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Abstract

We study the problem of supervised lin-
ear dimensionality reduction, taking an
information-theoretic viewpoint. The linear
projection matrix is designed by maximiz-
ing the mutual information between the pro-
jected signal and the class label. By harness-
ing a recent theoretical result on the gradi-
ent of mutual information, the above opti-
mization problem can be solved directly us-
ing gradient descent, without requiring sim-
plification of the objective function. Theo-
retical analysis and empirical comparison are
made between the proposed method and two
closely related methods, and comparisons are
also made with a method in which Rényi
entropy is used to define the mutual infor-
mation (in this case the gradient may be
computed simply, under a special parame-
ter setting). Relative to these alternative
approaches, the proposed method achieves
promising results on real datasets.

1. Introduction

The analysis of high-dimensional data is of interest in
many applications. To reduce the cost of data process-
ing, and to increase the interpretability of the data,
one typically employs dimensionality reduction as a
pre-processing step. It also plays the role of regular-
ization for the data. Although nonlinear dimensional-
ity reduction methods (Tenenbaum et al., 2000; Song
et al., 2007) have become popular recently, linear di-
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mensionality reduction methods still play an impor-
tant role, mainly due to their simplicity. Linear dimen-
sionality reduction based on random projections has
gained significant attention recently, as a result of suc-
cess in compressive sensing (Candes & Wakin, 2008)
and other applications (Liu & Fieguth, 2012). How-
ever, random projections may not be the best choice
if we know the statistical properties of the underlying
signal (Duarte-Carvajalino & Sapiro, 2009). Hence,
an important question to be answered is how to de-
sign the projection matrix so that the measurement is
the most informative.

In this paper we focus on projection design for classi-
fication, or supervised dimensionality reduction. Lin-
ear Discriminant Analysis (LDA) (Fisher, 1936) is one
of the most important supervised dimensionality re-
duction methods. The design criterion of LDA max-
imizes the between-class scattering while minimizing
the within-class scattering of the projected data, with
these two criteria addressed simultaneously. It has
been proven that under mild conditions this criterion
is Bayes optimal (Hamsici & Martinez, 2008). How-
ever, this method has two disadvantages. First, the
dimensionality of the projected space in LDA can only
be less than the number of data classes, which greatly
restricts its applicability. Second, LDA only uses first
and second order statistics of the data, ignoring higher-
order information. To overcome these two disadvan-
tages, other criteria have been proposed in the liter-
ature (Tao et al., 2009), out of which an important
category is the information-theoretic criterion.

In the information-theoretic approach, the projection
matrix is designed by maximizing the mutual informa-
tion (MI) between the projected signal and the class la-
bel (Torkkola, 2003; 2001; Nenadic, 2007; Kaski & Pel-
tonen, 2003; Hild et al., 2006). Intuitively, the larger
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the mutual information is, the better it is for the pro-
jected signal to recover the label information. Theoret-
ically, the Bayes classification error is bounded by the
MI (Nenadic, 2007) (based on a Shannon entropy mea-
sure). However, the MI is not easy to calculate, posing
a significant obstacle to its optimization. Almost all
existing information-theoretic-based algorithms seek
an approximation to the Shannon MI, hence compro-
mising the objective function. For example, in recent
studies (Torkkola, 2003; 2001; Hild et al., 2006), the
quadratic mutual information (with quadratic Rényi
entropy) is used instead of the Shannon-based MI;
this is because with the use of quadratic Rényi en-
tropy, the gradient of MI can be calculated analytically
under the assumption of a Gaussian mixture model
(GMM) signal model. In the work of (Kaski & Pel-
tonen, 2003), the Shannon MI is approximated by its
empirical estimation on the training data. Using Infor-
mation Discriminant Analysis (IDA) (Nenadic, 2007),
the entropy of the GMM in the MI calculation, where
the higher-order information comes into play, is ap-
proximated with the entropy of a global Gaussian dis-
tribution, which again loses the higher-order informa-
tion. The LDA method, although not proposed under
the information-theoretic criterion, can also be viewed
as an approximation to the MI objective function.

The main contribution of this paper is to show that the
use of Shannon MI optimization, for linear feature de-
sign in classification, can be solved directly, without
compromising or simplifying the objective function.
The key tool is a theoretical result that recently ap-
peared in the communications literature, which gives
an explicit expression for the gradient of Shannon MI
with respect to the projection matrix in linear vec-
tor Gaussian channels (Palomar & Verdu, 2006). This
theorem has found applications in the area of precoder
design for communication systems (Xiao et al., 2011;
Carson et al., 2012), but is not widely appreciated
in the machine learning and signal processing com-
munities, except for a few papers on optical imaging
system design (Ashok et al., 2008; Baheti & Neifeld,
2009). Our paper is the first to apply this theorem to
the supervised dimensionality reduction problem. As
a result, we obtain a new explicit expression for the
gradient of the Shannon MI objective function for any
input signal distribution, which is not achieved in any
of the methods mentioned above. Consequently, nu-
merical optimization methods (e.g., gradient descent)
can be applied. Since we make no assumptions on the
input signal distribution in each class, our analytical
result is very general and can be applied to a broad
spectrum of applications. Additionally, we perform
a theoretical analysis of this design metric, providing

new insights. To connect to the quadratic mutual in-
formation approach (Torkkola, 2003; 2001), we adopt
the mixture-of-GMMs signal model.

2. Main Result

Suppose the label and data are generated i.i.d. via
the following process: c ∼ Mult(c; 1,w); x|c ∼ p(x|c)
where w ∈ RM×1 is the prior distribution on the M
classes, x ∈ Rp×1 is the original signal, and p(x|c)
is the data distribution for class c. Hence the joint
density is p(x, c) = wcp(x|c), and the global signal
density can be written as

p(x) =

M∑
m=1

wmp(x|m). (1)

Here we make no assumption on the form of p(x|m);
hence the above signal model is very general. We do
assume that w and p(x|m) are known or can be esti-
mated from training data.

In supervised dimensionality reduction, we seek a pro-
jection matrix Φ ∈ Rd×p such that the projected signal

y = Φx+ ε (2)

is the most informative in identifying the underlying
class label c. We assume the measurement noise ε
is Gaussian, i.e., p(y|x) = N (y; Φx,R−1) where R
is the known noise precision matrix. We adopt the
information-theoretic criterion (Nenadic, 2007) as

max
Φ

I(C;Y ) s.t. ΦΦ> = Id (3)

where C and Y represent c and y as random variables,
I(C;Y ) denotes the MI, and the orthonormality con-
straint is common in the literature (Nenadic, 2007).
Intuitively, the larger the MI is, the better it is for
the projected signal y to predict the latent class la-
bel c. Theoretically, there is also a strong justification
for the above criterion. The Bayes classification er-
ror, defined as Pe =

∫
p(y)(1 − maxc p(c|y))dy, can

be bounded by I(C;Y ) as follows (Hellman & Raviv,
1970; Fano, 1961; Nenadic, 2007)

H(C|Y )−H(Pe)

logM
≤ Pe ≤

1

2
H(C|Y ) (4)

where H(C|Y ) = H(C)−I(C;Y ) and 0 ≤ H(Pe) ≤ 1.
Hence, the smaller H(C|Y ) the tighter the bound will
be for Pe, and minimizing H(C|Y ) corresponds to
maximizing I(C;Y ). Note that (4) is based on a Shan-
non definition of entropy (e.g., not a Rényi entropy
measure (Torkkola, 2003), with a comparison to re-
sults based on Rényi entropy discussed below). Unless
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stated otherwise, all measures of entropy and differen-
tial entropy discussed below are based on a Shannon
definition (Cover & Thomas, 2006).

In order to solve the optimization problem in (3), we
first introduce a theoretical result that appeared in the
communications literature:

Theorem 1. (Palomar & Verdu, 2006) Given the
measurement model in (2), the gradient of mutual in-
formation I(X;Y ) with respect to the projection ma-
trix Φ can be expressed as

∇ΦI(X;Y ) = RΦΣ (5)

where Σ =
∫
p(y)

∫
p(x|y)(x− xy)(x− xy)>dxdy is

the MMSE matrix, and xy =
∫
xp(x|y)dx is the pos-

terior mean.

This theorem provides a connection between infor-
mation theory and estimation theory, by linking the
gradient of mutual information to the MMSE ma-
trix. It has found applications in precoder design
for communications systems (Xiao et al., 2011; Car-
son et al., 2012). However, the power of this theorem
has not been widely applied in the machine learning
and signal processing communities. The only studies
we found are (Ashok et al., 2008; Baheti & Neifeld,
2009) which use the above theorem to design optical
imaging systems. This paper is the first work to apply
and extend the above theorem to the supervised linear-
dimensionality-reduction problem. Our main result is
summarized in the following new theorem:

Theorem 2. Given the measurement model in (2) and
the multi-class signal model in (1), the gradient of mu-
tual information I(C;Y ) with respect to the projection
matrix Φ can be expressed as

∇ΦI(C;Y ) = RΦΣ̃ (6)

with the equivalent MMSE matrix Σ̃ expressed as

Σ̃ = Σ−
M∑

m=1

wmΣm (7)

=

M∑
m=1

wm

∫
p(y|m)(xy(m)− xy)(xy(m)− xy)>dy

where Σ is the global MMSE matrix with input dis-
tribution p(x) and posterior mean xy, and Σm is the
local MMSE matrix with input distribution p(x|m) and
posterior mean xy(m).

Proof. Since I(C;Y ) = h(Y )− h(Y |C) = I(X;Y )−
I(X;Y |C) and p(x) =

∑M
m=1 wmp(x|m), according

to Theorem 1, ∇ΦI(C;Y ) is equal to

∇ΦI(X;Y )−∇ΦI(X;Y |C)=RΦ(Σ−
M∑

m=1

wmΣm)

where Σ and Σm are the global and local MMSE ma-
trix with input distribution p(x) and p(x|m) respec-
tively. From Bayes rule,

p(x|y) =
p(x)p(y|x)

p(y)
=

∑M
m=1 wmp(x|m)p(y|x)∑M

m=1 wmp(y|m)

=

∑M
m=1 wmp(y|m)p(x|y,m)∑M

m=1 wmp(y|m)
=

M∑
m=1

w̃mp(x|y,m)

w̃m = p(m|y) =
wmp(y|m)∑M

m′=1 wm′p(y|m′)
=
wmp(y|m)

p(y)
;

p(x|y,m) =
p(x|m)p(y|x)

p(y|m)
; xy(m) =

∫
xp(x|y,m)dx

xy =

∫
xp(x|y)dx =

M∑
m=1

w̃mxy(m).

(8)

Consequently, we have

Σ=

∫
p(y)

∫ M∑
m=1

w̃mp(x|y,m)(x−xy)(x−xy)>dxdy

=

∫ M∑
m=1

wmp(y|m)(

∫
p(x|y,m)(x−xy(m))(x−xy(m))>dx

+ (xy(m)−xy)(xy(m)−xy)>)dy

=

M∑
m=1

wm(Σm+

∫
p(y|m)(xy(m)−xy)(xy(m)−xy)>dy)

since Σm =
∫
p(y|m)

∫
p(x|y,m)(x − xy(m))(x −

xy(m))>dxdy and p(y)w̃m = wmp(y|m). Conse-
quently, equation (7) is proved.

The significance of Theorem 2 is that we obtain an ex-
plicit expression for the gradient of the MI objective
function in (3) under any input signal distribution (1).
Consequently, numerical optimization methods (e.g.,
gradient descent) can be applied to solve (3). The
equivalent MMSE matrix in (7) can be computed via
Monte Carlo simulation and Bayesian inference (we
discuss in Section 4 how we do this in practice). Our
analytical result in Theorem 2 is very general, in the
sense that we make no assumption on the signal dis-
tribution in each class. The algorithm can be summa-
rized in the following steps:
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1. Obtain the input signal distribution in (1) from
training data. Initialize Φ.

2. Compute the equivalent MMSE matrix in (7) via
Monte Carlo simulation.

3. Compute the gradient in (6) and update the pro-
jection matrix as Φ ← orth(Φ + η∇ΦI(C;Y )),
where η is the step size and orth(A) means pro-
jecting A to an orthonormal matrix.

4. If converge, stop. Otherwise, go to step 2.

3. Theoretical Analysis

The orthonormal constraint on the projection matrix
complicates the theoretical analysis of the optimal de-
sign. By relaxing this constraint and instead consid-
ering a power constraint we can leverage more results
from communications and recent work in image recon-
struction (Carson et al., 2012). The relaxed problem
is

max
Φ

I(C;Y ) s.t.
1

d
tr
(
ΦΦ>

)
= 1 (9)

where the trace constraint ensures that the rows of the
projection matrix have on average unit-norm.

The following theorem characterizes the optimal pro-
jection matrix for the relaxed problem in terms of
the singular value decompositions (SVD) of the noise
covariance R−1 = U>R D−1R UR and the equivalent

MMSE matrix Σ̃ = UΣ̃ DΣ̃ U
>
Σ̃

.

Theorem 3. Given the measurement model in (2) and
the multi-class signal model in (1), the projection ma-
trix Φ which optimizes the relaxed problem in (9) can
be expressed via its SVD as Φ? = U?

Φ D?
Φ V ?>

Φ where
D?

Φ is a square diagonal matrix of optimal singular
values and the orthonormal matrices of optimal singu-
lar vectors are U?

Φ = UR and V ?
Φ = UΣ̃? Π? for some

optimal permutation matrix Π?.

Proof. From the KKT optimality conditions we know

∇Φ

{
−I(C;Y )− η ·

[
1− 1

d
tr
(
ΦΦ>

) ]} ∣∣∣∣
Φ=Φ?

= −R Φ?Σ̃? + 2
η

d
·Φ? = 0

where the Lagrange multiplier η ≥ 0, Σ̃? is the equiva-
lent MMSE matrix associated with the optimal projec-
tion matrix Φ? and we have used the gradient result
in Theorem 2. The optimal projection matrix must
therefore also satisfy

2
η

d
·Φ?Φ?> = R

(
Φ?Σ̃?Φ?>

)
. (10)

The left-hand side of this equation is symmetric and
is diagonalized by U?>

Φ , which means that matrices R
and Φ?Σ?Φ?> commute and are simultaneously diag-
onalized by U?>

Φ . We can therefore write without loss
of generality the optimal unitary matrices as

U?
Φ = UR Π?

UDU ; V ?
Φ = UΣ̃?Π?

VDV

where DU and DV are diagonal matrices with unit
modulus diagonal elements, and Π?

U and Π?
V are per-

mutation matrices. Noting that the action of the two
permutation matrices can be captured by a single per-
mutation matrix Π? and both mutual information and
the MMSE matrix are independent of the unit modu-
lus matrices, the result follows.

The characterization in Theorem 3 of the projection
matrix for the relaxed problem provides possible so-
lutions to (3). For example, by setting the diagonal
matrix D?

Φ to be the identity matrix we satisfy the or-
thonormal constraint on the projection matrix. This
could be useful in the implementation of the gradient
descent algorithm. For example,

• Theorem 3 takes the form of a fixed-point equa-
tion and could be used as stopping criteria in the
proposed algorithm that indicates convergence.

• It is not known whether the mutual information is
concave in Φ, Theorem 3 suggests an alternative
(or extension) to gradient descent that could help
avoid local optima.

• The projection matrix now consists of two rota-
tion matrices, one of which always diagonalizes
the noise which simplifies the calculation of the
gradient.

A solution to the relaxed problem will necessarily be
better than or equal to a solution to (3), since the con-
straint in (3) is a subset of that in (9) . Therefore the
mutual information can be further improved by opti-
mization over the singular values of the projection ma-
trix. In the signal reconstruction scenarios in commu-
nications and image reconstruction, the mutual infor-
mation is known to be concave in the squared singular
values of the projection matrix when U?

Φ = UR (Car-
son et al., 2012). This property can be used to give
guarantees on convergence. However, the mutual in-
formation is not concave in this scenario. Nevertheless,
by inserting the result for the optimal orthonormal
matrices back into (10), the optimal squared singular
values of the projection matrix satisfy

2
η

d
D2?

Φ = D2?
Φ D?

R

(
Π?>D?

Σ̃
Π?
)
.
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The equivalent MMSE matrix is a function of the pro-
jection matrix and therefore either

[
D2?

Φ

]
ii

is chosen
to satisfy

2
η

d
= [D?

R]ii

[
Π?>D?

Σ̃
Π?
]
ii

or if no solution exists we choose
[
D2?

Φ

]
ii

= 0. Note
that from (7) in Theorem 2 we know that the equiva-
lent MMSE matrix is positive semi-definite.

4. Mixture of GMMs Signal Model

In this section we focus on a specific signal input distri-
bution, the mixture-of-GMMs signal model, in which
signal from each class m is modeled as a Gaussian
Mixture Model (GMM), i.e.,

p(x|m) =

Om∑
o=1

πmoN (x;µmo,Ωmo) (11)

where Om is the number of Gaussian components for
class m. As a result, the density in (1) reduces to

p(x) =

M∑
m=1

wm

Om∑
o=1

πmoN (x;µmo,Ωmo)

which is the mixture-of-GMMs signal model.

Under this specific signal model, the general Bayesian
inference in (8) reduces to the inference of x under
GMM priors. According to (Chen et al., 2010), the
detailed Bayesian inference can be derived as

p(x|y)=

M∑
m=1

w̃mp(x|y,m)

p(x|y,m)=

Om∑
o=1

π̃moN (x; µ̃mo, Ω̃mo)

Ω̃mo=(Φ>RΦ+Ω−1mo)−1; µ̃mo=Ω̃mo(Φ>Ry+Ω−1moµmo)

p(y|m)=

Om∑
o′=1

πmo′N (y; Φµmo′ ,ΦΩmo′Φ
>+R−1)

π̃mo =πmoN (y; Φµmo,ΦΩmoΦ
>+R−1)/p(y|m)

w̃m =
wmp(y|m)∑M

m′=1 wm′p(y|m′)
.

The marginal density p(y) =
∑M

m′=1 wm′p(y|m′) ex-
pressed in the denominator of w̃m is also a mixture
of GMM. The Matrix Inversion Lemma can be used
to expedite the computations. Using the above equa-
tions, the equivalent MMSE matrix in (7) can be read-
ily computed via Monte Carlo draws from p(y), with
xy and xy(m) provided by the above inference. More-
over, the inference naturally induces a Bayes clas-
sifier maxc p(c|y) where p(c|y) = w̃c. We will use
this mixture-of-GMMs signal model and the induced
Bayesian classifier in the experiments.

5. Related Methods

Information-theoretic supervised dimensionality re-
duction was studied in (Torkkola, 2003; 2001). Instead
of using Shannon entropy to define the mutual infor-
mation, they used quadratic Rényi entropy to define a
quadratic mutual information as

IT (C;Y ) =
∑

c

∫
(p(y, c)− p(y)p(c))2dy

where p(c) = wc, and p(y) is a mixture-of-GMMs de-
fined in the same way as that in Section 4. The main
advantage of using quadratic Rényi entropy is that the
quadratic mutual information and its derivative can
be expressed analytically for the GMM signal model
without Monte Carlo simulations, due to the following
property of Gaussian:∫
p(y|m)p(y|c)dy=

∫ Om∑
o=1

πmoN (y;Φµmo,ΦΩmoΦ
>+R−1)

×
Oc∑
r=1

πcrN (y; Φµcr,ΦΩcrΦ
>+R−1)dy

=

Om∑
o=1

Oc∑
r=1

πmoπcrN (0;Φ(µmo−µcr),Φ(Ωmo+Ωcr)Φ>+2R−1).

In this paper, we will use a similar but different defi-
nition of quadratic mutual information

I2(C;Y ) = h2(Y )−
M∑

m=1

wmh2(Y |m)

where h2(Y ) = − log
∫
p(y)2dy is the quadratic Rényi

entropy. This definition is more relevant to our Shan-
non entropy based approach, since by replacing h2(Y )
with h(Y ), I2(C;Y ) reduces to I(C;Y ). The opti-
mization of I2(C;Y ) is also straightforward, since the
gradient can be expressed analytically due to the above
property of Gaussians. We will compare this Rényi en-
tropy based approach to our Shannon entropy based
approach in the experiments. We emphasize that both
IT (C;Y ) and I2(C;Y ) are approximations to I(C;Y )
for the sake of optimization, hence they cannot satisfy
the bound in (4).

The Information Discriminant Analysis (IDA) (Ne-
nadic, 2007) and Linear Discriminant Analysis
(LDA) (Fisher, 1936) are derived under GMM signal
model, which is a simplification and a special case
of the mixture-of-GMMs signal model discussed in
Section 4. It is interesting to compare our method
with these two quantitatively. In the GMM signal
model, the signal distribution in each class is mod-
eled as a single Gaussian, i.e., Om = 1 in (11) for
all m. Hence p(x|m) = N (x;µm,Σm) and p(x) =∑M

m=1 wmN (x;µm,Σm). Thus the Bayesian inference
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in Section 4 can be further simplified. Under this sim-
plified model assumption, the MI objective function in
(3) can be expressed as

I(C;Y ) = h(Y )−
M∑

m=1

wmh(Y |m)

= h(Y )− 1

2

M∑
m=1

wm log((2πe)d det(ΦΩmΦ> +R−1)).

As illustrated above, p(y) is also a GMM whose en-
tropy cannot be expressed analytically. To overcome
this problem, IDA approximates h(Y ) with a single
Gaussian entropy with the same covariance matrix as
the GMM p(y), hence the objective function can be
expressed as

IIDA(C;Y ) =
1

2
log((2πe)d det(ΦΩΦ> +R−1))

− 1

2

M∑
m=1

wm log((2πe)d det(ΦΩmΦ> +R−1))

where Ω =
∑M

m=1 wm(Ωm+(µm−µ)(µm−µ)>) is the

prior covariance matrix for x and µ =
∑M

m=1 wmµm is
the prior mean. Then the optimization of IIDA(C;Y )
can be solved via gradient descent (Nenadic, 2007).

The LDA method (Fisher, 1936) simultaneously max-
imizes the between-class scattering and minimizes the
within-class scattering of the projected data. It has
been proven that under mild conditions this criterion
is Bayes optimal (Hamsici & Martinez, 2008). The
LDA criterion can be expressed as

ILDA(C;Y ) =
1

2
log((2πe)d det(ΦΩΦ> +R−1))

− 1

2
log((2πe)d det(Φ(

M∑
m=1

wmΩm)Φ> +R−1)).

An analytical solution can be found for maximizing
ILDA(C;Y ), however the solution only permits the
number of projections d to be less than the class num-
ber M .

It is easy to prove that IIDA(C;Y ) ≥ I(C;Y )
(maximum entropy principle) (Nenadic, 2007) and
IIDA(C;Y ) ≥ ILDA(C;Y ) (concavity of log det(·)).
Clearly, only I(C;Y ) is the exact information-
theoretic principle satisfying the Bayes error bound in
(4), while the other two are approximations to the MI
objective function. Another advantage of our method
is that the higher-order information of the signal distri-
bution is preserved in the objective function via h(Y ),
while the other two methods only use first and sec-
ond order statistics of the data. Even though I(C;Y )
cannot be expressed analytically, the optimization can
still be done using the tool developed in Section 2.

6. Experiments

We test our method on three real datasets: Satellite,
Letter and USPS. The first two are used in IDA (Ne-
nadic, 2007) and can be downloaded from the UCI
Machine Learning Repository. The third one is a stan-
dard digit recognition dataset with higher feature di-
mensions, which can also be downloaded from the In-
ternet. A detailed description of the three datasets is
as follows:

1. The 36-dimensional feature vectors in the Satellite
data consist of pixel values of a 3×3 neighborhood
in 4 spectral channels. The label for the central
pixel belongs to one of the following six classes:
real soil, cotton crop, grey soil, damp grey soil,
soil with vegetation stubble and very damp grey
soil. The training set contains 4435 samples, and
the testing set contains 2000 samples.

2. The Letter data contains 16-dimensional feature
vectors (statistical moments and edge counts) ex-
tracted from character images for the 26 capital
letters (A to Z) with different fonts and random
distortions. The training set has 16000 such stim-
uli and the testing set 4000.

3. The USPS data contains grey scale images of di-
mension 16 × 16 = 256 for handwritten digits
(0 ∼ 9). There are 7291 training samples and
2007 testing samples.

The mixture-of-GMMs signal model is used, and the
GMM density for each class is learned on the training
data via the EM algorithm. Dirichlet Process (Blei &
Jordan, 2006) GMM learning with variational Bayes
inference was also tried to infer the mixture-of-GMMs
model, yielding similar results. Two settings for the
number of Gaussian components (Om) are considered:
Om = 1 for all m, which reduces to the GMM sig-
nal model, and Om = 10 for all m. The noise co-
variance matrix R−1 in (2) is set to be very small
(10−6Id). Four dimensionality reduction methods are
considered: LDA, IDA, the quadratic Rényi entropy
based method with objective function I2(C;Y ), and
the proposed Shannon entropy based method. For the
proposed method, 2000 Monte Carlo particles are sim-
ulated to compute the equivalent MMSE matrix, and
the step size for the gradient descent is set to be 0.01.
The Bayes classifier maxc p(c|y) is employed using the
learned signal model. The results are summarized in
the following tables.

We observe that for all cases, the proposed method
either gives the best performance, or is very near to
the best. The state-of-art performance on the USPS
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Table 1. Classification accuracies on the Satellite data.
The number in the parentheses is the number of Gaussian
components (Om) for each class.

d LDA(1) IDA(1) Rényi(1) Proposed(1)
1 0.5650 0.6735 0.6880 0.7320
2 0.7835 0.7260 0.7860 0.8195
3 0.8415 0.8455 0.7955 0.8505
4 0.8470 0.8445 0.8170 0.8370
5 0.8445 0.8370 0.8200 0.8390
d LDA(10) IDA(10) Rényi(10) Proposed(10)
1 0.5595 0.6725 0.7275 0.7390
2 0.7890 0.7380 0.8095 0.8325
3 0.8635 0.8725 0.8150 0.8675
4 0.8750 0.8695 0.8550 0.8805
5 0.8770 0.8780 0.8500 0.8880

Table 2. Classification accuracies on the Letter data.

d LDA(1) IDA(1) Rényi(1) Proposed(1)
1 0.1812 0.1780 0.1812 0.1847
2 0.3785 0.3440 0.3485 0.3760
3 0.4715 0.4535 0.4965 0.4930
4 0.5715 0.5580 0.5580 0.6042
5 0.6285 0.6372 0.6425 0.6643
6 0.6927 0.6905 0.6900 0.7198
7 0.7210 0.7470 0.7073 0.7645
8 0.7515 0.7823 0.7470 0.7935
d LDA(10) IDA(10) Rényi(10) Proposed(10)
1 0.1832 0.1895 0.2220 0.2273
2 0.4430 0.4183 0.4402 0.4698
3 0.5675 0.5330 0.6020 0.6490
4 0.6950 0.6723 0.6763 0.7675
5 0.7558 0.7575 0.7190 0.8315
6 0.8167 0.8170 0.6830 0.8740
7 0.8515 0.8760 0.7225 0.8988
8 0.8840 0.9150 0.8213 0.9123

data was obtained in (Tao et al., 2009). By adopt-
ing a nearest neighborhood rule-based classifier, they
obtained classification accuracies of 0.7259, 0.8672,
0.8991 and 0.9182 using 3, 5, 7 and 9 designed projec-
tions respectively. Comparing to results in the table,
we see that the proposed method is very competitive.
Our strong result on this USPS dataset gives confi-
dence to our method in general. The reason for our
good performance is that we are directly maximizing
I(C;Y ), which bounds the Bayes classification error
Pe through (4). The larger I(C;Y ) is, the smaller
the upper bound of Pe will be. All other objective
functions (ILDA(C;Y ), IIDA(C;Y ) and I2(C;Y )) are
approximations to I(C;Y ), hence their performances
are generally weaker.

We also observe that the performance using the
mixture-of-GMMs signal model (Om = 10) is generally
better than that of the GMM signal model (Om = 1),
which is most obvious for the Letter dataset. This is

Table 3. Classification accuracies on the USPS data.

d LDA(1) IDA(1) Rényi(1) Proposed(1)
1 0.4694 0.3852 0.4654 0.5157
2 0.5994 0.4753 0.7354 0.7564
3 0.6761 0.5361 0.7947 0.8376
4 0.7967 0.5775 0.8371 0.8744
5 0.8555 0.6378 0.8605 0.8999
6 0.8819 0.7030 0.8809 0.9058
7 0.8894 0.7205 0.8814 0.9098
8 0.8889 0.7145 0.8789 0.9088
9 0.8939 0.7324 0.8899 0.9153
d LDA(10) IDA(10) Rényi(10) Proposed(10)
1 0.4629 0.3852 0.4694 0.5227
2 0.6064 0.4983 0.7339 0.7623
3 0.6816 0.5725 0.7962 0.8505
4 0.8067 0.6403 0.8351 0.8804
5 0.8635 0.7000 0.8450 0.9033
6 0.8884 0.7534 0.8485 0.9188
7 0.8944 0.7683 0.8371 0.9183
8 0.9003 0.7723 0.7947 0.9198
9 0.9033 0.7828 0.7728 0.9287

because the mixture of GMM can model the data more
precisely, which effectively improves the projection de-
sign and the Bayes classification.

The LDA and IDA method assume a GMM signal
model (Om = 1), hence the mixture of GMM signal
model (Om = 10) will not affect the projection design
for LDA and IDA. However, as explained earlier, a
finer signal model can help improve the classification
performance. This is why we often observe a higher
classification accuracy in LDA(10) (or IDA(10)) than
that in LDA(1) (or IDA(1)), even though the designed
projection matrices are exactly the same in the two
cases; the brackets (·) indicate the number of GMM
mixture components.

IDA performs poorly on the USPS data. This is be-
cause the global Gaussian approximation made in the
IIDA(C;Y ) objective function may not be appropri-
ate for the USPS data with so much heterogeneity.
The performance of the quadratic Rényi entropy based
method is competitive, especially on the USPS dataset
when d ≤ 4. However, it is generally not as good as the
proposed method, for reasons explained earlier. For all
three datasets we also considered random projections
designed based on draws from N (0, 1) with orthonor-
malization, and those were significantly worse than
those of LDA, IDA, Renyi and the proposed method.

In summary, the performance of the proposed method
is very promising. Its computational load is heavier
than LDA and IDA, but the performance gain war-
rants the effort. Moreover, the projection design is
done offline, so the testing speed will not be affected.
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7. Conclusion

By harnessing a recent theoretical result on the gradi-
ent of MI with respect to the projection matrix (Palo-
mar & Verdu, 2006), we have derived a new counter-
part theorem for supervised dimensionality reduction.
As a result, the Shannon MI objective function can
be optimized directly without any approximation. We
compared the proposed method to LDA, IDA and a
quadratic Rényi entropy based method, both theoret-
ically and empirically. Results on real datasets show
the advantage of the proposed method. This study
can be viewed as an example of how a research prod-
uct from one area (communications theory) can benefit
research in a seemingly different area (machine learn-
ing).
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