
α γα(y′α)

}]
upper bounds logZ.

This completes the proof. �

The structure of α ⊂ {1, ..., n} determines the statis-
tical quality and algorithmic efficiency of the method.
For example, using a single set α = {1, ..., n} the up-
per bound turns to be the exact characterization in
equation (4), but it requires exponentially many inde-
pendent random variables.

4.2. Approximating the Partition Function

We can also use Theorem 1 to derive sampling based
approximation schemes for the partition function that
also utilize efficient MAP solvers. As a simple step,
we could just replace the expectations in Theorem 1
with sampled estimates. The main subtlety lies in how
these samples are reused as part of the outer loop max-
imization steps.

Let’s begin by considering the n-th dimension alone.
For any given setting of y1, ..., yn−1, we toss ran-
dom values γn(yn), for every yn ∈ Yn, to estimate
log
∑
yn

exp(φ(y1, ..., yn)). Since the operation has to
be repeated for each different setting of y1, . . . , yn−1,
we need m · |Y | random variables γn,j(y1, ..., yn−1, yn),
for every j = 1, ...,m, to ensure that

1

m

m∑
j=1

max
yn
{φ(y1, ..., yn) + γn,j(y1, ..., yn)}.

approximates log
∑
yn

exp(φ(y1, ..., yn)) across all
y1, . . . , yn−1. We can rewrite this expression in terms
of a single maximization problem over an extended set
of variables. Specifically, we introduce copies yn,j for



Random MAP perturbations

each sample index j = 1, . . . ,m, and pull the maxi-
mizations outside the average:

max
yn,1,...,yn,m

1

m

m∑
j=1

(φ(y1, ..., yn,j) + γn,j(y1, ..., yn,j)).

This result is an approximation to the last expectation-
maximization step in Theorem 1. We can now repeat
the procedure for dimension n−1. Formally, we are us-
ing the fact that the partition function is self-reducible,
i.e., logZ = log

∑
y1,...,yn−1

exp(log
∑
yn

exp(φ(y))).
After repeating this step for all the dimensions, we
write the resulting approximation as a single but very
large MAP program:

logZ ≈ max
y

1

mn

m∑
j1,...,jn=1

φ(y1,j1 , ..., yn,jn) +

n∑
i=1

1

mi

m∑
j1,...,ji=1

γi,ji(y1,j1 , ..., yi,ji).

In this expression, the maximization is over an inflated
set of variables where there are m copies of each vari-
able, e.g., yi is expanded into {yi,ji}ji=1,...,m. The
problem is that this program uses exponentially many
independent random variables γi,ji(y1,i1 , ..., yi,ji) and
thus suffers from the same computational problem as
equation (4). However, due to averaging, we expect
that most MAP perturbations are now concentrated
around the logarithm of the partition function.

For computational efficiency we suggest reusing the
perturbations, collapsing independent random vari-
ables γi,ji(y1,i1 , ..., yi,ji) to far fewer random variables
γi,ji(yi,ji). This results in the following approximation
for the log-partition function:

max
y1,j1 ,...,yn,jn

1

mn

∑
j1,...,jn

φ(y1,j1 , ..., yn,jn) +
∑
i,ji

γi,ji(yi,ji)

This approximation is effective whenever the domi-
nant configurations of variables {yi,ji} were already
correlated (few modes) so that the randomness in
γi,ji(y1,i1 , ..., yi,ji) could be compressed with little loss
in accuracy. This behavior is typical in models with
strong couplings.

4.3. Lower Bounds on the Partition Function

For completeness, we also provide a lower bound on
the partition function based on randomized MAP com-
putations. Unlike the upper bound discussed earlier,
however, the lower bound does not directly exploit
Theorem 1.

Theorem 2. Consider any collection of subsets α ⊂
{1, ..., n} and let {γα(yα)} be independent random
variables for each setting of α, yα. Let Kα,yα(λ) =
logE[exp(λγα(yα))]. Then logZ ≥

sup
λ≥0

{
logEγ

[
exp(maxy{φ(y) + λ

∑
α γα(yα)})

]
−maxy

∑
αKα,yα(λ)

}

The proof appears in the supplementary material. The
lower bound is somewhat weaker than the upper bound
in Corollary 1. For example, unlike the upper bound,
in case of a single α = {1, ..., n}, the lower bound is
not tight for every φ(y). The parameter λ governs
the tradeoff between the perturbed MAP value and
the cumulant generating function Kα,yα(λ). For λ = 0
the cumulant generating function is zero and the lower
bound reduces to a trivial bound based on the MAP
value. However, we cannot choose arbitrarily large λ
since Kα,yα(λ) can be unbounded depending on the
distributions used for perturbations.

5. Conditional Random Fields

In a supervised learning problem, we assume train-
ing data S of objects x ∈ X and labels y ∈ Y such
as images and their segmentations. Given a feature
vector Φ(x, y) < ∞ for each object x ∈ X and la-
bel y ∈ Y , the learning task is to estimate param-
eters θ that maximize the log likelihood of the data
under the conditional random field model px(y; θ) =
exp(θTΦ(x, y))/Zx(θ). This task can be equivalently
stated as a loss minimization problem

min
θ

∑
(x,y)∈S

(
logZx(θ)− θ>Φ(x, y)

)
.

The formulation emphasizes the computational cost
of using conditional random fields due to the partition
function. In the following we make use of a surrogate
partition function arising from random MAP pertur-
bations.

Consider a family of subsets α ⊂ {1, ..., n} that cover
{1, . . . , n}, and let {γα(yα)}α,yα be i.i.d. random vari-
ables with continuous densities. We use the following
surrogate criterion for estimating θ: J(θ) =∑
(x,y)∈S

(
Eγ [max

ŷ
{θ>Φ(x, y) +

∑
α

γα(yα)}]−θ>Φ(x, y)
)

The theorem below establishes some basic properties
of this criterion.

Theorem 3. Under the above assumptions, J(θ) is
convex and smooth, and its gradient enforces the mo-
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Figure 1. Comparing random MAP perturbations with tree
re-weighted and belief propagation estimations for the log-
partition on 10× 10 spin glass model with weak and strong
local field potentials. The plots describe the absolute esti-
mation error, averaged over 100 trials.

ment matching constraints

∂

∂θ
J(θ) =

∑
(x,y)∈S

(∑
y′

p̂x(y′)Φ(x, y′)− Φ(x, y)
)

where

p̂x(y′)
def
= P

[
y′ ∈ argmax

ŷ1,...,ŷn

{θ>Φ(x, ŷ) +
∑
α

γα(ŷα)}
]
.

In particular, if γα(yα) have the Gumbel distribution,
J(θ) upper bounds the conditional random field loss.

Proof: The loss function is convex in θ, cf. (Rock-
afellar, 1974) Theorem 3. Corollary 1 implies that
the surrogate loss upper bounds the partition-loss. To
compute the gradient we use Theorem 23 in (Rockafel-
lar, 1974) to differentiate under the integral. The sub-
gradient of the max-function is the indicator function
over the maximum argument, cf. Proposition 4.5.1 in
(Bertsekas et al., 2003). Since the expectation over the
indicator function results in a probability distribution,
the surrogate loss is smooth and the gradient takes the
above form. �

The structure of α ⊂ {1, ..., n} determines the statisti-
cal quality and algorithmic efficiency of the approxima-
tion. For example, if we use a single set α = {1, ..., n},
this formulation is an exact characterization of the
conditional random fields, and its gradient describes
the standard moment matching condition.

6. Empirical Evaluation

We evaluated our approach on spin glass models

φ(y1, ..., yn) =
∑
i∈V

φi(yi) +
∑

(i,j)∈E

φi,j(yi, yj).

where yi ∈ {−1, 1}. Each spin has a local field param-
eter φi(yi) = θiyi and interacts in a grid shaped graph-
ical structure with couplings φi,j(yi, yj) = θi,jyiyj .
Whenever the coupling parameters are positive the
model is called attractive as adjacent variables give
higher values to positively correlated configurations.
We used low dimensional random perturbations γi(yi)
since such perturbations do not affect the complexity
of the MAP solver.

Evaluating the partition function is challenging when
considering strong local field potentials and coupling
strengths. The corresponding energy landscape is
ragged, and characterized by a relatively small set of
dominating configurations. The energy and probabil-
ity landscapes are presented in the supplementary ma-
terial. In the following, we show that the random MAP
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perturbations approach performs better than previous
approaches in this setting.

We evaluated the performance of our method on 10×10
spin glass. The local field parameters θi were drawn
uniformly at random from [−f, f ], where f ∈ {0.1, 1}
to reflect weak and strong potentials. The parame-
ters θi,j were drawn uniformly from [0, c] or [−c, c] to
obtain attractive or mixed coupling potentials. The
following algorithms were used to estimate the parti-
tion function:

• The random MAP perturbation approximation,
described in Section 4.2, was executed by inflat-
ing the graphical model to 1000×1000 grid. When
dealing with attractive potentials this was effi-
ciently evaluated using graph-cuts (Boykov et al.,
2001). This approximation method could not be
applied to mixed potentials.

• The random MAP perturbation upper bound, de-
scribed in Section 4.1, with perturbations γi(yi).
The expectation was computed using 100 random
MAP perturbations, although very similar results
were attained after only 10 perturbations. The
MAP was computed in the attractive case using
graph-cuts and in the mixed case using MPLP
(Sontag et al., 2008).

• The sum-product form of tree re-weighted belief
propagation with uniform distribution over the
spanning trees (Wainwright et al., 2005).

• Sum-product belief propagation. Whenever the
algorithm did not converge we extracted its par-
tition function approximation from its messages.

We computed the absolute error in estimating the log-
arithm of the partition function, averaged over 100
spin glass models, see Fig. 1. One can see that the
random MAP perturbation approximation works very
well and gives a very accurate estimation using a sin-
gle MAP value, when considering strong coupling po-
tentials. Also, the random MAP perturbation upper
bound is better than the tree re-weighted upper bound
in the strong signal domain. Considering the attrac-
tive case, the random MAP perturbation approxima-
tion and upper bound used the graph-cuts algorithm,
therefore were considerably faster than the belief prop-
agation variants. The sum-product belief propagation
performs well on the average, but from the plots one
can observe its variance. This demonstrates the typi-
cal behavior of belief propagation, as it minimizes the
non-convex Bethe free energy, thus works well on some
instances and does not converge or attain bad local
minima on others.

model train / test ours SVM-struct

Figure 2. From left to right: (a) Binary 100 × 70 image.
(b) A representative image in the training set and the test
set, where 10% of the pixels are randomly flipped. (c) A
de-noised test image with our method: The test set error
is 1.8%. (d) A de-noised test image with SVM-struct: The
pixel base error is 8.2%.

We note that the lower bounds of random MAP per-
turbations, described in Section 4.3, are qualitatively
the same as the MAP value, and are outperformed by
standard techniques such as the mean-field. We omit-
ted these experiments.

We also demonstrated the effectiveness of random
MAP perturbations in supervised learning. The train-
ing data was composed of ten 100× 70 binary images,
consisting of a man silhouette and a random binary
noise, described in Fig. 2. Each image x is described
by binary local features φi(x, yi) which encodes if the
i-th pixel is foreground or background, and pairwise
features φi,j(yi, yi) which encourages adjacent features
to have the same label. The goal is to estimate the pa-
rameters θi, θi,j to de-noise the images. Since we are
considering 100×70 images, there are about 20, 000 pa-
rameters to estimate. Conditional random fields can-
not be evaluated on this problem, as the partition func-
tion cannot be computed to general graphs with many
cycles. However, the MAP can be efficiently estimated
using MPLP, thus we applied our approximate con-
ditional random fields described in Section 5. Using
the estimated parameters, the pixel based error on the
test set was 1.8%. As mentioned before, this approach
cannot be compared with conditional random fields.
However, without perturbations this program relates
to structured-SVM (cf. (Tsochantaridis et al., 2006))
and can be evaluated through MAP solvers. For this
case, the pixel based error on the test set was 8.2%.

7. Related Work

Throughout this work, we estimate the partition func-
tion while computing the max-statistics of collections
of random variables. We refer the interested reader
to (Kotz & Nadarajah, 2000) for more comprehensive
introduction to extreme value statistics.

To the best of our knowledge the expected value of
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Random MAP perturbations over discrete product
spaces has not been extensively studied. Talagrand
((Talagrand, 1994), Proposition 4.3) was the first to
use random MAP perturbations in discrete settings.
However, their approach differs from ours in that their
goal was to upper bound the size of dom(φ) ⊆ {0, 1}n
using random variables with the Laplace distribution.
The proof technique is based on a compression argu-
ment, and does not extend to the partition function.
Restricting to φ(y) ∈ {−∞, 0}, Corollary 1 presents
an alternative technique with weighted assignments.
Another upper bound for dom(φ) ⊆ {0, 1}n was de-
scribed in ((Barvinok & Samorodnitsky, 2007), Theo-
rem 3.1). Their approach used the induction method
of (Talagrand, 1995) to prove an upper bound using
the logistic distribution. Our Corollary 1 provides
an alternative technique for this result. They also
extend their upper bound to functions of the form∑
y∈dom(φ)

∏
i: yi=1 qi, where qi are rational numbers.

In this work we also consider parameter estimation
using approximate conditional random fields. While
computing the gradient we obtained the known re-
sult that the Gibbs distribution can be described by
the maximal argument of random MAP perturba-
tion. This result is widely used in economics, pro-
viding a probabilistic interpretation for choices made
by people among a finite set of alternatives. Specifi-
cally, the probability of choosing an alternative P [ŷ ∈
argmaxy{φ(y) + γ(y)}] follows the Gibbs distribution
whenever γ(y) are independent and distributed ac-
cording to the Gumbel distribution (McFadden, 1974).
This approach is computationally intractable when
dealing with discrete product spaces, as it considers
n-dimensional independent perturbations. This moti-
vated efficient ways to approximately sample from the
Gibbs distribution, through a probability distribution
of the form: P [ŷ ∈ argmaxy{φ(y) +

∑
α γα(yα)}], (Pa-

pandreou & Yuille, 2011). In particular, the gradient
suggested in Theorem 3 was described in (Papandreou
& Yuille, 2011). For a more general class of proba-
bilistic models that exploit efficient optimization we
refer to (Tarlow et al., 2012). Whenever the pertur-
bations occur in the feature space, random MAP per-
turbation models relate to PAC-Bayes generalization
bounds (Keshet et al., 2011). Other surrogate proba-
bility models using computational structures appears
in (Papandreou & Yuille, 2010; Kulesza & Taskar,
2010).

More broadly, methods for estimating the partition
function were subject to extensive research over the
past decades. Gibbs sampling, Annealed Importance
Sampling and MCMC are typically used for estimating
the partition function (cf. (Koller & Friedman, 2009)

and references therein). These methods are slow when
considering ragged energy landscapes, and their mix-
ing time is typically exponential in n. In contrast,
perturbed MAP operations are unaffected by ragged
energy landscapes provided that the MAP is feasible.

Variational approaches have been extensively devel-
oped to efficiently estimate the partition function in
large-scale problems. These are often inner-bound
methods where a simpler distribution is optimized as
an approximation to the posterior in a KL-divergence
sense. The difficulty comes from non-convexity of the
set of feasible distributions (e.g., mean field) (Jor-
dan et al., 1999). Variational upper bounds on the
other hand are convex, usually derived by replacing
the entropy term with a simpler surrogate function
and relaxing constraints on sufficient statistics (see,
e.g., (Wainwright et al., 2005)).

8. Discussion

Evaluating the partition function and computing MAP
assignments of variables are key sub-problems in ma-
chine learning. While it is well-known that the ability
to compute the partition function also leads to a vi-
able MAP algorithm, the reverse is not. We showed
here that a randomly perturbed MAP solver can ap-
proximate and bound the partition function. The re-
sult enables us to take advantage of efficient MAP
solvers. Moreover, we demonstrated the effectiveness
of our approach in the ”high-signal high-coupling”
regime which dominates machine learning applications
and is traditionally hard for current methods. We
also applied our approximation to conditional random
fields, describing the objective function to the moment
matching algorithm of (Papandreou & Yuille, 2011).

The bounds we presented hold with expectation. In
practice we compute the empirical mean, and standard
techniques in measure concentration, e.g. Chebyshev’s
inequality, describe how the sampled mean relates to
the expected value.

The results here can be taken in a number of different
directions. The surrogate probability model, emerging
from Theorem 3, is based on the maximal argument of
perturbed MAP program. This surrogate probability
model directly measures the robustness of prediction.
Our approach also suggests a new entropy approxi-
mation, which can be derived as the conjugate-dual
of the surrogate log-partition function. This entropy
approximation is used with a valid set of probability
distributions induced by perturbations. This is in con-
trast to current approximations, e.g. based on Bethe
entropies, defined over the local marginal polytope.
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