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Abstract

Online sequence prediction is the problem of
predicting the next element of a sequence
given previous elements. This problem has
been extensively studied in the context of in-
dividual sequence prediction, where no prior
assumptions are made on the origin of the
sequence. Individual sequence prediction al-
gorithms work quite well for long sequences,
where the algorithm has enough time to learn
the temporal structure of the sequence. How-
ever, they might give poor predictions for
short sequences. A possible remedy is to rely
on the general model of prediction with ex-
pert advice, where the learner has access to a
set of r experts, each of which makes its own
predictions on the sequence. It is well known
that it is possible to predict almost as well as
the best expert if the sequence length is order
of log(r). But, without firm prior knowledge
on the problem, it is not clear how to choose
a small set of good experts. In this paper we
describe and analyze a new algorithm that
learns a good set of experts using a train-
ing set of previously observed sequences. We
demonstrate the merits of our approach by
applying it on the task of click prediction on
the web.

1. Introduction

Sequence prediction is a key task in machine learn-
ing and statistics. It involves predicting the next ele-
ment in a sequence given the previous elements. Typ-
ical applications include stock market prediction, click
prediction in web browsing and consumption predic-
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tion in smart grids. Although the sequence prediction
problem has been well studied, current solutions either
work for long sequences or require strong prior knowl-
edge. In this work we provide a method that uses
training data to learn how to predict a novel sequence.
As we shall show, we use the training sequences to ob-
tain the prior knowledge needed for predicting novel
sequences.

Sequence prediction is most naturally cast as an online
prediction problem (Cesa-Bianchi and Lugosi, 2006),
where at every step we predict the next element, and
then receive the true value of the element while suf-
fering a loss if we made a prediction error. We are
then allowed to improve the model, and predict the
next step. The online formulation is natural in most
applications since the new element’s true value unfolds
in real time and we are interested in minimizing the
prediction loss of this process.

One classical approach to the problem is the so called
universal sequence prediction class of methods (Feder
et al., 1992; Hutter, 2006). Such methods guarantee
that asymptotically (with sequence size) the model
will achieve optimal prediction error. However, the
price we pay for universality is that good performance
will be reached only after seeing long sequences. Intu-
itively, the reason for this is that no prior knowledge
about the sequence is used, so it may take a while until
we have a good model of it.

An alternative approach which does introduce prior
knowledge is predicting with expert advice (Littlestone
and Warmuth, 1994; Vovk, 1990). Here one has a
set of r experts, where each expert is a sequence pre-
dictor. The Weighted-Majority algorithm (Littlestone
and Warmuth, 1994) uses such experts to do online
prediction, and is guaranteed to perform almost as well
as the best expert. More formally, for any sequence of
length T , the average number of prediction mistakes of
Weighted-Majority (WM ) is bounded above by the av-
erage number of prediction mistakes made by the best
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expert plus
√

log(r)/T . Thus, the WM algorithm will
perform well when for every sequence there exists an
expert that performs well on it and when the sequence
is long enough.

Given the above, it’s clear that learning from experts
will work when the experts fit the sequences we want to
predict. Thus a key question, which we address here,
is how to choose a good set of experts. We propose to
learn these experts from a set of training sequences.
In the spirit of empirical risk minimization we shall
seek a set of experts that perform well on our training
set. This is a highly non-trivial task in our case due
to several reasons. First, the performance of a pool of
experts is measured by the performance of an online
algorithm whose parameters are the experts, and it’s
not clear how to optimize this function. We shall see
that the hindsight loss is a simpler function to optimize
and results in comparable theoretical guarantees. Sec-
ond, we would like our experts to use arbitrarily long
histories in making predictions, but do so without over
fitting. We shall show that this can be done by using a
variant of context trees (a.k.a. prediction suffix trees).
Finally, it’s not clear what generalization guarantees,
if any, can be expected from such a scheme. We per-
form a detailed generalization analysis, providing the-
oretical bounds on the sample complexity of learning
a good set of experts.

Our learning task is thus as follows: given a training
set of sequences, learn a set of experts that will work
well for online sequence prediction. In a sense, this
can be viewed as a collaborative version of sequence
prediction. We provide an objective that corresponds
to this discriminative setting and analyze the general-
ization error of its minimizer. Our theoretical analysis
provides generalization bounds that show no over fit-
ting for longer histories, and quantify the advantage
of learning in the collaborative setting.

We apply our model to synthetic and real-world prob-
lems and show that it outperforms methods which do
not use temporal and collaborative approaches.

2. Problem Formulation

Let Σ be a finite alphabet. A sequence of symbols is
a member of Σ∗ and is denoted by x = (x1, . . . , xT ).
Online sequence prediction takes place in consecutive
rounds. On round t, the forecaster observes the prefix
x1:t−1 = (x1, . . . , xt−1) and predicts x̂t ∈ Σ. Then, the
next symbol, xt, is revealed and the forecaster pays
1[xt ̸=x̂t]. That is, it pays 1 if xt ̸= x̂t and 0 otherwise.

An “expert” for sequence prediction is a function f :
Σ∗ → Σ. Such an expert can be used for predicting

the t’th symbol by setting x̂t = f(x1:t−1).

Given a set of r such experts, the Weighted-Majority
(WM) algorithm (Littlestone and Warmuth, 1994) (see
pseudocode below), can be used for predicting almost
as well as the best expert.

A performance guarantee for WM is provided in the
following theorem (Littlestone and Warmuth, 1994).

Weighted Majority (WM)

parameter: η > 0
initialize: w1 = (1/r, . . . , 1/r)
for t = 1, 2, . . . , T

choose i ∼ wt at random
predict x̂t = fi(x1:t−1)
update rule ∀i, wt+1[i] ∝ wt[i]e

−η1[fi(x1:t−1) ̸=xt]

Theorem 1 The Weighted Majority algorithm (with
η =

√
log(r)/T ) obtains the following regret bound:

1
T

T∑
t=1

P[x̂t ̸= xt] ≤ min
i

1
T

T∑
t=1

1[fi(x1:t−1) ̸=xt]+

√
4 log(r)
T

.

It follows that we can predict the sequence reasonably
well if two conditions hold:

1. log(r) is sufficiently small compared to T .

2. At least one of the experts makes a small number
of mistakes on the sequence.

Therefore, when choosing a set of experts we face the
classical bias-complexity tradeoff: On one hand we
want r to be small enough so that the regret term√

log(r)/T will be small. On the other hand, differ-
ent experts will work well on different sequences, and
since we do not know the type of sequence we are go-
ing to get, we would like to increase r so that the set
of experts will be rich enough to explain many types
of sequences.

In this paper we propose to learn a good set of experts
based on a sample of sequences. Formally, let H be a
hypothesis class of experts. It is convenient to allow
experts to output predictions from a set Y , where we
have some way to convert an element from Y into a
prediction in Σ. For example, we can use Y = R|Σ|,
where we interpret the prediction y ∈ Y as a score
for each of the symbols in Σ. The mapping from a
score vector in Y to an actual prediction in Σ is via
arg maxσ∈Σ yσ. Therefore, each f ∈ H is a function
from Σ∗ to Y . The loss of a prediction f(x1:t−1) is
measured by a loss function ℓ : Y × Σ → R. The loss
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function can be the 0-1 loss 1[xt ̸=x̂t]. Later, we use
other loss measures that are convex surrogates of the
zero-one loss.

The problem that we consider in this paper can be for-
malized as follows: We are given a sample of sequences,
S = (x(1), . . . ,x(m)), where each x(i) is assumed to be
sampled i.i.d. from an unknown distribution D over
Σ∗. Our goal is to use S for learning a set of experts,
F ⊂ H, of size |F | ≤ r, where r is a parameter of the
learning problem (which should depend on the typical
size of T ). We wish to learn F such that when running
WM on a new sequence with the set F it will have a
small number of mistakes.

Given an expert f and a sequence x, we denote by
L(f,x) the average loss of f on x, specifically:

L(f,x) =
1
T

T∑
t=1

ℓ(f(x1:t−1), xt) .

Given a set of experts, F ⊂ H, we denote by WM(F,x)
the averaged loss of applying the WM algorithm on
the sequence x with the set of experts F . Therefore,
our ultimate goal is to learn a set of experts F which
(approximately) minimizes

E
x∼D

[WM(F,x)] .

Before we describe how we learn F , let us first consider
two extreme situations. First, for r = 1, i.e. F = {f},
then WM(F,x) = L(f,x). That is, at prediction time,
we simply follow the predictions of the single expert f .
This is exactly the standard traditional setting of sta-
tistical batch learning, where we would like to learn a
model f from a hypothesis class H whose expected loss
over a randomly chosen example (in our case x ∼ D) is
as small as possible. The problem with this approach
is that it might be the case that the sequences are of
different types, where no single expert from H is able
to accurately predict all of the sequences. On the other
extreme, if we set r = ∞, i.e. F = H, then we revert
to the problem of online learning with a hypothesis
class H. The problem with this approach is that if
H is “complex”,1 then the sequence length required
in order to guarantee good performance of the online
learning might be very large.

3. The Learning Algorithm

A straightforward approach for learning F when r > 1
is to follow the empirical risk minimization (ERM)

1As measured, for example, by its Littlestone dimension
(Ben-David et al., 2009).

principle, namely, to solve the optimization problem

min
F⊂H:|F |=r

1
m

m∑
i=1

WM(F,x(i)) .

This problem might be difficult to optimize since the
objective function involves the activation of an algo-
rithm and does not have a simple mathematical for-
mulation. To overcome this difficulty, we show how a
simpler objective may be used. In light of Theorem 1
(generalized to convex surrogate losses) we know that
for any sequence x,

WM(F,x) ≤ min
f∈F

L(f,x) +

√
4 log(|F |)

T
. (1)

Let us slightly overload notation and denote

L(F,x) = min
f∈F

L(f,x) .

Thus L(F,x) is the hindsight loss when learning the
sequence x with experts F . Taking expectation of both
sides of Eq. 1 we obtain that

E
x∼D

[WM(F,x)] ≤ E
x∼D

[L(F,x)] + E
x∼D

√
4 log(|F |)

T
.

(2)

The second summand only depends on F via its size.
Therefore, for a fixed size of F , we can follow a stan-
dard bound minimization approach and aim at mini-
mizing Ex∼D[L(F,x)] instead of Ex∼D[WM(F,x)]. In
other words, we minimize the hindsight loss instead of
the online loss. An ERM approach to this minimiza-
tion yields the following minimization problem on the
training set of sequences:

min
F⊂H:|F |=r

1
m

m∑
i=1

L(F,x(i)) . (3)

By definition of L(F,x), this can be written equiva-
lently as

min
f1,...,fr∈H

1
m

m∑
i=1

min
w∈∆r

r∑
j=1

wjL(fj ,x(i)) (4)

where ∆r = {w ∈ Rr : w ≥ 0, ∥w∥1 = 1}.

Assuming that H can be encoded as a convex set and
L(f,x) is a convex function,2 we obtain that the objec-
tive of Eq. 4 is convex in f1, . . . , fr and w(1), . . . ,w(r)

individually but not jointly. This suggests an alternat-
ing optimization scheme where one alternates between

2This will be the case for the class H and loss function
we use in Section 3.1
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optimizing over w’s and over f ’s. This scheme is es-
pecially attractive since minimizing over w for fixed
F is straightforward: for each sequence x(i) find the
best expert and set w(i) to 1 for that expert and 0
otherwise. Optimizing fi for fixed w can be done via
gradient descent when using a smooth loss as we do
here (see Sections 3.1 and 3.2).

3.1. The class of bounded norm context trees

Thus far we have given a general scheme and have
not described the particular set of experts we will use.
In what follows we specify those. Any function f :
Σ∗ → Σ can be described using a multiclass context
tree. For our experts, we will be using a generalization
of multiclass context trees following Dekel et al. (2010),
described below.

To simplify notation, denote Σ = [k] = {1, . . . , k}. A
multiclass context-tree is a k-ary rooted tree, where
each node of the tree is associated with a vector z ∈
Rk. The prediction of the tree on a sequence x1:t−1

is determined as follows. We initially start with the
vector z = 0 ∈ Rk, and set the current node to be
the root of the tree. We then add to z the vector
associated with the current node and traverse to its
xt−1 child, which becomes the current node. We add
again the vector associated with the current node and
traverse to its xt−2 child. This process is repeated until
we arrive either to x1 or to a leaf of the tree. The final
value of z gives a score value to each of the elements
in Σ, and the actual prediction is arg maxi zi.

It is convenient to represent a context tree as a matrix
with k rows as follows. Let us order the nodes of a full
k-ary tree in a breadth first manner. For simplicity,
we restrict ourselves to trees of bounded depth (which
can be very large, so this is not a serious limitation).
To represent a context tree as a matrix, we set column
i of the matrix to be the vector associated with the
i’th node of the tree (where if the node does not exist
in the tree we simply set the column to be the all zeros
vector). Similarly, we can map a sequence x1:t−1 to a
vector ψ(x1:t−1) ∈ {0, 1}|Σ∗| as follows. Suppose that
we traverse from the root of a full k-ary tree accord-
ing to the symbols xt−1, xt−2, . . . , x1, as we described
before. Then, we set all the coordinates of ψ(x1:t−1)
corresponding to nodes we visited in this path to be 1,
and set all the rest of the coordinates to be zero.

It is easy to verify that the vector z constructed by
a context tree for the history x1:t−1 is Uψ(x1:t−1),
where U is the matrix describing the context tree (the
size of U is thus |Σ|×|Σ∗| and the columns correspond
to the vectors z at each node).

As mentioned before, any function f : Σ∗ → Σ can
be described by a context tree (as long as we allow
its depth to be large enough). Therefore, without ad-
ditional constraints, learning the class of all context
trees from a finite sample will lead to over-fitting. To
overcome this, one can constrain the depth of the tree.
Alternatively, we can allow any depth but carefully
discount long histories as described next.

Following (Dekel et al., 2010), we aim to balance be-
tween long histories (can be very informative but are
rare in the data hence are hard to learn) and short his-
tories (less informative but easier to learn). This can
be done by defining a norm over matrices correspond-
ing to context trees, where longer histories are penal-
ized more. Formally, for each column i of a context
tree matrix U, let d(i) be the depth of its correspond-
ing node in the tree. Let a1 ≥ a2 ≥ . . . be a sequence
such that

∑∞
i=1 ai ≤ 1.3 Then, we define a norm of

vectors to be such that

∥u∥2 =
∑

i

ad(i)u
2
i , (5)

and a norm over matrices to be ∥U∥2 =
∑

j ∥Uj∥2,
where Uj is the j’th row of U. Put another way, the
squared norm of U is a weighted sum of the squared
Euclidean norms of columns of U, where the weight of
column i is ad(i). Thus, we assign a higher penalty to
columns corresponding to deep nodes of the trees.

Consequently, we define the hypothesis class of
bounded norm context trees to be

HB = {U : ∥U∥ ≤ B} . (6)

Finally, we also need to define scale sensitive loss func-
tions. A common choice is the multiclass log-loss:

ℓ(z, y) = log
( ∑

y′∈Σ

exp
(
1[y′ ̸=y] − zy + zy′

))
.

This loss function has the advantages of being a convex
surrogate loss for the zero-one loss.

3.2. The LEX algorithm

We are now ready to describe our algorithm, which
we call LEX (for Learning Experts). Our goal is to
minimize the loss in Eq. 4 with respect to the vectors
wi and the parameters of the experts. As described
in Section 3.1, we parameterize each expert by a con-
text tree matrix U ∈ Rk × |Σ∗|. As mentioned earlier,
we can minimize Eq. 4 via alternating optimization
where minimizing over w can be done in closed form

3Here we take ai = i−2.
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and minimizing over U can be done with gradient de-
scent. Calculating the gradient w.r.t. U is easy for
the log loss. In our implementation we use stochastic
gradient descent, where an update is performed after
each training sequence is processed.

4. Analysis

Define the generalization loss for the set of experts F :

LD(F ) = E
x∼D

L(F,x) .

In light of Eq. 2, in order to bound Ex[WM(F,x)] it
suffices to bound LD(F ). In this section we derive
bounds on LD(F ). Our bounds depend on the follow-
ing measures: the number of experts |F |, a complex-
ity measure of the hypothesis class H, the number of
training examples, and the training loss:

LS(F ) =
1
|S|
∑
x∈S

L(F,x) .

We first define a complexity measure for a hypothesis
class H with respect to a loss function ℓ.

Definition 1 Let H be a class of functions from Z to
Q, let Y be a target set, and let ℓ : Q×Y → R be a loss
function. We say that the complexity of H is C(H) if
for any sequence (z1, y1), . . . , (zq, yq) ∈ (Z × Q)q and
for any ϵ > 0, there exists H′ ⊂ H of size |H′| ≤
(2q)C(H)/ϵ2 , such that for all h ∈ H exists h′ ∈ H′

that satisfies

∀i ∈ [q], |ℓ(h(zi), yi) − ℓ(h′(zi), yi)| ≤ ϵ .

The reader familiar with covering number bounds can
easily recognize C(H) as determining the size of a cover
of H. It is also easy to verify that if H is a class of
binary classifiers then C(H) is upper bounded by the
VC dimension of H (this follows directly from Sauer’s
lemma). We will later show that the class of bounded
norm context trees has a bounded C(H) as well.

Theorem 2 Let D be a probability over Σ∗ such that
there exists some constant T with P[len(x) ≤ T ] =
1. Assume also that for all x and F ⊂ H we have
L(F,x) ∈ [0,

√
C(H)]. Then, with probability of at

least 1 − δ over S ∼ Dm, for all F ⊂ H, with |F | = r,
we have

LD(F ) ≤ LS(F ) + Õ

(√
r C(H)
m

)
.

The above theorem tells us that if H is of bounded
complexity, then the number of samples required to

have LD(F ) ≤ LS(F ) + ϵ is order of r C(H)/ϵ2. In
particular, the sample complexity of learning a set of
r experts is r times larger than the sample complexity
of learning a single expert.

The proof of the theorem is given in the long version
of this article. The main ideas of the proof are as
follows. First, we construct a cover for the loss class
{x 7→ L(F,x) : F ⊂ H, |F | = r}. Then, we bound the
Rademacher complexity of this class using a general-
ization of Dudley’s chaining technique, which is sim-
ilar to a technique recently proposed in Srebro et al.
(2010).

Next, we turn our attention to the specific class of con-
text trees with bounded norm. The following lemma
bounds its complexity.

Lemma 1 Let HB be the class of multiclass context
trees which maps Σ∗ into R|Σ| as defined in Section
3.1. Let ℓ : R|Σ| × Σ → R be a loss function such that

∀l ∈ Σ, u, v ∈ R|Σ|, |ℓ(u, l) − ℓ(v, l)| ≤ ∥u− v∥∞ .

Then: C(HB) ≤ O(B2 log(k)).

The proof of the lemma is given in the long version
of this article. The main idea is a nice trick show-
ing how to bound the cover of a linear class based on
known bounds on the convergence rate of sub-gradient
mirror descent algorithms (e.g., see Nemirovski and
Yudin, 1978). This is similar to a method due to Zhang
(2002), although our bound is slightly better.

The multiclass log-loss function satisfies the conditions
of the above lemma, hence:

Corollary 1 Let HB be the class of multiclass context
trees and let ℓ be the multiclass log-loss. Let D be a
probability over Σ∗ such that there exists some constant
T with P[len(x) ≤ T ] = 1. Then, with probability of at
least 1−δ over S ∼ Dm, for all F ⊂ HB, with |F | = r,
we have

LD(F ) ≤ LS(F ) + Õ

(√
r B2

m

)
.

In summary, if we manage to find a set F ⊂ HB of size
r that achieves a small hindsight training loss, then it
will also achieve a small hindsight generalization loss.
Combining this with Eq. 2 yields

E[WM(F,x)] ≤ LS(F )+ Õ

(√
r B2

m

)
+E

√
4 log(r)
T

.

Therefore, the performance of the Weighted-Majority
algorithm is upper bounded by three terms: The train-
ing loss of F (which can decrease when increasing r),
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the estimation error term (which increases with r), and
the online regret term (which also increases with r).

5. Related Work

The problem of sequence prediction has a fairly long
history and has received much attention from game
theorists (Robbins, 1951; Blackwell, 1956; Hannan,
1957), information theorists (Cover and Hart, 1967;
Cover and Shenhar, 1977; Feder et al., 1992; Willems
et al., 1995), and machine learning researchers (Helm-
bold and Schapire, 1997; Pereira and Singer, 1999;
Cesa-Bianchi and Lugosi, 2006; Dekel et al., 2010).
One of the most useful tools is context trees, which
store informative histories and the probability of the
next symbol given these. However, all of these works
consider predicting a sequence from a single source.
Indeed, our work extends these single sequence predic-
tions to the collaborative setting where we model dif-
ferent sequences, but constrain the predictors to share
some common structure (i.e., the experts used in pre-
diction).

Another related line of work is multitask prediction
(e.g., see Ando and Zhang, 2005; Abernethy et al.,
2007), in which one considers several different multi-
class prediction problems and seeks a common feature
space for those. This setting is different from ours
in several ways. First, in the multitask setting one re-
ceives a set of training instances from each task, where
it is known which sample belongs to each class. In our
case, we receive only a set of individual sequences. Fur-
thermore, in the multitask setting, the test data comes
from one of the known tasks, whereas we again receive
a novel sequence from an unknown source.

A more recent approach to sequence modeling is the
“sequence memoizer”, which is based on nonparamet-
ric Bayesian models (Wood et al., 2009). So far these
have been applied to a single type model (e.g., lan-
guage modeling), and not for multiple distinct mod-
els as we have here. It is conceivable that a fully
Bayesian model for collaborative sequence prediction
can be built using these models, and it would be in-
teresting to contrast it with our approach.

Another possible approach to the problem is to use
probabilistic latent variable models (Hofmann, 1999)
or their discriminative counterparts (Felzenszwalb
et al., 2008; Yu and Joachims, 2009). Here each se-
quence will be mapped to a latent variable correspond-
ing to the best expert. Next, given the class and
the previous history, a probabilistic suffix tree will be
used to generate the next action. However, such a
model will not handle long histories appropriately and

is likely to result in overfitting (as our empirical results
also show). While it may be possible to add history
discounting to such a model, it will be considerably
more complex than what we suggest here.

In our formulation, the state space Σ is unstructured.
There are cases of interest, where Σ has structure. For
example, it may correspond to the items in an online
shopping basket. Prediction in such a setting was re-
cently addressed in Rendle et al. (2010). Unlike in our
case, they have access to multiple training sequences
from particular users, and prediction is done on these
users. Furthermore, the temporal model itself is only
first order and thus very different from ours. Note
that we can easily extend our approach to structured
state spaces by using structured prediction instead of
multiclass as we do here.

6. Experiments

In what follows, we evaluate the performance of the
LEX algorithm (see Section 3.2) on two datasets: syn-
thetic and real-world. We compare it to the baselines
described below.

6.1. Baselines Models

We consider three different baselines models. The first
is our LEX algorithm with r = 1 (we denote this base-
line by 1-LEX), which is in fact a batch trained PST
(where training uses the log loss). In this approach
all training sequences are modeled via a single PST
corresponding to one expert. It thus does not directly
model multiple temporal behaviors of the sequences in
the data.

Our second baseline is an online PST model which is
evaluated on each test sequence individually. Training
is done using the algorithm in (Dekel et al., 2010). Be-
ing an online algorithm, it does not use the training
data. However, given long enough sequences it will be
able to model any deterministic temporal behavior op-
timally. In other words, this algorithm has the benefit
of adaptation but its performance crucially depends
on the length of the sequence. We denote this baseline
by Online PST.

Finally, we consider a generative latent variable model
(denoted by LMM) which is a mixture of Markov
chains. An order d Markov chain is a basic yet power-
ful tool for modeling sequences. In LMM we general-
ize Markov chains by allowing each sequence to be gen-
erated by one of r regular Markov models. We think
of these r models as different chain types similarly
to the r experts of LEX. Specifically, for a sequence
x1, . . . xt−1 the r-LMM model of order d is defined by:
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Pr(xt|x1:t−1)
def=
∑r

q=1 P(xt|xt−d:t−1, z = q) P(z = q)
Where z is the latent (unobserved) variable which ”as-
signs“ a chain type to a sequence. Note that the stan-
dard Markov chain is simply a 1-LMM. We learn the
parameters of a LMM from training data using EM.
The (online) prediction using this model is done by
the maximum a-posteriori assignment at each point in
time. Since LMM does not discount long histories, it
is not expected to perform well when d is large and
not enough training data is available. Parameters for
all algorithms (i.e., r and d) were tuned using cross
validation.

6.2. Synthetic Data

We begin by considering sequences that follow one of
two temporal patterns. The sequences are generated
as follows: First randomly select j ∈ {1, 2} then draw
T samples according to the (independent) distribution:

Pr(xt = x) =

{
2−1 if x = j

(2(|Σ| − 1))−1 otherwise
. We used

|Σ| = 200 and generated a set of m = 1000 sequences,
each of length T = 250 (these parameters where se-
lected to resemble the browsing data characteristics).
We note that by construction, the maximal possible
generalization accuracy on this data is 0.5. We eval-
uate the accuracy of online prediction on 400 test se-
quences.
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Figure 1. Test accuracy of online prediction on the syn-
thetic data. See Section 6.2. The four algorithms are de-
scribed in Section 6.1.

In Fig. 1 we show the accuracy (on test data) of
LEX and the three baselines. We notice that LEX
approaches 0.5 accuracy using about 50 sequences,
1-LEX and LMM require substantially more samples
in order to approach this performance (over 500 se-
quences for 0.45 accuracy). In other words, in agree-
ment with our theoretical analysis, the sample com-
plexity of LEX is smaller than both 1-LEX and
LMM. The accuracy of online PST is much lower
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Figure 2. Test accuracy of online prediction on the click
prediction task. See Section 6.3. The four algorithms are
described in Section 6.1.

due to the conservative training of this algorithm.

6.3. Click Prediction Data

Here we consider a challenging task of predicting the
browsing pattern of web users. Specifically, we use
browsing logs for users in an intra-net site. For each
session the sequence of urls visited by every user was
recorded by the web server. The dataset contains 2000
such sequences of length 70-150. The domain of the
prediction problem, is of distinct urls and its mag-
nitude is |Σ| = 189. The data was split into train,
validation and test sets, the sizes of the training sets
vary, while the validation and test set sizes were fixed
at 200 and 800 sequences respectively. We applied
the three baseline models, and compared their per-
formance to LEX. In this experiment the r experts
learned by LEX were combined with an additional
expert obtained from training a 1-LEX algorithm, re-
sulting in a pool of r+1 learned experts. This addition
smoothes performance on short sequences where the
WM algorithm might not have enough time to decide
which of the r experts to follow.

Results are shown in Fig. 2. It can be seen that LEX
outperforms the other methods. When considering the
difference in accuracy between LEX and 1-LEX we
notice that the added accuracy from multiple experts
shrinks as training size increases. This trend agrees
with theory, since as more data is available to 1-LEX,
it can use longer histories and eventually will be able to
model any temporal behavior. However, as we show in
the synthetic experiments, the gap for small data sizes
can be considerable.
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7. Discussion

We have described and analyzed a method for learning
the experts for online sequence prediction. In partic-
ular, we specified it to the class of prediction suffix
trees. Thus, our experts can capture dependencies on
arbitrarily long histories. This is achieved by map-
ping context trees into a vector space and designing
a norm on this space which discounts long histories.
As our generalization results show, the complexity of
the model is not penalized by the maximal possible
length of histories (dimensionality of the matrix U)
but rather by the effective needed context based his-
tory (captured by the norm of U). Our empirical re-
sults show that temporal user specific structure can
indeed be used to improve prediction accuracy.

The proposed approach can be extended in several
ways. First, we can consider different prediction goals:
instead of predicting the next symbol in the sequence,
corresponding to the next URL, we can have a binary
classifier that returns one if a user is likely to take a
given action and zero otherwise. Alternatively, we can
consider a ranking task where we want to sort actions
according to their interest to the user. To use such
objectives we will just need to replace our multiclass
log loss with the corresponding loss.

Finally, we note that our model can be applied to
a wide array of practical problems. Some examples
are ad placements, course enrollment systems, and en-
hanced user interface automation.
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