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Abstract

We introduce a copula mixture model to per-
form dependency-seeking clustering when co-
occurring samples from different data sources
are available. The model takes advantage
of the great flexibility offered by the copu-
las framework to extend mixtures of Canoni-
cal Correlation Analysis to multivariate data
with arbitrary continuous marginal densities.
We formulate our model as a non-parametric
Bayesian mixture, while providing efficient
MCMC inference. Experiments on synthetic
and real data demonstrate that the increased
flexibility of the copula mixture significantly
improves the clustering and the interpretabil-
ity of the results.

1. Introduction

When different types of measurements concerning a
same underlying phenomenon are available, often ap-
pearing in the form of co-occurring samples, combining
them is more informative than analysing them sepa-
rately. First, if we assume that these different mea-
surements, also referred to as the different views, are
generated by several data sources with independent
noise, analysing them jointly can increase the signal
to noise ratio. Second, only a combined analysis can
take into consideration the dependencies existing be-
tween the different types of measurements. As pointed
out in Klami & Kaski (2007), possible dependencies
between the views often contain some of the most rel-
evant information about the data. Dependency mod-
elling captures what is common between the views, i.e.
the shared underlying signal, and in many applications
where several experiments are designed to measure the
same object this shared aspect is the focus of interest.
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The task of detecting dependencies has traditionally
been solved by Canonical Correlation Analysis (CCA).
This method can however detect only global linear de-
pendency. When the data express not only one global
dependency but different local dependencies, a mix-
ture formulation is more adequate. Fern et al. (2005)
introduces a mixture of local CCA model which groups
pairs of points expressing together a particular linear
dependency between the two views. This model is
adapted to cases where the data express several dif-
ferent local correlations, but it still focuses exclusively
on linear dependencies since it assumes that within
each cluster the two views are linearly correlated.

Dependency-seeking clustering goes one step further in
the generalisation process by assuming that the views
become independent when conditioned on the cluster
structure. The aim is to perform clustering in the joint
space of the multiple views, while focussing explicitly
on inter-view dependencies 1. In the case of two views,
the objective is then to group the co-occurring pairs
of datapoints according to their inter-view dependency
pattern such that when the cluster assignments are
known these views become independent. As a conse-
quence, the group structure now has a semantic inter-
pretation in terms of dependency with the partition
capturing the dependencies.

The starting point of existing dependency-seeking
methods is the probabilistic interpretation of CCA
given in Bach & Jordan (2005). In Klami &
Kaski (2007) a Dirichlet prior Gaussian mixture for
dependency-seeking clustering is introduced. How-
ever, as pointed out in Klami et al. (2010), when the
data are not normally distributed, this method can
suffer from a severe model mismatch problem. On ap-
plication to non-normally distributed data these mod-
els have to increase the number of clusters to achieve
a reasonable fit. Additional clusters are used to com-

1The term inter-view dependencies refers to the depen-
dence structure between the different views, whereas intra-
view dependencies refers to the dependence structure be-
tween the different dimensions of one view.
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pensate for the inadequate Gaussian assumption. The
components of these mixtures will not only be used
to reflect differences in dependence structures but will
also be used to approximate a non-Gaussian distri-
bution. As a result some points expressing a simi-
lar inter-view dependence can be assigned to different
groups and the interpretation of the clusters in terms
of dependencies is lost. Moreover, the model needs
to find a compromise between the cluster homogene-
ity and the approximation of a non-Gaussian mixture,
so that non-homogenous clusters might emerge. Fig-
ure 1 illustrates how several Gaussian components can
be used to approximate a beta density. An exponen-
tial family dependency-seeking method is proposed in
Klami et al. (2010) to overcome this problem. This
model can however be too restrictive when the views
are multidimensional. Although the 1-dimensional ex-
ponential family covers many interesting distributions,
only a few of them have convenient multivariate forms.
In particular their dependence structure between di-
mensions is often very restrictive. Another restriction
of that model is that all the dimensions in all the views
must have the same univariate distribution whereas in
practice different data sources are likely to produce
differently distributed data.
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Figure 1. Gaussian components approximating a beta den-
sity.

To overcome these limitations we take advantage of
the copulas framework to build a dependency-seeking
clustering method suitable for data with any type of
continuous densities. We use Gaussian copulas to con-
struct Dirichlet prior mixtures of multivariate distri-
butions with arbitrary continuous margins, the only
restriction being that a density must exist. The model
combines the adaptability of Bayesian non-parametric
mixtures with the flexibility of copula-based distribu-
tions. Our approach focusses on Gaussian copulas for
two main reasons. Firstly, their parametrisation using

a correlation matrix covers many different dependence
patterns ranging from independence to comonotonic-
ity (perfect dependence). Secondly, the model can be
reformulated using multivariate Gaussian latent vari-
ables which enables efficient MCMC inference.

2. Dependency-seeking clustering

Consider a p-dimensional random vector (rv) X and
a q-dimensional rv Y which constitute two different
sources of information about an object of interest.
For example, several corporal measurements of a pa-
tient and the levels of different drugs administrated
can serve as two sources of information about a med-
ical treatment. We assume that X and Y have co-
occurring samples (x1, . . . , xn) and (y1, . . . , yn) with
xi ∈ Rp and yi ∈ Rq, i = 1, . . . , n. The probabilistic
interpretation of CCA given by Bach & Jordan (2005)
uses the following latent variable formulation:

Z ∼ Nd (0, Id) ,

(X,Y ) |Z ∼ Np+q (WZ + µ,Ψ) ,

where µ = (µx, µy) ∈ Rp+q, W =

(
Wx

Wy

)
∈ R(p+q)×d,

1 ≤ d ≤ min (p, q) and the covariance matrix Ψ has a
block diagonal form:

Ψ =

(
Ψx 0
0 Ψy

)
. (1)

They showed that the maximum likelihood estimate of
W is connected to the canonical directions and corre-
lations:

Ŵx = Σ̃xUxMx, Ŵy = Σ̃yUyMy,

where Σ̃x, Σ̃y are the sample covariance matrices, and
Ux and Uy are the first d canonical directions. Mx

and My are matrices such that MxM
T
y = Pd where Pd

is the diagonal matrix containing the first d canonical
correlations. Based on the above formulation, the fol-
lowing dependency-seeking clustering model is derived
in Klami & Kaski (2008) :

Z ∼ Mult (θ) , (2)

(X,Y ) |Z ∼ Np+q (µz,Ψz) , (3)

where Ψz has a block structure as in (1):

Ψz =

(
Ψzx 0

0 Ψzy

)
. (4)

and µz is a mean vector depending on Z. The latent
variable Z now represents the clustering assignment.
A key property of this model is the block diagonal
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structure of the covariance matrix Ψz. This special
form implies that given the cluster assignment the two
views are independent, thereby enforcing the cluster
structure to capture all the dependencies. This model
however explicitly makes a conditional Gaussian as-
sumption and can perform badly when data within
a cluster are non-normally distributed as mentioned
in section 1. To relax this normality assumption, we
present a dependency-seeking clustering model con-
structed using Gaussian copulas which can be applied
to almost any type of continuous data.

3. Copulas and Gaussian copulas

A multivariate distribution is constituted of univariate
random variables related to each other by a depen-
dence mechanism. Copulas provide a framework to
separate the dependence structure from the marginal
distributions. Formally, a d-dimensional copula is a
multivariate distribution function C : [0, 1]d → [0, 1]
with standard uniform margins. The following theo-
rem Sklar (1959) states the relationship between cop-
ulas and multivariate distributions.

Theorem 1. (Sklar) Let F be a joint distribution
function with margins F 1, . . . , F d. Then there exists
a copula C : [0, 1]d → [0, 1] such that

F
(
x1, . . . , xd

)
= C

(
F 1
(
x1
)
, . . . , F d

(
xd
))
. (5)

Moreover, if the margins are continuous, then this
copula is unique. Conversely, if C is a copula and
F 1, . . . , F d are univariate distribution functions, then
F defined as in (5) is a multivariate distribution func-
tion with margins F 1, . . . , F d.

Gaussian copulas constitute an important class of cop-
ulas. If F is a Gaussian distribution Nd (µ,Σ) then
the corresponding C fulfilling equation (5) is a Gaus-
sian copula. Since Gaussian copulas are invariant
to strictly increasing transformations, the copula of
Nd (µ,Σ) is the same as the copula of Nd (0, P ) as
mentioned in McNeil et al. (2005), where P is the cor-
relation matrix corresponding to the covariance matrix
Σ. Thus a Gaussian copula is uniquely determined by
a correlation matrix P and we denote a Gaussian cop-
ula by CP . Using theorem 1 with CP , we can construct
multivariate distributions with arbitrary margins and
a Gaussian dependence structure. These distributions,
called meta-Gaussian distributions, provide a natural
way to extend models based on a multivariate normal-
ity assumption.

When using a Gaussian copula we do not attempt
to directly model the correlation of the original vari-
ables, but instead we first apply the transformation

Φ−1
(
F j( . )

)
to every margin to obtain normally dis-

tributed variables Φ−1
(
F j(Xj)

)
∼ N1 (0, 1) , where Φ

is the standard Gaussian cumulative distribution func-
tion, and then use P to describe their correlation. We
finally note that zero values in P encode independence
between the corresponding marginal variables. There-
fore, if P has a block diagonal structure as in (1), the
conditional independence of X|Z and Y |Z, which was
a key property of equation (3), will be preserved in a
meta-Gaussian model.

Multivariate distributions constructed using Theorem
1 do not necessarily possess a density function. When
a density exist it can be written as:

f(x1, . . . , xd) = c
(
F 1(x1), . . . , F d(xd)

) d∏
j=1

f j(xj),

(6)

where

c(u1, . . . , ud) =
∂C(u1, . . . , ud)

∂u1 . . . ∂ud
, (7)

is the copula density of C. For cases where c has a
simple closed form we can obtain an analytical expres-
sion for f using (6). This is true for the multivariate
normal case and equation (6) becomes:

f(x) = |P |− 1
2 exp

{
−1

2
x̃T (P−1 − I)x̃

} d∏
j=1

f j(xj),

(8)
where x̃j = Φ−1

(
F j(xj)

)
, x = (x1, . . . , xd), x̃ =

(x̃1, . . . , x̃d). We denote this density by M(θ, P ),
where θ is the vector containing all parameters of the
marginal distributions.

4. Multi-view clustering with
meta-Gaussian distributions

4.1. Model specification

Consider the two rv X =
(
X1, . . . , Xp

)
and Y =(

Y 1, . . . , Y q
)
. We assume their joint distribution is a

Dirichlet prior mixture (DPM) given by:

f(X,Y )(x, y) =

∫ ∫
f(X,Y )|θ,P (x, y)dµθ,PdµG(λ,G0),

where µG is the distribution of a Dirichlet process (Fer-
guson, 1973) with base distribution G0 and concentra-
tion parameter λ. The novelty here is the choice of
f(X,Y )|θ,P . We model the marginal distributions and
the dependence structure separately to allow for more
freedom:
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1. The margins can be arbitrary continuous distribu-
tions (providing the corresponding density exists):

Xj |θ = Xj |θjx ∼ F
j
X|θ, j = 1, . . . , p,

Y j |θ = Y j |θjy ∼ F
j
Y |θ, j = 1, . . . , q,

where θ =
(
θ1x, . . . , θ

p
x, θ

1
y, . . . , θ

q
y

)
. Note here that

F jX|θ can be different types of distributions for the

multiple dimensions j.

2. The dependence structure is then specified by a
Gaussian copula CP with correlation matrix P
having a block diagonal structure as in (1).

3. Finally the constructed multivariate distribution
will have the form:

F(X,Y )|θ,P (x, y) = CP

(
F 1
X|θ
(
x1
)
, . . . , F qY |θ (xq)

)
.

(9)

4.2. Bayesian inference

Separating the modelling task between specification of
the margins and specification of the dependence struc-
ture simplifies the choice of the prior distributions. If
we assume a priori independence for θ and P we can
specify prior distributions for the margins and sepa-
rately choose a prior for the parameters of the copula
CP . We specify independent prior distributions for the

blocks Px and Py, where P =

(
Px 0
0 Py

)
. For Px

and Py we choose the marginally uniform prior given in
Barnard et al. (2000). This prior is a multivariate dis-
tribution on the space of correlation matrices with uni-
form margins, i.e. Pij is a uniform variable for i 6= j,
and is connected to the inverse-Wishart distribution:
if a covariance matrix Ψ ∈ Rd×d is standard inverse-
Wishart distributed with parameter Id and d + 1 de-
grees of freedom, then the corresponding correlation
matrix R follows the marginally uniform prior distri-
bution.

Figure 2. Graphical representation of the infinite copula
mixture model with base measure G0 and concentration
λ. Left side: the original model, right side: the model aug-
mented for sampling, where C denotes cluster assignment.

Inference can be done using MCMC sampling meth-
ods for Dirichlet process mixture models. We use a

sampling scheme for models with non-conjugate prior
given in Neal (2011). The method, detailed in Al-
gorithm 1, is composed of three steps: a modified
Metropolis-Hastings step, partial Gibbs sampling up-
dates and an update of the parameters θ, P. In the
third step we need to update the parameters of every
cluster according to their posterior distribution. Since
we cannot sample directly from this conditional pos-
terior we developed a sampling scheme similar to the
algorithm proposed in Hoff (2007). The main idea is to
overparametrize the model by introducing a normally
distributed latent vector (X̃, Ỹ ). The variables in the
complete model are then given by:

(X̃, Ỹ ) ∼ Np+q(0,Σ),

(X,Y ) ∼M(θ, P ),

C ∼ CRP(λ),

where Σ is a covariance matrix with corresponding cor-
relation matrix P and C denotes the cluster assign-
ments following a Chinese restaurant process distribu-
tion. Figure 2 gives a representation of the complete
model. In the MCMC scheme we can easily sample
Σ conditioned on (X,Y ), (X̃, Ỹ ) and θ, since we can
use the conjugacy property of prior and conditional
likelihood. A sample of the correlation matrix can be
otained as P(X̃), the correlation matrix of the random
vector X̃. The posterior updates of the parameters are
detailed in Algorithm 2. The notations θ?j ,P(X̃)?j

are used to emphasize that the corresponding vector
or matrix is considered as a function of θj , X̃j and pa-
rameters for the other dimensions are treated as con-
stants.

5. Experiments

5.1. Simulated data

We simulate two different 2-dimensional multi-view
data sets with Gaussian intra-view dependence struc-
ture. The marginal distributions are Gaussian in the
first view, and beta or exponential in the second. Each
data set is composed of two clusters which can be iden-
tified only by considering the inter-view dependencies.
We first simulated data points with a single cluster
structure in each view but a strong positive depen-
dence between the first dimensions of the views, i.e.
between X1 and Y 1. In a second step we separated
the data in two groups of unequal size and randomly
permuted their order within groups to suppress any
inter-view dependency within these groups. Figure 3
(bottom left panel) shows the resulting cluster struc-
ture in the joint space of the two views recovered by
the copula mixture model. Parameters used for the
simulations can be found in Table 1.
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Algorithm 1 Markov Chain Sampling

C1, . . . , Cn are the latent variables of the cluster as-
signments.
θCi and PCi are the parameters for cluster Ci.
n−i,c is the number of datapoints in cluster c ex-
cluding observation i.
C−i = {C1, . . . , Ci−1, Ci+1, . . . , Cn}.
repeat

for i = 1, . . . , n do
if there exists k such that Ck = Ci then

Create a new cluster C∗i with parameters θ∗

and P ∗ drawn from G0;
Change Ci to C∗i with probability

min

(
1, λ

n−1
f(X,Y )|θ∗,P∗ (x,y)

f
(X,Y )|θCi ,PCi (x,y)

)
;

else
Draw C∗i from C−i with P(C∗i = c) =
n−i,c/(n− 1). Change Ci to C∗i with proba-

bility min

(
1, n−1λ

f(X,Y )|θ∗,P∗ (x,y)

f
(X,Y )|θCi ,PCi (x,y)

)
;

end if
end for
for i = 1, . . . , n do

if there exists k such that Ck = Ci then
Choose a new value for Ci with P(C∗i = c) ∝
n−i,c
(n−1)f(X,Y )|θc,P c(x, y);

end if
end for
for c ∈ {C1, . . . , Cn} do

Update the parameters θc and P c as described
in Algorithm 2.

end for
until stopping criterion

Algorithm 2 Posterior updates of (θ, P ) | (X,Y )

For clarity we omit the cluster index c.

1.Sample θ|Σ, (X̃, Ỹ ), (X,Y )
for j = 1, . . . , p do

Draw θj using Metropolis-Hastings;
θj ∼ f(θj |θ−j , X̃,X) ∝M(θ?j ,P(X̃))π(θj)

end for
Apply the same procedure for Y ;

2. Sample (X̃, Ỹ )|θ,Σ, (X,Y )
for j = 1, . . . , p do

Draw X̃j using Metropolis-Hastings;
X̃j ∼ f(X̃j |X̃−j , θ,Σ, X) ∝M(θ,P(X̃)?j)N (0,Σ)

end for
Apply the same procedure for Ỹ ;

3. Sample Σ|(X̃, Ỹ ), θ, (X,Y ):
Draw Σx ∼ N (0,Σx)IW(p+ 1, Ip)

∼ IW(Ip +
∑n
i=1 X̃iX̃

T
i , p+ 1 + n);

Apply the same procedure to obtain Σy.

Table 1. Parameters used for the simulations.
Simulation 1

view 1: Normal µ (0, 0)
σ2 (1, 1)
(Px)12 0.9

view 2: Beta α (3, 1)
β (1, 10)
(Py)12 −0.5

Simulation 2
view 1: Normal µ (0, 0)

σ2 (1, 1)
(Px)12 0.9

view 2: Exponential λ (2.5, 2.5)
(Py)12 0.9

We compared the copula mixture (CM) with three
other methods: a Dirichlet prior Gaussian mixture
for dependency-seeking clustering (GM) as derived
in Klami & Kaski (2007), a non-Bayesian mixture
of canonical correlation models (CCM) (Vrac, 2010)
(Fern et al., 2005) and a variational Bayesian mixture
of robust CCA models (RCCA) (Viinikanoja et al.,
2010). CCM and RCCA both assume that the number
of clusters is known or can be determined as explained
in (Viinikanoja et al., 2010). In our comparison ex-
periments we gave as input for both methods the cor-
rect number of clusters, giving them the advantage of
this extra knowledge. Results presented in Figure 4
show that CM applied with the correct marginal dis-
tributions’ form produces a better classification. GM
does not perform well on those data sets because the
number of clusters is overestimated; the model com-
pensates for the inadequate Gaussian assumption by
multiplying the number of components and additional
clusters are created to approximate non-Gaussian dis-
tributions. Since the number of clusters in a Dirichlet
prior Gaussian mixture can be reduced by imposing
a too-strong prior on the variances, we modified the
prior information to enforce artificially high variances
in the second view until the mixture is forced to create
no more than two clusters. We report both results ob-
tained with less (GM1) and more (GM2) informative
priors. As can be seen in Figure 3, when strong prior
information is used to artificially reduce the number of
clusters, the GM cannot recover the true cluster struc-
ture. CCM and RCCA used with the correct number
of clusters as input perform comparatively, or better
than the GM but clearly worse than CM for those data
sets having non-linear inter-view dependencies.

5.2. Real data

We perform a combined analysis of two data sets pro-
viding information about the regulation of gene ex-
pression in yeast under heat shock; each data set be-
ing treated as one view. The first data set (pub-
lished in Gasch et al. (2000)) provides genes expres-
sion values measured at 4 time points. The second
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Figure 3. Scatterplot of the simulated data in the Gaussian
view (first view, top panel), in the beta view (second view,
middle panel) and in the joint space of the normal scores for
the two views where the two clusters can be clearly identi-
fied (bottom panel). The clustering results are shown for
the copula mixture (CM) and the Gaussian mixture with
two different priors (GM1 and GM2). CM perfectly recov-
ers the true cluster structure, whereas a model mismatch
problem prevents GM to find the correct clustering.
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Figure 4. Boxplot of the adjusted rand index over 100
(Gaussian-beta data on the left panel) and 50 (Gaussian-
exponential data on the right panel) simulations for the
copula mixture (CM), the Gaussian mixture with two dif-
ferent priors (CM1 and CM2), the non-Bayesian mixture
of CCA (CCM), and the robust CCA mixture (RCCA).
Friedman’s test with post-hoc analysis rejected, for both
experiments, the null hypothesis of equal medians between
CM and every other method (P-value < 0.005).

data set (given in Harbison et al. (2004)) contains
binding affinity scores for interactions between these
genes and 6 different binding factors. Similar data
have already been analysed in Klami & Kaski (2007).
5360 genes present in both views are clustered using a
Gaussian dependency-seeking clustering model (GM)
and using the copula mixture (CM). CM uses Gaus-
sian marginals in the first view and beta marginals
in the second view. Here the choice of the beta dis-
tribution is motivated by the fact that observations
in the second view are restricted to the [0, 1] interval.
For the univariate Gaussian margins we choose nor-
mal and inverse-gamma priors for mean and variance
respectively, whereas for the beta margins both shape
parameters have gamma priors. GM uses the standard
conjugate prior 2.

For different values of the concentration parameter
λ ∈ {0.01, 0.1, 1, 5, 10}, CM consistently estimates 8
clusters whereas GM estimated between 13 and 15
clusters. In this section we report the results ob-
tained with λ = 1. As we observed with the simulated
data more clusters need to be created by the Gaus-
sian mixture to compensate for the model mismatch.
This phenomenon is illustrated in Figure 5. The in-
terpretation of the clustering then becomes very ar-
duous since these additional clusters cannot be distin-
guished from those capturing the dependencies. An-
other interpretation problem clearly arises in the Gaus-
sian model when we look at the estimated intra-view
correlations. Two negative effects accumulate here;
first correlation can be an inadequate dependence mea-
sure for non-normally distributed data, and second the
additional split in many components can change the
cluster-specific intra-view dependence as illustrated in
Figure 6.

To understand what information one could gain by
dependency-clustering, we perform three additional
clustering of the same data: first we cluster the data-
points on each view separately, then we cluster them
in the complete product space of the joint views, i.e.
without imposing the constraint of a block structure
on the correlation matrix. Priors and hyperparam-
eters are kept constant over experiments. CM finds
four clusters in the first view as well as in the sec-
ond view. Clustering in the product space with full
correlation matrix again leads to four groups. Fig-
ure 7 illustrates how the three main clusters found in
the complete product space are further separated by
dependency-seeking clustering, showing dependencies
between the two views.

2The use of conjugate prior does not, in general, in-
crease the number of clusters as shown in Rasmussen &
Görür (2010).
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Figure 5. Histogram of the binding affinity scores for the
binding factors GAT1 and YAP1. The estimated densities
of the 8 clusters discovered by CM are represented as col-
ored lines in the top panel. Estimated densities of the 14
clusters found by GM are shown in the bottom panel. The
black dashed lines represent the total density resulting of
the mixture.
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Figure 6. Correlations estimated with GM (left panel) and
correlations of the normal scores estimated by CM (right
panel) between HSF1 and the five other binding factors.
In the Gaussian model the correlation between HSF1 and
YAP1 seems to vary drastically with the clusters. In CM
this correlation has stable positive values for all clusters
with the exception of the last cluster. Since the binding fac-
tors HSF1 and YAP1 are both activated by the substance
menadione as explained in Hohmann & Mager (2003), we
can expect that their binding affinities are positively cor-
related and independent of the cluster.

Figure 7. The bottom panel represents in different colors
the cluster indices for all genes (reordered by cluster as-
signment) as obtained using dependency-seeking clustering
with CM. The top panel shows the cluster indices obtained
when clustering in the complete product space, i.e using
CM with a full correlation matrix instead of a restricted
block diagonal matrix. This illustrates how existing groups
are further separated into smaller clusters expressing inter-
view dependencies.

As mentioned in section 1, GM cannot exclusively fo-
cus on compact clusters because it needs to find a
compromise between the cluster homogeneity and the
approximation of a non-Gaussian mixture. As a re-
sult, non-homogenous clusters might emerge which are
needed to fit the margins despite model mismatch. To
test if this phenomenon is present here, we perform a
gene ontology enrichment analysis (GOEA) using GO-
rilla (Eden et al., 2009). GOEA is used to test if some
of the biological processes associated with the genes
are over-represented in the clusters, thereby provid-
ing a quality measure for the clustering. The analysis
shows that 3 out of 14 clusters (these 3 clusters rep-
resenting together 17,3% of the data points) found by
GM do not express any significant enrichment. By con-
trast, all 8 clusters produced by CM express a highly
significant enrichment and every cluster can be associ-
ated with a specific biological processes, e.g. the two
largest clusters can be interpreted as groups of genes
involved in organelle organization and meiosis respec-
tively. The clear difference in the enrichment analysis
results between GM and CM demonstrates that the
quality of the clustering is indeed impaired when a
model with inadequate margins is used.

6. Conclusion

A fundamental aspect in dependency-seeking cluster-
ing is that the partition possesses a semantic interpre-
tation in terms of dependency: the dependencies are
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captured by the cluster structure. This interpretation
is however only valid when the model is rich enough to
properly fit each view, which can be particularly dif-
ficult to achieve for non-Gaussian data with existing
models. This task becomes even more arduous when
the dimensions of the views increase since the model
then needs to adequately fit every margin while allow-
ing for a sufficiently rich intra-view dependence struc-
ture. The copula mixture model offers enough flexibil-
ity to cover both aspects: the margins can be specified
separately for each dimension and the Gaussian copula
allows for a wide range of intra-view dependencies. Us-
ing a Gaussian copula also facilitates the inference and
we provide an efficient MCMC scheme. Experiments
on simulated data show that the copula mixture model
significantly improves the clustering results. In a large-
scale real-world clustering problem of genes expres-
sion data and genes binding affinities, the dependency-
seeking copula mixture model produces a clustering
solution that significantly differs from those obtained
on the single views or on the product space, and from
that obtained by the standard Gaussian model which
clearly suffered from model-mismatch problems. De-
tailed analysis of the functional annotation of the genes
in the clusters discovered by dependency-seeking CM
shows that the induced cluster structure allows a plau-
sible biological interpretation in that the groups are
clearly enriched by genes involved in distinct biologi-
cal processes.
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