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Abstract

In this paper, we review the problem of ma-
trix completion and expose its intimate rela-
tions with algebraic geometry, combinatorics
and graph theory. We present the first neces-
sary and sufficient combinatorial conditions
for matrices of arbitrary rank to be identi-
fiable from a set of matrix entries, yielding
theoretical constraints and new algorithms
for the problem of matrix completion. We
conclude by algorithmically evaluating the
tightness of the given conditions and algo-
rithms for practically relevant matrix sizes,
showing that the algebraic-combinatorial ap-
proach can lead to improvements over state-
of-the-art matrix completion methods.

1. Introduction

Reconstruction of a low-rank matrix from partial mea-
surements arises naturally in many practically rele-
vant problems, such as imputation of missing features,
multi-task learning (Argyriou et al., 2008), transduc-
tive learning (Goldberg et al., 2010), as well as collab-
orative filtering (Srebro et al., 2005).

Following the success of the nuclear norm heuristic
for matrix completion (Srebro et al., 2005; Candes &
Recht, 2009), considerable effort has been devoted to
understand the performance of such a procedure.

Previous studies can be classified by the assumptions
about the sampling procedure and the underlying low-
rank matrix. (Candes & Recht, 2009) analyzes the
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noiseless setting, and have shown under uniform sam-
pling that incoherent low-rank matrices can be recov-
ered with large probability. (Salakhutdinov & Sre-
bro, 2010) considered the more realistic setting where
the rows/columns are non-uniformly sampled. (Ne-
gahban & Wainwright, 2010) showed under the same
row/column weighted sampling that non-spiky low-
rank matrices can be recovered with large probabil-
ity. (Foygel & Srebro, 2011) have shown under uni-
form sampling that the max-norm heuristic (Srebro
& Shraibman, 2005) can achieve superior reconstruc-
tion guarantee without the non-spikiness assumption
on the underlying low-rank matrix.

All the above theoretical guarantees are built on some
assumption on the sampling procedure, e.g., uniform
sampling. Nevertheless, in a practical setting, we al-
ways know which entries we can observe and which
entries we cannot (the so-called mask). One may ask
if we could obtain a stronger theoretical guarantee (of
success or failure) conditioned on the mask we have.

On the other hand, all the above theories are also
based on some assumptions on the underlying low-rank
matrix, which are usually uncheckable. Although it is
clear that we cannot recover arbitrary low-rank ma-
trices (see Candes & Recht, 2009), one may ask if we
could build a theory for matrix completion for almost
all matrices, depending only on the mask.

Until now, all Machine Learning approaches have been
mostly agnostic to the deep connections between ma-
trix completion and the fields of combinatorics and
algebraic geometry. Indeed there are at least two ex-
isting independent strains of work related to matrix
completion outside the Machine Learning community:
the first is rigidity theory, a branch of combinatorics
concerned with realizing partially known distance ma-
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trices which is subtly different from matrix completion,
but is closely related, see (Singer & Cucuringu, 2010)
for an overview. The second strain, in algebraic ge-
ometry, is the study of determinantal varieties. A de-
terminantal variety is a set of low rank matrices with
possible additional properties, considered as a mani-
fold. The results closest to matrix completion in pure
algebraic geometry are on sections of determinantal
varieties (Giusti & Merle, 1982; Gonciulea & Miller,
2000; Boocher, 2011). Moreover, determinantal vari-
eties frequently expose combinatorial structure which
is studied in field of combinatorial algebra. Connec-
tions between combinatorics and algebra have already
been observed in rigidity theory, crucially contribut-
ing to recent developments. We will show that matrix
completion is also related naturally to both algebra
and combinatorics.

We believe that using and combining these disjoint
techniques may be highly beneficial for the Machine
Learning community in both theoretical and applied
algorithmical ways. In this paper, we demonstrate the
strength of the algebraic combinatorial approach by
applying it to the basic theoretical questions in ma-
trix completion. We derive necessary and sufficient
conditions for when a matrix of arbitrary rank can be
reconstructed from a set of entries. As special cases, we
derive central results for matrix completion in terms
of these entries, which can be seen as analoga of re-
sults in rigidity theory. We also give a new algorithm,
inspired by the newly derived criteria, which can be
used to reconstruct matrices where the state-of-the-
art algorithms may fail. We conclude with numerical
simulations, comparing the novel criteria and matrix
completion algorithm to state-of-the-art methods.

Summing up, our novel contributions are:

• Introduction of a combinatorial algebraic frame-
work for the problem of matrix completion, build-
ing on known algebraic and combinatorial tech-
niques from determinantal varieties and rigidity
theory

• The first necessary and sufficient identifiability
conditions for arbitrary rank matrices in terms of
the set of known entries

• Formulation of a constructive combinatorial alge-
braic algorithm for matrix completion

Before we continue with stating the results, we want
to give a brief overview of the main ideas of the paper.
Suppose the truth, or generative model, is given by a

3× 3 matrix, say

A =

 a11 a21 a31
a12 a22 a32
a13 a23 a33

 =

 1 2 3
2 4 6
4 8 12

 .

The entries aij may be interpreted as class or index
dependent observations. The matrix M has rank 1,
so the entries are highly dependent; for example, one
single entry in a row can be used to predict the whole
row if an arbitrary other row is known. In the ma-
trix completion setting, only some of the entries are
known - the so-called measurements. Suppose we make
five measurements. Two possible scenarios are that we
measure the entries in

A1 =

 1 2 3
∗ 4 ∗
4 ∗ ∗

 or in A2 =

 1 ∗ 3
∗ 4 ∗
4 ∗ 12

 .

If we know that the original matrix A had rank one,
we can reconstruct A from A1. Namely, the column
space is one-dimensional, so the entries of each column
are determined by a unique scaling factor. The scaling
factor can be determined for each of the two missing
columns in A1 by computing a22/a21, resp. a31/a11.
Algebraically, this corresponds to successively solving
all minor equations

aijak` = ai`akj ,

or, as above, expressed as fractions, the equations

aij
ai`

=
akj
ak`

.

If we try this approach to reconstruct A from A2, it
fails. Indeed, it turns out that it is impossible to recon-
struct A from A2. One possible way to see this is that
the entry a12 can be chosen independently to be any-
thing, and then continuing the strategy for A1 gives
a valid matrix completion for any choice of a12. Thus,
the set of valid completions is highly non-unique - it
has one degree of freedom - or, algebraically spoken,
(Krull) dimension one.

Alternatively, the problem can be regarded combina-
torially. To both the matrices A1, A2, we can associate
bipartite graphs G1, G2 in the following way: the bi-
partite vertex sets are the columns (“red vertices”) and
the rows (“blue vertices”) of Ak. An edge (i, j) is in
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Gk if the entry aij is known in Ak, i.e. Ak has no ∗
at that position. Above is a depiction of G1 and G2.
One can see that G1 is connected, while G2 is not. In-
tuitively, the edges one can add by virtue of the minor
equations correspond to “possibilities to reconstruct”.
One can show that one can add exactly the edges be-
tween vertices in the same connected component; thus,
for a unique reconstruction of A, the graph must be
connected.

This shows that matrix completion has intrinsically
both algebraic and combinatorial features; the phe-
nomena above have indeed interesting generalizations.
In the following sections, we will give a more rigorous
exposition which will lead to novel types of theoretical
results and algorithms.

2. Theory of Matrix Completion

2.1. Matrix Completion - an Algebraic
Problem

First we introduce some definitions and notations
which allow us to formulate the problem of matrix
completion and later enable us to state our results.
The central observation is that the relevant occurring
sets and maps in matrix completion are all algebraic
(i.e. defined by polynomials) and thus give rise to an
algebraic formulation of matrix completion. The gen-
eral setting for matrix completion is the following: one
starts with a low-rank (m × n) matrix A, say of rank
rankA = r. However, only a fixed subset of the en-
tries of A is known. The task is now to reconstruct
A uniquely from the known entries, and the fact that
A has rank r. Whether this is possible depends ob-
viously on the known entries, and in this paper, we
will investigate this question. We model the choice of
entries as follows:

Definition 2.1. A map Ω : Cm×n → Cα which sends
a matrix to a fixed tuple of its entries, i.e.

Ω : (aij)1≤i≤m
1≤j≤n

7→ (ai1j1 , ai2j2 , . . . , aiαjα) ,

where the bituples (i`, j`) are all different, is called
masking. Such a map is uniquely defined by the set of
entries ikjk in the image set. We call the unique matrix
which has ones at those entries, and zeroes elsewhere,
the mask of Ω and denote it by M(Ω).

Note that a masking Ω can be interpreted as tak-
ing the Hadamard product of the argument with the
mask M(Ω). Matrix completion requires one to re-
strict maskings to the set of low rank matrices, for
which we introduce notation:

Notations 2.2. We will denote the set of (m × n)-

matrices with rank at most r as

M(r;m× n).

In the following, we assume r ≤ m ≤ n without loss
of generality. A classical result in algebraic geome-
try states that M(r;m × n) is an algebraic variety,
the so-called determinantal variety (of low-rank matri-
ces); that is, the set M(r;m× n) is a closed subset of
Cm×n, defined by the vanishing of a set of polynomials
- namely, the (r+ 1)-minors. The varietyM(r;m×n)
is known to be irreducible, i.e., it cannot be written as
the proper union of two algebraic varieties. Moreover,
the dimension of the determinantal variety is known
to be

dimM(r;m× n) = (m+ n− r) · r.

With these notations, the identifiability problem of
matrix completion can be reformulated as follows:

Problem 2.3. Let Ω be a masking. When is its re-
striction to the (at most) rank r matrices

Ω :M(r;m× n) −→ Cα

invertible? That is, when is it uniquely possible to
identify a matrix A ∈ M(r;m × n) from its masking
Ω(A), depending on m,n, r and M(Ω)? Alternatively
formulated: when does it hold that

{A} = Ω−1(Ω(A))

Note that in this formulation, invertibility may also
depend a-priori on the choice of the matrix A. We will
synonymously use the term completability when A can
be uniquely identified. One might now naively think
that invertibility does not depend on the choice of A;
however, the following result shows that this is not the
case in general:

Proposition 2.4. Let r ≥ 2. Then the restricted
masking Ω : M(r;m × n) −→ Cα is injective if and
only if α = mn.

Proof. Clearly, if α = mn; then Ω is injective, as it
is the identity map. So it suffices to prove: if r ≥ 2
and α < mn, there exists a matrix A such that {A} 6=
Ω−1(Ω(A)). Now since α < mn, there exists an index
ij such that M(Ω)ij = 0. Let A be any matrix whose
columns, except the j-th, span an (r− 1)-dimensional
vector space. Since X is of (at most) rank r, the set
Ω−1(Ω(A)) contains any matrix Ã which is identical
to A but has an arbitrary entry at the index ij.

That, in general, not all matrices can be reconstructed
is a known result, see (Candes & Recht, 2009); indeed,
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Proposition 2.4 may seem to imply that we have to
look for additional properties or sampling assumptions
on the possible A to obtain firm results - which is the
rationale behind introducing spikiness or incoherence.
However, the pathologies presented in the proof can
be remedied by a slight relaxation to all matrices but
a zero set, which is formally modelled by the “generic”
property:

Definition 2.5. A generic (m × n)-matrix of rank r
is a positive, continuous, M(r;m× n)-valued random
variable. By convention, we will say that a statement
is true for a generic matrix, if it is true with probability
one.

Note that in the definition, we have assumed nothing
on the distribution of the random variable. In fact, a
statement is true with probability one for one particu-
lar positive continuous distribution if and only if it is
true with probability one for all such distributions, as
being true generically is equivalent that the exception
set to the statement is a zero set inM(r;m×n). More-
over, there is a purely algebraic concept of “generic”
in algebraic geometry, which is - under certain con-
ditions - equivalent to our probabilistic formulation.
Details can be found e.g. in the appendix of (Király
et al., 2012a). Under the slight relaxation provided by
genericity, it can be proved that the completability of
a matrix depends only on the chosen mask (Recall that
our convention in Definition 2.5 allows for a possible
zero set of exceptional matrices):

Theorem 2.6. Let A be a generic (m × n) matrix
of rank r. Then the dimension of the algebraic set
Ω−1(Ω(A)) depends only on the mask M(Ω). More-
over, if the dimension is zero, that is, the number of
possible completions in Ω−1(Ω(A)) is finite, then this
number also depends only on the mask M(Ω). In par-
ticular, the completability of the matrix A depends only
on the chosen mask.

Proof. As A is a positive continuous random vari-
able, the statement above is equivalent to showing that
there is an open dense set U in Cm×n, such that for
all matrices B in U , the set of possible completions
Ω−1(Ω(B)) has the same dimension and cardinality.
But this is exactly what is stated in the generic fiber
theorem or upper semicontinuity theorem (see e.g. I.8,
Corollary 3 in (Mumford, 1999)), when applied to the
algebraic map Ω : M(r;m × n) −→ Cα, considering
that M(r;m× n) is irreducible.

Theorem 2.6 motivates the following relaxations of in-
jectivity and finiteness:

Definition 2.7. A masking Ω is called generically
injective on M(r;m × n) if for generic A, one has

{A} = Ω−1(Ω(A)). A masking Ω is called generi-
cally finite on M(r;m × n) if for generic A, the set
{A} = Ω−1(Ω(A)) is finite. Abbreviatingly, we will
also say that Ω is generically injective (or finite) in
rank r if m,n is arbitrary.

Note that generic finiteness is a necessary condition for
generic injectivity. With the result of Theorem 2.6 and
this notation, we arrive at the definitive formulation of
the identifiability of matrix completion:

Problem 2.8. When is a masking Ω generically in-
jective on M(r;m× n), given m,n, r and M(Ω)?

We will investigate this question in greater detail in
the next section. Also note that a generic matrix in
M(r;m×n) always has the maximal rank r (i.e., with
probability one). Before continuing, we mention an
important detail:

Remark 2.9. A necessary condition for Ω to be gener-
ically injective is that it is generically finite. The latter
is, by Definition 2.7, equivalent to the fact that

dim Ω−1(Ω(A)) = 0

for a generic matrix A ∈ M(r;m × n). A classical
result in algebraic geometry relates the generic fiber
dimension to the dimensions of range and image: it
equates to

dim Ω−1(Ω(A))

= dimM(r;m× n)− dim Ω(M(r;m× n))),

as the determinantal varietyM(r;m×n) is irreducible;
see e.g. I.8, Theorem 3 in (Mumford, 1999) for a proof.
The generic fiber dimension is also the same as the rel-
ative tangent space dimension at the generic point of
the map Ω. For fixed Ω, this dimension can be cal-
culated by determining the rank (or co-rank) of the
Jacobi matrix over a randomly chosen A - this is a
classical task in computational algebra. In (Singer
& Cucuringu, 2010), a probabilistic algorithm along
these lines is provided for the rigid realization prob-
lem - the vanishing of the dimension is called “local
completability”; the same techniques can be used to
construct an algorithm for testing generic injectivity,
or generic finiteness of a mask. A more detailed discus-
sion of the relation between rigid realization and ma-
trix completion can be found in the supplement (Király
& Tomioka, 2012).

2.2. Matrix Completion - a Combinatorial
Problem

We continue by deriving combinatorial conditions for
a mask to be completable. We will show that com-
pletability is encoded in the combinatorial properties
of a specific graph:
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Definition 2.10. Let Ω be a masking with mask
M(Ω). We will call the unique bipartite graph G(Ω)
which has adjacency matrix M(Ω) the adjacency graph
of Ω. Recall that to the (m × n)-matrix M(Ω), the
associated bipartite graph G(Ω) = (V1, V2, E) is de-
fined as follows: The two sets of vertices are the num-
bers V1 = {1, . . . ,m} and V2 = {1, . . . , n}; an edge
(i, j) ∈ V1 × V2 is in E if and only if M(Ω)ij = 1. We
will denote the above edge set E of G(Ω) by E(Ω). In
the following, for convenience of reading, we will refer
to the elements of V1 as the red, and to the elements
of V2 as the blue vertices of G(Ω).

A sufficient condition for matrix completability can be
formulated in terms of a generalized closure:

Definition 2.11. Let G be a bipartite graph. Let
us denote by K−r+1,r+1 the complete bipartite graph

Kr+1,r+1 minus one edge1. If G does not contain a
vertex set whose induced subgraph is isomorphic to
K−r+1,r+1; we call G an r-closed bipartite graph, and G
is its own r-closure. If G contains a vertex set whose
induced subgraph is isomorphic to K−r+1,r+1, denote
by G′ the graph which is obtained from G by adding
the missing edge in G. In this case, the r-closure of
G is recursively defined as the r-closure of G′. If the
r-closure of a bipartite graph G with m red and n blue
edges is Km,n, we call G an r-closable graph.

The recursive definition of r-closure is well-defined, as
the possible number of edges in G is finite, and by
adding edges one arrives always at the same unique r-
closed graph. Also, the 1-closure of a bipartite graph
is its bipartite transitive closure. One can show that
a bipartite graph is connected if and only if it is 1-
closable.

In this terminology, we may formulate a necessary con-
dition for generic injectivity:

Proposition 2.12. A masking Ω is generically injec-
tive in rank r if G(Ω) is r-closable.

Proof. The proof uses that r-closability is the combi-
natorial counterpart of being able to subsequently find
(r+ 1)× (r+ 1)-blocks in the mask containing exactly
one zero. For each of these blocks, the missing entry
can be calculated using the vanishing minor condition
in the generic situation. Details can be found in the
supplement (Király & Tomioka, 2012).

Similarly, one can derive necessary conditions for
generic injectivity by combining combinatorial and al-
gebraic considerations:

1Kr+1,r+1 has r + 1 red and r + 1 blue vertices, plus all
possible edges.

Proposition 2.13. A masking Ω is generically injec-
tive, or generically finite, on M(r;m× n) only if:

(i) #E(Ω) ≥ r · (m+ n− r)
(ii) Each vertex of G(Ω) has degree at least r

(iii) G(Ω) is r-connected, i.e., G(Ω) is connected after
removing an arbitrary set of r-1 edges.

(iv) For a vertex partition of G(Ω) into N bipartite
subgraphs G1, G2, . . . , GN such that Gi has mi

red and ni blue vertices and edge set Ei, with∑N
i=1mi = m and

∑N
i=1 ni = n, the number of

edges in G connecting vertices in two different Gi
is at least(

#E(Ω)−
N∑
i=1

Ei

)
≥ r · (m+ n− r)

−
N∑
i=1

(mini −max(0,mi − r) max(0, ni − r)) .

Note that this number is at least r for non-trivial
partitions and at most (N − 1)r2.

Proof. The proof follows the lines Remark 2.9 which
states that Ω is generically injective only if the generic
fiber dimension is zero, and provides a formula to ob-
tain the generic fiber dimension from the dimension of
the image and the range. This implicitly gives a way
to bound the generic fiber dimension in terms of the
number of known entries of the mask. The calculations
and the proof are carried out in the supplement (Király
& Tomioka, 2012).

Interestingly, neither in the sufficient nor in the neces-
sary condition is it used that the graph G(Ω) arises as
the adjacency graph for a matrix completion problem.
So, as sufficient conditions imply necessary ones, we
may formulate a purely graph theoretic result:

Theorem 2.14. Any r-closable bipartite graph is r-
connected. Moreover, any r-closable bipartite graph G
with m red and n blue vertices fulfills conditions (i) to
(iv) from Proposition 2.13.

We conclude with a result which relates the necessary
and sufficient condition in special cases:

Proposition 2.15. For r = 1 and r = m − 1 (recall
that we have assumed r ≤ m ≤ n), the necessary and
sufficient conditions in Propositions 2.13 and 2.12 co-
incide. In particular, a 1-connected bipartite graph is
1-closable, and any bipartite graph fulfilling conditions
(i) and (ii) from Proposition 2.13 with r = m − 1 is
(m− 1)-closable.
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Proof. The proof is carried out in detail in the sup-
plement (Király & Tomioka, 2012). For r = 1, the
statement follows from the purely graph-theoretical
fact that 1-closability is equivalent to 1-connectedness
- that implies the equivalence of the necessary condi-
tion (iii) in Proposition 2.13 and the sufficient condi-
tion from Proposition 2.12. For r = m− 1, the state-
ment follows from a combinatorial pigeonhole-type ar-
gument which shows that conditions (i) and (ii) in
Proposition 2.13 already imply r-closability.

We want to mention that the result for r = 1 is the ma-
trix completion analogue of Proposition 5.6 in (Singer
& Cucuringu, 2010) for rigid realization; the result for
r = m − 1 is similar to Corollaire 1.5 of (Giusti &
Merle, 1982) which is for coordinate sections. More-
over, for r ≥ 2, the conditions in Propositions 2.13
and 2.12 are not equivalent for generic injectivity, as
the following example shows:

Example 2.16. Consider the case of rank r = 2, m =
n = 4 and the masks

M1 =


1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0

 and M2 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Both matrices M1 and M2 fulfill the necessary condi-
tions given in Proposition 2.13. For example, Condi-
tion (i) is fulfilled, as both matrices contain r ·(m+n−
r) = 12 entries. However, only M1 fulfills the sufficient
condition in Proposition 2.12: M1 is 2-closable and
thus defines a generically injective masking by Proposi-
tion 2.12 with unique completion; the matrix M2 is not
2-closable. Indeed, for a generic matrix inM(2; 4× 4)
masked by M2, there exist two distinct completions,
as an elementary calculation of the vanishing minor
condition shows.

However, we cannot exclude that Propositions 2.13 is
equivalent to generic finiteness, which - after adding
one suitable edge - implies generic injectivity. So it
may be that the necessary and sufficient conditions
for generic injectivity are tight up to one edge.

2.3. An Algebraic Combinatorial Algorithm

The necessary and sufficient conditions given in Propo-
sitions 2.12 and 2.13 give theoretical bounds for the
success of matrix completion. We wish to demonstrate
that these conditions can be also used constructively
to obtain novel matrix completion algorithms. First
we describe an algorithm for noise-free entries with
Algorithm 1. It is based on the sufficient condition in
Proposition 2.12 which is essentially algorithmic and,

with a slight modification, yields an explicit procedure
that completes the matrix by explicitly calculating en-
tries for the r-closure.

Algorithm 1 Matrix completion by r-closure.
Input: A masked rank r matrix Ω(A).
Output: The complete matrix A, or nil.

1: Optional: Check whether some necessary condi-
tions in Proposition 2.13 hold; e.g. conditions (i)
and (ii). If not, return nil.

2: Find a bipartite subgraph of G(Ω) isomorphic to
K−r+1,r+1; find the corresponding (r + 1 × r + 1)-
sub-matrix of A, missing one element. If such a
subgraph does not exist, return nil.

3: Compute the missing element of A by (numerically
stable) Gaussian elimination.

4: Add the missing element to A; add the entry to
the mask of Ω.

5: Repeat 2-4 until G(Ω) = Km,n.

Algorithm 1 computes a completion, whenever the suf-
ficient conditions in Proposition 2.12 holds. If not,
th algorithm will return nil. In line 1, the algorithm
checks necessary conditions for completability. Alter-
natively, one could use the algorithm given in (Singer
& Cucuringu, 2010) to obtain a definite answer - de-
pending on available computational time. In lines 2-4,
an entry is added to A using the determinantal condi-
tion. The computationally critical step in this part is
finding a subgraph isomorphic to Kr+1,r+1 minus one
edge. While the subgraph problem is known to be com-
putationally hard, heuristics (e.g. random sampling on
a subset) can speed up this part considerably under
the cost of correctness, or termination. However, if
the algorithm terminates, the found completion is a
valid solution. If the matrix is r-closable, repetition
of 2-4 then leads to reconstructing the whole matrix.
This algorithm for the noise-free case can be extended
to cope with noise, using methods from approximate
linear algebra and approximate commutative algebra
as in (Király et al., 2012b). Due to space limitations,
we refrain from doing so, and will present the results
in a future paper.

As already noted, it cannot be a-priori excluded that
Proposition 2.12 fails even if there is a finite comple-
tion; as Proposition 2.12 is not proven to be necessary.
However, in our experiments, this seems to be never
the case for complete subgraph search.

3. Experiments

In our simulations, we investigate the necessary and
sufficient conditions from Propositions 2.12 and 2.13
in comparison to our new Algorithm 1.
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The presented version of Algorithm 1 uses a heuristic
to find the r-closable subgraphs of G(Ω): for each edge
in the bipartite graph G(Ω), the vertex degree is deter-
mined. Then, the algorithm tries to construct closable
subgraphs from the highest degree neighbor vertices.
If this fails for a fixed number of trials, the algorithm
goes to the next vertex.

We also include two state-of the-art algorithms in our
comparison: the nuclear norm heuristic (Fazel et al.,
2001; Srebro et al., 2005) and OptSpace (Keshavan &
Oh, 2009; Keshavan et al., 2010). The nuclear norm
heuristic solves the convex minimization problem

minimize ‖A‖∗ such that Ω(A) = Ã,

where Ã is the matrix of measurements. We use the
alternating direction method of multipliers (Gabay &
Mercier, 1976) to solve the above minimization prob-
lem. The second algorithm, OptSpace, solves the non-
convex minimization problem

minimize ‖Ω(A)− Ã‖ such that rank(A) ≤ r,

using gradient descent on the Grassmann mani-
fold (Keshavan & Oh, 2009). We compare the nec-
essary condition, and the algorithms in three experi-
ments. For each experiment, we first fix the matrix
size m,n and the matrix rank r. Then, we vary the
number of measurements, i.e. the number of known
entries in Ω(A), or in previous notation, #E(Ω). For
each number of measurements, we randomly and uni-
formly sample N = 100 masks without replacement,
and for each mask, a random (m × n) rank r matrix
A. We then calculate the ratio of masks for which

• The necessary condition of Propositions 2.13 (iii)
holds, i.e. M is r-connected2.

• Algorithm 1 is able to compute the completion A,
which implies that M is r-closable.

• The OptSpace algorithm is able to compute the
completion A

• The nuclear norm heuristic is able to compute the
completion A

The results are shown in Figure 1. For small rank
r = 3, Algorithm 1 outperforms the state-of-the art

2We used the max-flow min-cut duality to decide r-
connectivity. More specifically, we solve m+n−1 max-flow
problems to obtain the max flow between the first blue ver-
tex and one of the remaining m + n − 1 vertices over the
bipartite graph G(Ω) with unit edge weights. If the min-
imum over the m + n − 1 max flows is less than r, the
bipartite graph G(Ω) is not r-connected, otherwise it is r-
connected. The MatlabBGL library was used to compute
max-flow.

methods for the small (10 × 15) as well as for the big
(40 × 50)-matrices. For (40 × 50)-matrices with rank
10, r-closure is comparable to Nuclear Norm and out-
performs OptSpace. In the cases with small rank, r-
connectivity and r-closability seem to be close to each
other, but become less close with increasing rank. In
all cases, Algorithm 1 is at least competitive with the
existing state-of-the-art methods.

4. Conclusion

In this paper, we have introduced a basic combina-
torial algebra framework for the matrix completion
problem. With this framework, we were able to de-
rive the first known necessary and sufficient conditions
for completability of a matrix in terms of the set of
known entries, building on the introduced techniques
which link matrix completion to combinatorial graph
theory and algebraic geometry. As a by-product, we
have also obtained graph theoretical results. Following
the sufficient condition, we were also able to formu-
late an algorithm for the matrix completion problem,
which we have shown to be competitive with known
matrix completion algorithms and which performs bet-
ter than state-of-the art methods for small rank. The
obtained results lead us to argue that studying the
interactions between machine learning, algebraic ge-
ometry, and combinatorics bears the potential to be
highly beneficial for the problem of matrix comple-
tion, regarded from the viewpoint of any of the three
fields. These links are not yet fully explored; however,
the presented results suggest a fruitful interaction. We
conclude that future work on matrix completion can
only benefit from an interdisciplinary connection of
machine learning and combinatorial algebra.
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