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Abstract

Multiple kernel learning algorithms are pro-
posed to combine kernels in order to obtain
a better similarity measure or to integrate
feature representations coming from different
data sources. Most of the previous research
on such methods is focused on the computa-
tional efficiency issue. However, it is still not
feasible to combine many kernels using ex-
isting Bayesian approaches due to their high
time complexity. We propose a fully conju-
gate Bayesian formulation and derive a de-
terministic variational approximation, which
allows us to combine hundreds or thousands
of kernels very efficiently. We briefly explain
how the proposed method can be extended
for multiclass learning and semi-supervised
learning. Experiments with large numbers
of kernels on benchmark data sets show that
our inference method is quite fast, requiring
less than a minute. On one bioinformatics
and three image recognition data sets, our
method outperforms previously reported re-
sults with better generalization performance.

1. Introduction

The main idea of kernel-based algorithms is to learn a
linear decision function in the feature space where data
points are implicitly mapped to using a kernel function
(Vapnik, 1998). Given a sample of N independent and
identically distributed training instances {xi ∈ X}Ni=1,
the decision function that is used to predict the target
output of an unseen test instance x⋆ can be written as

f(x⋆) = a⊤k⋆ + b (1)

where the vector of weights assigned to each train-
ing data point and the bias are denoted by a and b,
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respectively, and k⋆ =
[
k(x1,x⋆) . . . k(xN ,x⋆)

]⊤
where k : X × X → R is the kernel function that cal-
culates a similarity measure between two data points.
Using the theory of structural risk minimization, the
model parameters can be found by solving a quadratic
programming problem, known as support vector ma-

chine (SVM) (Vapnik, 1998). The model parameters
can also be interpreted as random variables to obtain
a Bayesian interpretation of the model, known as rel-
evance vector machine (RVM) (Tipping, 2001).

Kernel selection (i.e., choosing a functional form and
its parameters) is the most important issue that affects
the empirical performance of kernel-based algorithms
and is usually done using a cross-validation procedure.
Multiple kernel learning (MKL) methods have been
proposed to make use of multiple kernels simultane-
ously instead of selecting a single kernel (see a recent
survey by Gönen & Alpaydın (2011)). Such methods
also provide a principled way of integrating feature
representations coming from different data sources or
modalities. Most of the previous research is focused
on developing efficient MKL algorithms. Nevertheless,
existing Bayesian MKL methods are problematic in
terms of computation time when combining hundreds
or thousands of kernels. In this paper, we formulate a
very efficient Bayesian MKL method that solves this
issue by formulating the combination in a novel way.

In Section 2, we give an overview of the related work
by considering existing discriminative and Bayesian
MKL algorithms. Section 3 gives the details of the
proposed fully conjugate Bayesian formulation, called
Bayesian efficient multiple kernel learning (BEMKL).
In Section 4, we explain detailed derivations of our de-
terministic variational approximation for binary clas-
sification. Extensions towards multiclass learning and
semi-supervised learning are summarized in Section 5.
Section 6 evaluates BEMKL with large numbers of ker-
nels on standard benchmark data sets in terms of time
complexity, and reports the classification results on
one bioinformatics and three image recognition tasks,
which are frequently used to compare MKL methods.



Bayesian Efficient Multiple Kernel Learning

2. Related Work

MKL algorithms basically replace the kernel in (1)
with a combined kernel calculated as a function of the
input kernels. The most common combination is to use
a weighted sum of P kernels {km : X × X → R}Pm=1:

f(x⋆) = a⊤

(
P∑

m=1

emkm,⋆

)

︸ ︷︷ ︸
ke,⋆

+b

where the vector of kernel weights is denoted by e

and km,⋆ =
[
km(x1,x⋆) . . . km(xN ,x⋆)

]⊤
. Exist-

ing MKL algorithms with a weighted sum differ in
the way that they formulate restrictions on the kernel
weights: arbitrary weights (i.e., linear sum), nonnega-
tive weights (i.e., conic sum), or weights on a simplex
(i.e., convex sum).

Bach et al. (2004) formulate the problem as a second-

order cone programming (SCOP) problem, which is
formulated as a semidefinite programming problem
previously by Lanckriet et al. (2004). However, SCOP
can only be solved for medium-scale problems effi-
ciently. Sonnenburg et al. (2006) reinterpret the prob-
lem as a semi-infinite linear programming (SILP) prob-
lem, which can be applied to large-scale data sets.
Rakotomamonjy et al. (2008) develop a simple MKL
algorithm using a sub-gradient descent (SD) approach,
which is faster than SILP method. Later, Xu et al.
(2009) extend the level method, which is originally de-
signed for optimizing non-smooth objective functions,
to obtain a very efficient MKL algorithm that carries
flavors from both SILP and SD approaches but out-
performs them in terms of computation time.

The aforementioned methods tend to produce sparse
kernel combinations, which corresponds to using the
ℓ1-norm on the kernel weights. Sparsity at the ker-
nel level may harm the generalization performance
of the learner and using non-sparse kernel combi-
nations (e.g., the ℓ2-norm) may be a better choice
(Cortes et al., 2009). Varma & Babu (2009) propose a
generalized MKL algorithm that can use any differen-
tiable and continuous regularization term on the kernel
weights. This also allows us to integrate prior knowl-
edge about the kernels to the model. Xu et al. (2010)
and Kloft et al. (2011) independently and in parallel
develop an MKL algorithm with the ℓp-norm (p ≥ 1)
on the kernel weights. This method has a closed-form
update rule for the kernel weights and requires only
an SVM solver for optimization. Sequential minimal

optimization (SMO) algorithm is the most commonly
used method for solving SVM problems and efficiently
scales to large problems. Vishwanathan et al. (2010)

propose a very efficient method, called SMO-MKL, to
train ℓp-norm (p > 1) MKL models with squared norm
as the regularization term using SMO algorithm for
solving MKL problem directly instead of solving inter-
mediate SVMs at each iteration.

Most of the discriminative MKL algorithms are devel-
oped for binary classification. One-versus-all or one-
versus-other strategies can be employed to get mul-
ticlass learners. However, there are also some di-
rect formulations for multiclass learning. Zien & Ong
(2007) give a multiclass MKL algorithm by formu-
lating the problem as an SILP and show that their
method is equivalent to multiclass generalizations
of Bach et al. (2004) and Sonnenburg et al. (2006).
Gehler & Nowozin (2009) propose a boosting-type
MKL algorithm that combines outputs calculated from
each kernel separately and obtain better results than
MKL algorithms with SILP and SD approaches on im-
age recognition problems.

Girolami & Rogers (2005) present Bayesian MKL al-
gorithms for regression and binary classification us-
ing hierarchical models. Damoulas & Girolami (2008)
give a multiclass MKL formulation using a very simi-
lar hierarchical model. The combined kernel in these
two studies is defined as a convex sum of the input ker-
nels using a Dirichlet prior on the kernel weights. As
a consequence of the nonconjugacy between Dirichlet
and normal distributions, they choose to use an impor-
tance sampling scheme to update the kernel weights
when deriving variational approximations. Recently,
Zhang et al. (2011) propose a fully Bayesian inference
methodology for extending generalized linear models
to kernelized models using a Markov chain Monte

Carlo (MCMC) approach. The main issue with these
approaches is that they depend on some sampling
strategy and may not be trained in a reasonable time
when the number of kernels is large.

Girolami & Zhong (2007) formulate a Gaussian pro-

cess (GP) variant that uses multiple covariances (i.e.,
kernels) for multiclass classification using a variational
approximation or expectation propagation scheme,
which requires an MCMC sub-sampler for the covari-
ance weights. Titsias & Lázaro-Gredilla (2011) pro-
pose a multitask GP model that combines a common
set of GP functions (i.e., information sharing between
the tasks) defined over multiple covariances with task-
dependent weights whose sparsity is tuned using the
spike and slab prior. A variational approximation ap-
proach is derived for an efficient inference scheme.

Our main motivation for this work is to formulate an
efficient Bayesian inference approach without resorting
to expensive sampling procedures.
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3. Bayesian Efficient Multiple Kernel

Learning

In order to obtain an efficient Bayesian MKL algo-
rithm, we formulate a fully conjugate probabilistic
model and develop a deterministic variational approx-
imation mechanism for inference. We give the details
for binary classification, but the same model can easily
be extended to regression.

Figure 1 illustrates the proposed probabilistic model
for binary classification with a graphical model. The
main idea is to calculate intermediate outputs from
each kernel using the same set of weight parameters
and to combine these outputs using the kernel weights
and the bias to estimate the classification score. Differ-
ent from earlier probabilistic MKL approaches such as
Girolami & Rogers (2005) and Damoulas & Girolami
(2008), our method has two key properties that en-
able us to perform efficient inference: (a) Intermediate
outputs calculated using the input kernels are intro-
duced. (b) Kernel weights are assumed to be normally
distributed without enforcing any constraints on them.
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ω
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γ
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Figure 1. Bayesian efficient MKL for binary classification.

The notation we use throughout the rest of the
manuscript is as follows: N and P represent the num-
bers of training instances and input kernels, respec-
tively. The N × N kernel matrices are denoted by
Km, where the columns of Km by km,i and the rows
of Km by k

i
m. The N × 1 vectors of weight param-

eters ai and their priors λi are denoted by a and λ,
respectively. The P × N matrix of intermediate out-
puts gmi is represented as G, where the columns of G
as gi and the rows of G as gm. The bias parame-
ter and its prior are denoted by b and γ, respectively.
The P × 1 vectors of kernel weights em and their pri-
ors ωm are denoted by e and ω, respectively. The
N × 1 vector of auxiliary variables fi is represented
as f . The N × 1 vector of associated class labels is
represented as y, where each element yi ∈ {−1,+1}.

As short-hand notations, all priors in the model are
denoted by Ξ = {γ,λ,ω}, where the remaining vari-
ables by Θ = {a, b, e,f ,G} and the hyper-parameters
by ζ = {αγ , βγ , αλ, βλ, αω, βω}. Dependence on ζ is
omitted for clarity throughout the manuscript.

The distributional assumptions of our proposed model
are defined as

λi ∼ G(λi;αλ, βλ) ∀i

ai|λi ∼ N (ai; 0, λ
−1
i ) ∀i

gmi |a,km,i ∼ N (gmi ;a⊤km,i, 1) ∀(m, i)

γ ∼ G(γ;αγ , βγ)

b|γ ∼ N (b; 0, γ−1)

ωm ∼ G(ωm;αω, βω) ∀m

em|ωm ∼ N (em; 0, ω−1
m ) ∀m

fi|b, e, gi ∼ N (fi; e
⊤gi + b, 1) ∀i

yi|fi ∼ δ(fiyi > ν) ∀i

where the auxiliary variables between the intermediate
outputs and the class labels are introduced to make the
inference procedures efficient (Albert & Chib, 1993),
and the margin parameter ν is introduced to resolve
the scaling ambiguity issue and to place a low-density
region between two classes, similar to the margin idea
in SVMs, which is generally used for semi-supervised
learning (Lawrence & Jordan, 2005). N (·;µ,Σ) rep-
resents the normal distribution with the mean vector
µ and the covariance matrix Σ. G(·;α, β) denotes the
gamma distribution with the shape parameter α and
the scale parameter β. δ(·) represents the Kronecker
delta function that returns 1 if its argument is true
and 0 otherwise.

When we consider the random variables in our model
as deterministic values, the auxiliary variable that cor-
responds to the decision function value in discrimina-
tive methods can be decomposed as

f⋆ = e⊤g⋆ + b =

P∑

m=1

emgm⋆ + b =

P∑

m=1

ema⊤km,⋆ + b

= a⊤

(
P∑

m=1

emkm,⋆

)
+ b = a⊤ke,⋆ + b

where we see that the combined kernel in our model
can be expressed as a linear sum of the input kernels.

Note that sample-level sparsity can be tuned by assign-
ing suitable values to the hyper-parameters (αλ, βλ)
as in RVMs (Tipping, 2001). Kernel-level sparsity
can also be tuned by changing the hyper-parameters
(αω, βω). Sparsity-inducing gamma priors can simu-
late the ℓ1-norm on the kernel weights, whereas unin-
formative priors simulate the ℓ2-norm.
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4. Efficient Inference Using Variational

Approximation

Exact inference for our probabilistic model is in-
tractable and using a Gibbs sampling approach is com-
putationally expensive (Gelfand & Smith, 1990). We
instead formulate a deterministic variational approxi-
mation, which is more efficient in terms of computa-
tion time. The variational methods use a lower bound
on the marginal likelihood using an ensemble of fac-
tored posteriors to find the joint parameter distribu-
tion (Beal, 2003). We can write the factorable ensem-
ble approximation of the required posterior as

p(Θ,Ξ|{Km}Pm=1,y) ≈ q(Θ,Ξ) =

q(λ)q(a)q(G)q(γ)q(ω)q(b, e)q(f )

and define each factor in the ensemble just like its full
conditional distribution:

q(λ) =

N∏

i=1

G(λi;α(λi), β(λi))

q(a) = N (a;µ(a),Σ(a))

q(G) =

N∏

i=1

N (gi;µ(gi),Σ(gi))

q(γ) = G(γ;α(γ), β(γ))

q(ω) =
P∏

m=1

G(ωm;α(ωm), β(ωm))

q(b, e) = N

([
b
e

]
;µ(b, e),Σ(b, e)

)

q(f) =

N∏

i=1

T N (fi;µ(fi),Σ(fi), ρ(fi))

where α(·), β(·), µ(·), and Σ(·) denote the shape pa-
rameter, the scale parameter, the mean vector, and
the covariance matrix for their arguments, respec-
tively. T N (·;µ,Σ, ρ(·)) denotes the truncated nor-
mal distribution with the mean vector µ, the co-
variance matrix Σ, and the truncation rule ρ(·) such
that T N (·;µ,Σ, ρ(·)) ∝ N (·;µ,Σ) if ρ(·) is true and
T N (·;µ,Σ, ρ(·)) = 0 otherwise.

We can bound the marginal likelihood using Jensen’s
inequality:

log p(y|{Km}Pm=1) ≥

Eq(Θ,Ξ)[log p(y,Θ,Ξ|{Km}Pm=1)]

− Eq(Θ,Ξ)[log q(Θ,Ξ)] (2)

and optimize this bound by maximizing with respect
to each factor separately until convergence. The ap-
proximate posterior distribution of a specific factor τ

can be found as

q(τ ) ∝ exp(Eq({Θ,Ξ}\τ )[log p(y,Θ,Ξ|{Km}Pm=1)]).

For our model, thanks to the conjugacy, the resulting
approximate posterior distribution of each factor fol-
lows the same distribution as the corresponding factor.

4.1. Inference Details

The approximate posterior distributions of the preci-
sion priors can be found as

q(λ) =

N∏

i=1

G


λi;αλ +

1

2
,

(
1

βλ

+
ã2i
2

)−1



q(γ) = G


γ;αγ +

1

2
,

(
1

βγ

+
b̃2

2

)−1



q(ω) =
P∏

m=1

G


ωm;αω +

1

2
,

(
1

βω

+
ẽ2m
2

)−1



where the tilde notation denotes the posterior expec-

tations as usual, i.e., h̃(τ ) = Eq(τ )[h(τ )].

The approximate posterior distribution of the weight
parameters is a multivariate normal distribution:

q(a) = N

(
a; Σ(a)

(
P∑

m=1

Km(̃gm)⊤

)
,

(
diag(λ̃) +

P∑

m=1

KmK⊤
m

)−1

. (3)

The approximate posterior distribution of the interme-
diate outputs can be found as a product of multivariate
normal distributions:

q(G) =

N∏

i=1

N


gi; Σ(gi)






ki
1
...

ki
P


ã+ f̃iẽ− b̃e


,

(
I+ ẽe⊤

)−1


.

The approximate posterior distribution of the bias and
the kernel weights can be formulated as a multivariate
normal distribution:

q(b, e) = N



[
b
e

]
; Σ(b, e)

[
1⊤f̃

G̃f̃

]
,

[
γ̃ +N 1⊤G̃⊤

G̃1 diag(ω̃) + G̃G⊤

]−1

 (4)
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where we allow kernel weights to take negative values.
If the kernel weights are restricted to be nonnegative,
the approximation becomes a truncated multivariate
distribution restricted to the nonnegative orthant ex-
cept for the first dimension, which is used for the bias.

The approximate posterior distribution of the auxil-
iary variables is a product of truncated normal distri-
butions given as

q(f ) =
N∏

i=1

T N (fi; ẽ⊤g̃i + b̃, 1, fiyi > ν)

where we need to find their posterior expectations to
update the approximate posterior distributions of the
intermediate outputs, the bias, and the kernel weights.
Fortunately, the truncated normal distribution has a
closed-form formula for its expectation.
∑P

m=1 KmK⊤
m in (3) should be cached before starting

inference to reduce the computational complexity. (3)
requires inverting an N ×N matrix for the covariance
calculation, whereas (4) requires inverting a (P +1)×
(P + 1) matrix. One of these two updates dominates
the running time depending on whether N > P .

4.2. Convergence

The inference mechanism sequentially updates the ap-
proximate posterior distributions of the model param-
eters and the latent variables until convergence, which
can be checked by monitoring the lower bound in (2).
The first term of the lower bound corresponds to the
sum of exponential form expectations of the distribu-
tions in the joint likelihood. The second term is the
sum of negative entropies of the approximate poste-
riors in the ensemble. The only nonstandard distri-
bution in these terms is the truncated normal distri-
bution used for the auxiliary variables; nevertheless,
the truncated normal distribution has a closed-form
formula also for its entropy. Exact form of the vari-
ational lower bound can be found in the supplemen-
tary material available at http://users.ics.aalto.
fi/gonen/bemkl/.

4.3. Prediction

We can replace p(a|{Km}Pm=1,y) with its approximate
posterior distribution q(a) and obtain the predictive
distribution of the intermediate outputs g⋆ for a new
data point as

p(g⋆|{km,⋆,Km}Pm=1,y) =

P∏

m=1

N (gm⋆ ;µ(a)⊤km,⋆, 1 + k
⊤
m,⋆Σ(a)km,⋆).

The predictive distribution of the auxiliary variable
f⋆ can also be found by replacing p(b, e|{Km}Pm=1,y)
with its approximate posterior distribution q(b, e):

p(f⋆|g⋆, {Km}Pm=1,y) =

N

(
f⋆;µ(b, e)

⊤

[
1
g⋆

]
, 1 +

[
1 g⋆

]
Σ(b, e)

[
1
g⋆

])

and the predictive distribution of the class label y⋆ can
be formulated using the auxiliary variable distribution:

p(y⋆ = +1|{km,⋆,Km}Pm=1,y) = Z−1
⋆ Φ

(
µ(f⋆)− ν

Σ(f⋆)

)

where Z⋆ is the normalization coefficient calculated for
the test data point and Φ(·) is the standardized normal
cumulative distribution function.

5. Extensions

The proposed MKL method can be extended in sev-
eral directions. We shortly explain two variants for
multiclass learning and semi-supervised learning.

5.1. Multiclass Learning

In multiclass learning, we consider classification prob-
lems with more than two classes. The easiest way is
to train a distinct classifier for each class that sep-
arates this particular class from the remaining (i.e.,
one-versus-all classification). In this setup, for each
classifier, we learn a different combined kernel func-
tion, which corresponds to using a different similarity
measure. Instead, we can have different classifiers but
use the same set of kernel weights for each of them
(Rakotomamonjy et al., 2008). The inference details
of our model with such an approach can be found in
the supplementary material. Another possibility is to
use multinomial probit in our model for multiclass clas-
sification as done by Damoulas & Girolami (2008).

5.2. Semi-Supervised Learning

In kernel-based discriminative learning framework,
semi-supervised learning can be formulated as an in-
teger programming problem, known as transductive
SVMs (Vapnik, 1998). Even though there are some
approximation methods, the computational complex-
ity of such models are significantly higher than that
of fully supervised models. Considering this complex-
ity issue, it may not be feasible to use discriminative
MKL algorithms for semi-supervised learning. How-
ever, our proposed model can be modified to make
use of unlabeled data with a slight increase in compu-
tational complexity using the low-density assumption
(Lawrence & Jordan, 2005).

http://users.ics.aalto.fi/gonen/bemkl/
http://users.ics.aalto.fi/gonen/bemkl/
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6. Experiments

We first test our new algorithmBEMKL on benchmark
data sets to show its computational efficiency. We then
illustrate its generalization performance comparing it
with previously reported MKL results on one bioin-
formatics and three image recognition data sets. We
implement the proposed variational approximation for
BEMKL in Matlab and our implementation is avail-
able at http://users.ics.aalto.fi/gonen/bemkl/.

6.1. Experiments on Benchmark Data Sets

Our first set of experiments is designed to evaluate
the running times of BEMKL. The experiments are
performed on eight data sets from the UCI repository:
breast, bupaliver, heart, ionosphere, pima, sonar,
wdbc, and wpbc. For each data set, we take 20 replica-
tions, where we randomly select 70 per cent of the data
set as the training set and use the remaining as the test
set. The training set is normalized to have zero mean
and unit standard deviation, and the test set is then
normalized using the mean and the standard deviation
of the training set.

We construct Gaussian kernels with 10 different widths
({2−3, 2−2, . . . , 26}) and polynomial kernels with three
different degrees ({1, 2, 3}) on all features and on
each single feature, following the experimental set-
tings of Rakotomamonjy et al. (2008), Xu et al. (2009;
2010), and Vishwanathan et al. (2010). All kernel ma-
trices are normalized to have unit diagonal entries (i.e.,
spherical normalization) and precomputed before run-
ning the inference algorithm. The experiments are per-
formed on a PC with 3.0GHz CPU and 4GB memory.
We run BEMKL for two different sparsity levels on
the kernel weights: sparse and non-sparse. The hyper-
parameter values for these scenarios are selected as
(αλ, βλ, αγ , βγ , αω, βω) = (1, 1, 1, 1, 10−10, 10+10) and
(αλ, βλ, αγ , βγ , αω, βω) = (1, 1, 1, 1, 1, 1), respectively.
We take 200 iterations for variational inference scheme.

Table 1 lists the results obtained by BEMKL with two
scenarios on benchmark data sets in terms of three dif-
ferent measures: the training time in seconds, the test
accuracy, and the number of selected kernels. We see
that our deterministic variational approximation for
BEMKL takes less than a minute with large numbers
of kernels, ranging from 91 to 793. The classification
accuracy difference between sparse and non-sparse ker-
nel combination is quite obvious for some data sets
such as sonar in accordance with the previous stud-
ies. Using sparsity inducing priors on kernel weights
clearly simulates the ℓ1-norm by eliminating most of
the input kernels, whereas using uninformative priors
picks much more kernels by simulating the ℓ2-norm.

Table 1. Experiments on benchmark data sets. The figures
are averages and standard deviations over 20 replications.
Here, N and P denote the numbers of training instances
and input kernels, respectively.

sparse non-sparse

breast N = 478 P = 130

Training Time (sec) 18.86±0.24 18.84±0.43
Test Accuracy (%) 96.80±1.02 96.98±0.86
Selected Kernel (#) 34.35±2.46 98.95±1.32

bupaliver N = 241 P = 91

Training Time (sec) 3.83±0.03 3.81±0.04
Test Accuracy (%) 68.41±4.28 70.72±3.83
Selected Kernel (#) 18.40±2.62 70.70±1.13

heart N = 189 P = 377

Training Time (sec) 13.69±0.08 13.58±0.09
Test Accuracy (%) 80.80±4.01 81.36±4.70
Selected Kernel (#) 41.85±4.26 181.40±8.93

ionosphere N = 245 P = 442

Training Time (sec) 22.72±0.05 22.76±0.12
Test Accuracy (%) 92.03±1.72 92.03±1.77
Selected Kernel (#) 41.90±4.42 219.05±7.77

pima N = 537 P = 117

Training Time (sec) 21.15±0.23 20.94±0.22
Test Accuracy (%) 75.02±2.28 74.96±2.08
Selected Kernel (#) 23.20±2.02 79.55±2.93

sonar N = 144 P = 793

Training Time (sec) 51.34±0.19 51.51±0.10
Test Accuracy (%) 76.88±3.95 82.81±4.12
Selected Kernel (#) 15.30±3.40 372.80±7.78

wdbc N = 398 P = 403

Training Time (sec) 41.31±0.21 41.44±0.16
Test Accuracy (%) 95.70±2.32 95.76±1.65
Selected Kernel (#) 35.65±2.28 215.50±4.81

wpbc N = 135 P = 429

Training Time (sec) 12.72±0.11 12.67±0.23
Test Accuracy (%) 75.25±1.01 73.64±2.66
Selected Kernel (#) 28.25±2.75 220.10±9.83

6.2. Comparison on MKL Data Sets

We use four data sets that are previously used to com-
pare MKL algorithms and have kernel matrices avail-
able for direct evaluation. Note that the results used
for comparison may not be the best results reported on
these data sets but we use the exact same kernel ma-
trices that produce these results for our algorithm to

http://users.ics.aalto.fi/gonen/bemkl/
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Table 2. Performance comparison on Protein data set.

Method Test Accuracy

Damoulas & Girolami (2008) 68.1±1.2
BEMKL (one-versus-all) 71.5±0.1
BEMKL (multiclass) 71.2±0.2

Table 3. Performance comparison on Flowers17 data set.

Method Test Accuracy

Gehler & Nowozin (2009) 85.5±3.0
BEMKL (one-versus-all) 85.6±1.2
BEMKL (multiclass) 85.9±1.2

have comparable performance measures. These data
sets have small numbers of kernels available and we
do not force any sparsity on the kernel weights using
an uninformative Gamma prior in accordance with the
previous studies. All data sets consider multiclass clas-
sification problems and we report both one-versus-all
and multiclass results for BEMKL.

6.2.1. Protein Fold Recognition Data Set

Protein data set considers 27 different fold types of
694 proteins (311 for training and 383 for testing)
and it is available at http://mkl.ucsd.edu/dataset/
protein-fold-prediction/. There are 12 distinct
feature representations summarizing protein charac-
teristics. We construct 12 kernels on these representa-
tions and take 20 replications using the experimental
procedure of Damoulas & Girolami (2008). Table 2
gives the classification results on Protein data set. We
see that BEMKL is significantly better than the proba-
bilistic MKL method of Damoulas & Girolami (2008).

6.2.2. Oxford Flowers17 Data Set

Flowers17 data set contains flower images from 17
different types with 80 images per class and it is avail-
able at http://www.robots.ox.ac.uk/~vgg/data/

flowers/17/. It also provides three predefined splits
with 60 images for training and 20 images for test-
ing from each class. There are seven precomputed
distance matrices over different feature representa-
tions. These matrices are converted into kernels as
k(xi,xj) = exp(−d(xi,xj)/s) where s is the mean
distance between training point pairs. The classifica-
tion results on Flowers17 data set are shown in Ta-
ble 3. BEMKL achieves higher average test accuracy
with smaller standard deviation across splits than the
boosting-type MKL algorithm of Gehler & Nowozin
(2009). We also see that using the same set of kernel
weights for each class as in our multiclass formulation

Table 4. Performance comparison on Flowers102 data set.

Method AUC EER Accuracy

Titsias & Lázaro-Gredilla
(2011)

0.952 0.107 40.0

BEMKL (one-versus-all) 0.969 0.068 67.0
BEMKL (multiclass) 0.969 0.069 68.9

Table 5. Performance comparison on Caltech101 data set.

Method Test Accuracy

Varma & Babu (2009) 71.1±0.6
BEMKL (one-versus-all) 72.7±0.1
BEMKL (multiclass) 73.1±0.1

is better than learning separate sets of kernel weights
as also observed by Gehler & Nowozin (2009).

6.2.3. Oxford Flowers102 Data Set

Flowers102 data set contains flower images from 102
different types with more than 40 images per class
and it is available at http://www.robots.ox.ac.uk/

~vgg/data/flowers/102/. There is a predefined split
consisting of 2040 training and 6149 testing images.
There are four precomputed distance matrices over
different feature representations. These matrices are
converted into kernels using the same procedure on
Flowers17 data set. Table 4 shows the classification
results on Flowers102 data set. We report averages
of area under ROC curve (AUC) and equal error rate

(EER) values calculated for each class in addition to
multiclass accuracy. We see that BEMKL outperforms
the GP-based method of Titsias & Lázaro-Gredilla
(2011) in all metrics on this challenging task.

6.2.4. Caltech101 Data Set

Caltech101 data set consists of object images from
102 different categories and it is available at http://
www.robots.ox.ac.uk/~vgg/software/MKL/. There
are three predefined splits with 15 images for training
and 15 images for testing from each class along with
10 precomputed kernel matrices. The classification re-
sults on Caltech101 data set are given in Table 5.
BEMKL achieves higher average test accuracy with
smaller standard deviation across splits than the dis-
criminative MKL algorithm of Varma & Babu (2009).
Similar to the results on Flowers17 and Flowers102,
we see that using the same set of kernel weights for
each class instead of separate sets is better in terms of
generalization performance. This approach allows the
classifiers trained for each class to share information
with others similar to multitask learning.

http://mkl.ucsd.edu/dataset/protein-fold-prediction/
http://mkl.ucsd.edu/dataset/protein-fold-prediction/
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://www.robots.ox.ac.uk/~vgg/software/MKL/
http://www.robots.ox.ac.uk/~vgg/software/MKL/
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7. Conclusions

In this paper, we introduce a Bayesian multiple ker-
nel learning framework in order to have computation-
ally feasible algorithms by formulating the combina-
tion in a novel way. This formulation allows us to
develop fully conjugate probabilistic models and to de-
rive very efficient deterministic variational approxima-
tions for inference. We give the inference details for
binary classification only due to space limitation and
explain briefly how the method can be extended to
multiclass learning and semi-supervised learning. An-
other interesting direction is to formulate a multitask
learning method by enforcing similarity between the
kernel weights of different tasks.

Experimental results on benchmark binary classifica-
tion data sets show that the proposed method can
combine hundreds of kernels in less than a minute. We
also report very good results on one bioinformatics and
three image recognition data sets, which contain mul-
ticlass classification problems, compared to previously
reported results.
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