
Comparison-Based Learning with Rank Nets

Amin Karbasi amin.karbasi@epfl.ch

EPFL, Lausanne, Switzerland

Stratis Ioannidis stratis.ioannidis@technicolor.com

Technicolor, Palo Alto, USA

Laurent Massoulié laurent.massoulie@technicolor.com

Technicolor, Paris, France

Abstract

We consider the problem of search through
comparisons, where a user is presented with
two candidate objects and reveals which is
closer to her intended target. We study adap-
tive strategies for finding the target, that
require knowledge of rank relationships but
not actual distances between objects. We
propose a new strategy based on rank nets,
and show that for target distributions with a
bounded doubling constant, it finds the tar-
get in a number of comparisons close to the
entropy of the target distribution and, hence,
of the optimum. We extend these results to
the case of noisy oracles, and compare this
strategy to prior art over multiple datasets.

1. Introduction

In search through comparisons, a user locates a tar-
get object in a database as follows. At each step, the
database presents two objects to the user, who then
selects among the pair the object closest to the tar-
get that she has in mind. This process continues until,
based on the user’s answers, the database can uniquely
identify the target she has in mind.

This kind of interactive navigation, also known as ex-
ploratory search, has numerous real-life applications
(Marchionini, 2006; Ruthven, 2008), such as naviga-
tion in a database of pictures of people photographed
in an uncontrolled environment (Tschopp et al., 2011).
Automated methods may fail to extract meaningful
features from such photos. Even if this were pos-
sible, in many practical cases, images with similar

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

low-level descriptors may have very different seman-
tic content, and thus be perceived differently by users
(Smeulders et al., 2000; Lew et al., 2006). On the
other hand, a human can easily sort images of peo-
ple w.r.t. their similarity to a given person, and her
answers can be used to rank images in the database in
terms of this similarity.

Formally, the human user’s feedback can be modelled
as a “comparison oracle” (Goyal et al., 2008). Assum-
ing a database N endowed with a distance metric d,
capturing the “distance” or “dissimilarity” between
different objects, a comparison oracle answers ques-
tions of the kind: “Between two objects x and y in N ,
which one is closest to t under the metric d?”.

In this paper, we study algorithms for identifying an
unknown target with as few queries to such an oracle
as possible. Most importantly, the algorithms we con-
sider do not rely on a priori knowledge of the distance
between objects: they cannot access an embedding of
N in a metric space, nor can they compute the dis-
tance between two objects. Decisions on which queries
to submit to the oracle depend only on (a) ranking re-
lationships between objects, which can indeed be ob-
tained through a comparison oracle and (b) the prior
distribution µ from which the target is sampled.

As discussed in Section 3.3, content search through
comparisons can be framed as an active learning prob-
lem. A well-known active learning algorithm is the
Generalized Binary Search (GBS) or splitting algo-
rithm (Dasgupta, 2005). Using GBS to submit queries
to the oracle locates the target in OPT ·

(

Hmax(µ)+1
)

queries, where Hmax(µ) = maxx∈supp(µ) log
1

µ(x) and

OPT is the number of queries submitted by an opti-
mal algorithm. In practice, GBS performs very well in
terms of query complexity, suggesting that this bound
can be tightened. However, the computational com-
plexity of GBS is Θ(n3) for n = |N |, which makes it
intractable for most large databases.

Comparison-Based Learning with Rank Nets

Recently, Karbasi et al. (2011) proposed an algorithm
that determines the target in O

(

c3H(µ)Hmax(µ)
)

queries, whose computational complexity is O(1) per
query. Here, H(µ) is the entropy of the prior µ and
c, defined formally in Section 3.2, is the doubling con-
stant of the prior µ. It captures the dimension of the
database, as determined by the underlying distance
d (Clarkson, 2006). Karbasi et al. also show that
OPT = Ω(cH(µ)), indicating that their algorithm is
within a c2Hmax(µ) factor from the optimal.

We make the following contributions: First, we pro-
pose a new adaptive algorithm, RankNetSearch, lo-
cating the target with O(c6H(µ)) queries to the oracle,
in expectation. Our algorithm therefore improves on
GBS and Karbasi et al. by removing the term Hmax—
which can be quite large in practice—at a cost of a
higher exponent in the dependence on the constant c.
Its computational complexity is O

(

n(logn+ c6) log c
)

per query, which is manageable compared to GBS;
moreover, this cost can be reduced to O(1) by pre-
computing an additional data structure.

Second, we extend RankNetSearch to the case of
a faulty oracle that lies with a probability ǫ > 0,
and show that it locates the target w.h.p. at an ex-
pected query cost O(

∑

x∈N µ(x) log 1
µ(x) log log(µ(x))

and, thereby, close to H(µ).

Third, we evaluate RankNetSearch and prior art
algorithms over several datasets. We observe that
RankNetSearch establishes a desirable trade-off be-
tween query and computational complexity.

The remainder of this paper is organized as follows.
We overview related work in Section 2, and discuss
definitions and preliminaries in Section 3. Our algo-
rithm and the analysis of its complexity are presented
in Section 4, and its robustness to noise in Section 5.
Section 6 includes our numerical evaluations.

2. Related Work

Search through comparisons was first introduced by
Goyal et al. (2008), and further explored by Lifshitz
and Zhang (2009) and Tschopp et al. (2011). The
above works study the problem in terms of worst-case
(prior-free) bounds, so our work departs in introduc-
ing a prior µ and studying query complexity in ex-
pectation. All these works introduce a disorder con-
stant, that plays the same role as the quantity c in
our setup. Lifshitz and Zhang also employ hierarchi-
cal data structures similar to the rank-nets we study
here. Our upper bound coincides with theirs when µ is
uniform over N and can thus be seen as an extension
to the more general Bayesian setting under prior µ.

Cover trees based on nets have been extensively
studied in the context of nearest neighbour search
(Clarkson, 1999; Beygelzimer et al., 2006). These
works too focus on worst-case bounds and, crucially,
assume full access to the underlying distance metric d.
Our approach thus differs in both of these respects. In
earlier work, Fredman (1976) and others have consid-
ered decision trees for determining a complete ordering
of objects rather than just the first one in the list.

To the best of our knowledge, the work closest to our
is (Karbasi et al., 2011), which was the first to study
search through comparisons in a Bayesian setting. Our
work improves their bound by the factor of Hmax and
establishes the connection to active learning and GBS.

3. Definitions and Preliminaries

3.1. Search through Comparisons

Consider a large finite set of objects N of size n =
|N |, endowed with a distance metric d, capturing the
“dissimilarity” between objects. A user selects a target
t ∈ N from a prior distribution µ; our goal will be to
design an interactive algorithm that queries the user
with the purpose of discovering t.

Comparison Oracle. Though we assume that the
metric d exists, our view of distances is constrained
to only observing order relationships. More pre-
cisely, we only have access to information that can be
obtained through a comparison oracle (Goyal et al.,
2008). Given object z, a comparison oracleOz receives
as a query an ordered pair (x, y) ∈ N 2 and answers the
question “is z strictly closer to x than to y?”, i.e.,

Oz(x, y) =

{

+1 if d(x, z) < d(y, z),
−1 if d(x, z) ≥ d(y, z)

(1)

Note that a tie d(x, z) = d(y, z) is revealed by two calls
Oz(x, y) and Oz(y, x). Our algorithm for determining
the unknown target t can submit queries to a compar-
ison oracle Ot—namely, the user. We thus assume,
effectively, that the user can order objects w.r.t. their
distance from t, but does not need to disclose (or even
know) the exact values of these distances. We will first
assume that the oracle always gives correct answers; in
Section 5, we relax this assumption by considering a
faulty oracle that lies with probability ǫ < 0.5.

Prior Knowledge and Performance Metrics.

The algorithms we study rely only on a priori knowl-
edge of (a) the distribution µ and (b) the values of the
mapping Oz : N 2 → {−1,+1}, for every z ∈ N . This
is in line with our assumption that, although the dis-
tance metric d exists, it cannot be directly observed.

Comparison-Based Learning with Rank Nets

Our focus is on adaptive algorithms, whose decision on
which query in N 2 to submit next are determined by
the oracle’s previous answers.

The prior µ can be estimated empirically as the fre-
quency with which objects have been targets in the
past. The order relationships can be computed off-line
by submitting Θ(n2 logn) queries to a comparison ora-
cle, and requiring Θ(n2) space: for each possible target
z ∈ N , objects in N can be sorted w.r.t. their distance
from z with Θ(n logn) queries to Oz . We store the re-
sult of this sorting in (a) a linked list, whose elements
are sets of objects at equal distance from z, and (b)
a hash-map, that associates every element y with its
rank in the sorted list. Note that Oz(x, y) can thus be
retrieved in O(1) time by comparing the relative ranks
of x and y with respect to their distance from z.

We measure the performance of an algorithm through
two metrics. The first is the query complexity, deter-
mined by the expected number of queries the algo-
rithm needs to submit to the oracle to determine the
target. The second is the computational complexity,
determined by the time-complexity of determining the
query to submit to the oracle at each step.

3.2. A Lower Bound

Recall that the entropy of µ is defined as H(µ) =
∑

x∈supp(µ) µ(x) log
1

µ(x) where supp(µ) is the support

of µ. Given an object x ∈ N , let Bx(r) = {y ∈ N :
d(x, y) ≤ r} be the closed ball of radius r ≥ 0 around
x. Given a set A ⊆ N let µ(A) =

∑

x∈A µ(x). The
doubling constant1 c(µ) of a distribution µ is the min-
imum c > 0 for which µ(Bx(2R)) ≤ c · µ(Bx(R)), for
any x ∈ supp(µ) and any R ≥ 0.

The doubling constant has a natural connection to the
underlying dimension of the dataset (Clarkson, 2006;
Karbasi et al., 2011), as determined by the distance
d. Both the entropy and the doubling constant are
also inherently connected to content search through
comparisons. Karbasi et al. show that any adaptive
mechanism for locating a target t must submit at least
Ω
(

c(µ)H(µ)
)

queries to the oracle Ot, in expectation.
Moreover, they provide an algorithm for determin-
ing the target in O

(

c3H(µ)Hmax(µ)
)

queries, where
Hmax(µ) = maxx∈supp(µ) log

1
µ(x) .

3.3. Active Learning

Search through comparisons can be seen as a special
case of active learning (Dasgupta, 2005; Nowak, 2012).
In active learning, a hypothesis space H is a set of bi-

1c relates to the doubling dimension δ through c = 2δ.

nary valued functions defined over a finite setQ, called
the query space. Each hypothesis h ∈ H generates a
label from {−1,+1} for every query q ∈ Q. A target
hypothesis h∗ is sampled from H according to some
prior µ; asking a query q amounts to revealing the
value of h∗(q), thereby restricting the possible candi-
date hypotheses. The goal is to determine h∗ in an
adaptive fashion, by asking as few queries as possible.

In our setting, the hypothesis space H is the set N ,
and the query space Q is the set of ordered pairs N 2.
The target hypothesis sampled from µ is the unknown
target t. Each hypothesis/object z ∈ N is uniquely2

identified by the mapping Oz : N 2 → {−1,+1}, which
we have assumed to be a priori known.

Generalized Binary Search A well-known algo-
rithm for determining the true hypothesis in the gen-
eral active-learning setting is the so-called generalized
binary search (GBS) or splitting algorithm (Dasgupta,
2005; Nowak, 2012). Define the version space V ⊆ H
to be the set of possible hypotheses that are consis-
tent with the query answers observed so far. At each
step, GBS selects the query q ∈ Q that minimizes
|
∑

h∈V µ(h)h(q)|. Put differently, GBS selects the
query that separates the current version space into two
sets of roughly equal probability mass; this leads, in
expectation, to the largest reduction in the mass of
the version space as possible, so GBS can be seen as a
greedy query selection policy.

A bound on the query complexity of GBS originally
obtained by Dasgupta (2005) and recently tightened
(w.r.t. constants) by Golovin and Krause (2010) is
given by the following theorem:

Theorem 1. GBS makes at most OPT ·
(

Hmax(µ)+1
)

queries in expectation to identify hypothesis h∗ ∈ N ,
were OPT is the minimum expected number of queries
made by any adaptive policy.

GBS in Search through Comparisons. In our
setting, the version space V comprises all possible ob-
jects in z ∈ N that are consistent with oracle answers
given so far. In other words, z ∈ V iff Oz(x, y) =
Ot(x, y) for all queries (x, y) submitted to the oracle.
Selecting the next query therefore amounts to finding
the pair (x, y) ∈ N 2 that minimizes

f(x, y) =
∣

∣

∑

z∈V µ(z)Oz(x, y)
∣

∣. (2)

As the simulations in Section 6 show, the query com-
plexity of GBS is excellent in practice. This suggests

2Note that, for any two objects/hypotheses z, z′ ∈ N ,
there exists at least one query in N 2 that differentiates
them, namely (z′, z).

Comparison-Based Learning with Rank Nets

Algorithm 1 RankNetSearch(Ot)

Input: Oracle Ot

Output: Target t
1: Let E ← N ; select arbitrary x ∈ E
2: repeat
3: (R, {By(ry)}y∈R)←RankNet(x,E)
4: Find y∗, the object in R closest to t, using Ot.
5: Let E ← By∗(ry∗) and x← y∗;
6: until E is a singleton
7: return y

Algorithm 2 RankNet(x,E)

Input: Root object x, Ball E = Bx(R)
Output: ρ-rank net R, Voronoi balls {By(ry)}y∈R

1: ρ ← 1
2: repeat
3: ρ ← ρ/2; construct a ρ-net R of E
4: ∀ y ∈ R, construct ball By(ry)
5: Let I ← {y ∈ E : |By(ry)| > 1}
6: until I = ∅ or maxy∈I µ(By(ry)) ≤ 0.5µ(E)
7: return (R,{By(ry)}y∈R)

that the bound of Theorem 1 could be improved in the
specific context of search through comparisons.

Nevertheless, the computational complexity of GBS is
Θ(n2|V |) operations per query, as it requires minimiz-
ing f(x, y) over all pairs in N 2. For large sets N , this
can be truly prohibitive. This motivates us to propose
a new algorithm, RankNetSearch, whose computa-
tional complexity is almost linear and its query com-
plexity is within a O(c5(µ)) factor from the optimal.

4. An Efficient Adaptive Algorithm

Our algorithm is inspired by ǫ-nets, a structure in-
troduced by Clarkson (1999; 2006) in the context of
Nearest Neighbor Search (NNS). The main challenge
that we face is that, contrary to standard NNS, we
have no access to the underlying distance metric. In
addition, the query complexity bounds on ǫ-nets are
worst-case (i.e., prior-free); our construction takes the
prior µ into account to provide bounds in expectation.

4.1. Rank Nets

To address the above issues, we introduce the no-
tion of rank nets, which will play the role of ǫ-nets
in our setting. For some x ∈ N , consider the ball
E = Bx(R) ⊆ N . For any y ∈ E, we define

dy(ρ,E) = inf{r : µ(By(r)) ≥ ρµ(E)} (3)

to be the radius of the smallest ball around y that

maintains a mass above ρµ(E). Using this definition3,
we define a ρ-rank net as follows.

Definition 1. For some ρ < 1, a ρ-rank net of E =
Bx(r) ⊆ N is a maximal4 set of objects R ⊂ E such
that for any two distinct y, y′ ∈ R

d(y, y′) > min{dy(ρ,E), dy′(ρ,E)}. (4)

For any y ∈ R, consider the Voronoi cell Vy = {z ∈
E : d(y, z) ≤ d(y′, z), ∀y′ ∈ R, y′ 6= y}. We also define
the radius ry of the Voronoi cell Vy as ry = inf{r :
Vy ⊆ By(r)}. Critically, a rank net and the Voronoi
tessellation it defines can both be computed using only
ordering information:

Lemma 1. A ρ-rank net R of E can be constructed
in O(|E|(log |E| + |R|)) steps, and the balls By(ry) ⊂
E circumscribing the Voronoi cells around R can be
constructed in O(|E||R|) steps using only (a) µ and (b)
the mappings Oz : N 2 → {−1,+1} for every z ∈ E.

The proof is in Appendix A. Armed with this result,
we turn our attention to how the selection of ρ affects
the size of the net as well as the mass of the Voronoi
balls around it. Our next lemma, whose proof is in
Appendix B, bounds |R|.

Lemma 2. The size of the net R is at most c3/ρ.

Finally, our last lemma determines the mass of the
Voronoi balls in the net.

Lemma 3. If ry > 0 then µ(By(ry)) ≤ c3ρµ(E).

The proof is in Appendix C. Note that Lemma 3 does
not bound the mass of Voronoi balls of radius zero.

4.2. Rank Net Data Structure and Algorithm

Rank nets can be used to identify a target t using
a comparison oracle Ot as described in Algorithm 1.
Initially, a net R covering N is constructed; nodes y ∈
R are compared w.r.t. their distance from t, and the
closest to the target is determined, say y∗. Note that
this requires submitting |R| − 1 queries to the oracle.
The version space V (the set of possible hypotheses)
is thus the Voronoi cell Vy∗ , and is a subset of the ball
By∗(ry∗). The algorithm then proceeds by limiting the
search to By∗(ry∗) and repeating the above process.
Note that, at all times, the version space is included
in the current ball to be covered by a net. The process
terminates when this ball becomes a singleton which,
by construction, must contain the target.

3Whenever ρ and E are unambiguous, we simply write
dy rather than dy(ρ,E).

4I.e., a set to which no more objects can be added.

Comparison-Based Learning with Rank Nets

A question in the above setup is how to select ρ: by
Lemma 3, small values lead to a sharp decrease in the
mass of Voronoi balls from one level to the next, hence
reaching the target with fewer iterations. On the other
hand, by Lemma 2, small values also imply larger nets,
leading to more queries to the oracle per iteration. We
select ρ in an iterative fashion, as indicated in the pseu-
docode of Algorithm 2: we repeatedly halve ρ until all
non-singleton Voronoi balls By(ry) of the resulting net
have a mass bounded by 0.5µ(E). This selection leads
to the following bounds on the corresponding query
and computational complexity of RankNetSearch:

Theorem 2. RankNetSearch locates the target by
making 4c6(1 +H(µ)) queries to a comparison oracle,
in expectation. The cost of determining which query
to submit next is O

(

n(logn+ c6) log c
)

.

In light of the Ω(cH(µ)) lower bound on query com-
plexity by Karbasi et al. (2011), RankNetSearch is
within a O(c5) factor of the optimal algorithm, and is
thus order-optimal for constant c. Moreover, the com-
putational complexity per query is O

(

n(log n+ c6), in
contrast to the cubic cost of GBS. As shown in Sec-
tion 6, in practice, this leads to drastic reductions in
the computational costs compared to GBS.

The computational complexity can be further reduced
to O(1) through amortization. In particular, it is easy
to see that the possible paths followed by RankNet-

Search define a hierarchy, whereby every object
serves as a parent to the rank net of its Voronoi ball.
This tree can be pre-constructed, and search reduces
descending this tree; we elaborate on this in Section 6.

5. Noisy Comparison Oracle

In a noisy setting the search must be robust against
erroneous answers. Specifically, assume that for any
query Ot(x, y), the noisy oracle returns the wrong an-
swer with probability bounded by ǫ, for some ǫ < 1/2,
independently of previous answers. In this context, a
problem with RankNetSearch arises in line 4 of Al-
gorithm 1: it is not clear how to identify the object
closest to the target among elements in a net. We re-
solve this by introducing repetitions at each iteration.
Specifically, at the ℓ-th step of the search, ℓ ≥ 1, and
rank-net size m, we define a repetition factor

kδ(ℓ,m) :=
2 log

(

(ℓ+ 1/δ)2⌈log2(m)⌉
)

(1− ǫ)2
(5)

for some design parameter δ ∈ (0, 1). The modified
algorithm then proceeds down the hierarchy, starting
at the top level for ℓ = 1. The basic step at step ℓ with
a netR proceeds as follows. A tournament is organized

among elements of R, who are initially paired. Pairs
of competing members are compared kδ(ℓ, |R|) times.
The “player” from a given pair winning the largest
number of games moves to the next stage, where it
will be paired again with another winner of the first
round, and so forth until only one player is left. Note
that the number of repetitions kδ(ℓ,m) increases only
logarithmically with the level ℓ.

To find the closest object to target t with the noise-
less oracle, clearly we need to make O(|R|) number
of queries. The proposed algorithm achieves the same
goal with high probability by making at most a factor
2kδ(ℓ, |R|) more comparisons. In this context we have
the following

Theorem 3. For a comparison oracle with error prob-
ability ǫ, the algorithm with repetitions (5) outputs
the correct target with probability at least 1 − δ in
O(1

(1

2
−ǫ)2

∑

x∈N µ(x) log 1
µ(x) log(

1
δ+log 1

µ(x))) queries,

with constants depending on c.

The proof is given in Appendix E. For uniform dis-
tribution µ(x) ≡ 1/n, for all x ∈ N , this yields an
extra log log(n) factor in addition to the term of order
H(µ) = log(n) which, by the lower bound by Karbasi
et al., is optimal.

6. Numerical Evaluation

We evaluate RankNetSearch over six publicly avail-
able datasets: iris, abalone, ad, faces, swiss roll, and
netflix. We subsampled the latter two, taking 1000
randomly selected data points from swiss roll, and
the 1000 most rated movies in netflix. We map these
datasets to R

d (categorical variables are mapped to
binary values in the standard fashion) for d as shown
in Fig. 1(a). For netflix, movies were mapped to 50-
dimensional vectors by obtaining a low rank approxi-
mation of the user/movie rating matrix through SVD.
For all experiments, the distance metric d is the ℓ2
distance and the prior µ is power-law with α = 0.4.

We evaluated the performance of two versions of
RankNetSearch: one as described by Algo. 1, and
another one (T-RankNetSearch) in which the hi-
erarchy of rank nets is precomputed and stored as a
tree. Both propose exactly the same queries to the or-
acle, so have the same query complexity; however, T-

RankNetSearch has only O(1) computational cost
per query. The sizes of the trees precomputed by
T-RankNetSearch for each dataset are shown in
Fig. 1(a).

We compare these algorithms to (a) the policy pro-
posed by Karbasi et al. (2011), denoted by Memo-

Comparison-Based Learning with Rank Nets

(a) Dataset Description

Dataset Size Dim. Tree

iris 147 7 399
abalone 4177 11 21707
faces 698 4096 3664
ad 1924 1559 5816

swiss roll 1000 3 4229
netflix 1001 50 14585

Sources: www.netflixprize.com ,

http://isomap.stanford.edu/datasets.html ,

http://archive.ics.uci.edu/ml

(b) Query Complexity

iris abalone faces ad swiss roll netflix
0

20

40

60

80

100

120

#
 o

f
q
u
e
ri
e
s

F−GBS

S−GBS

RankNet

MemoryLess

(b) Computational Complexity

iris abalone faces ad swiss roll netflix
10

0

10
2

10
4

10
6

10
8

10
10

10
12

#
 o

f
o

p
e

ra
ti
o

n
s

F−GBS

S−GBS

RankNet

Memoryless

T−RankNet

Figure 1. (a) Table of size, dimension (number of features), as well as the size of the Rank Net Tree hierarchy constructed
for each dataset. (b) Expected query complexity, per search, of the five algorithms applied on each data set. As RankNet

and T-RankNet have the same query complexity, only one is shown. (c) Expected computational complexity, per search,
of the five algorithms applied on each dataset. For Memoryless and T-RankNet this equals the query complexity.

(a) Query Complexity

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

N

#
 o

f
q

u
e

ri
e

s

F−GBS

S−GBS

RankNet

Memoryless

(b) Computational Complexity

10
1

10
2

10
3

10
4

10
−5

10
0

10
5

10
10

N

#
 o

f
o

p
e

ra
ti
o

n
s

F−GBS

S−GBS

RankNet

Memoryless

T−RankNet

(c) Robustness

10
1

10
2

10
3

0

100

200

300

400

N

#
 o

f
q

u
e

ri
e

s

ε=0.0

ε=0.1

ε=0.2

ε=0.3

ε=0.4

Figure 2. (a) Query and (b) computational complexity of the five algorithms as a function of the dataset size. The dataset
is selected u.a.r. from the ℓ1 ball of radius 1.(c) Query complexity as a function of n under a faulty oracle.

ryless, and (b) two heuristics based on GBS (the
Θ(n3) computational cost of GBS per query makes
it intractable over the datasets we consider). The
first heuristic, termed F-GBS for fast GBS, selects
like GBS the query that minimizes (2); however, it
does so by restricting the queries to pairs of objects
in the current version space V . This reduces the
computational cost per query to Θ(|V |3), rather than
Θ(n2|V |). The second heuristic, termed S-GBS for
sparse GBS, exploits rank nets as follows. First, we
costruct the rank-net hierarchy over the dataset, as in
T-RankNetSeach. Then, we minimize (2) restricted
only on pairs of objects that appear in the same net.
Intuitively, S-GBS assumes that an equitable parti-
tion of the objects exists among such pairs.

Query vs. Computational Complexity. The
query complexity of different algorithms, expressed
as average number of queries per search, is shown
in Fig. 1(b). Although there are no known guaran-
tees for either F-GBS nor S-GBS both algorithms
are excellent in terms of query complexity across all
datasets, finding the target within about 10 queries,
in expectation. As GBS should perform as well as

these algorithms, these suggest that it should also have
low query cost. The query complexity of RankNet-

Search is between 2 to 10 times higher; the impact
is greater for high-dimensional datasets, as expected
through the dependence of the rank net size on the
c doubling constant. Finally, Memoryless performs
worse compared to all other algorithms. As shown in
Fig. 1, the above ordering is fully reversed w.r.t. com-
putational costs, measured as the aggregate number
of operations performed per search. Differences from
one algorithm to the next range between 50 to 100
orders of magnitude. F-GBS requires close to 109 op-
erations in expectation for some datasets; in contrast,
RankNetSearch ranges between 100 and 1000 opera-
tions and, in conclusion, presents an excellent trade-off
between query and computational complexity.

Scalability and Robustness. To study how the
above algorithms scale with the dataset size, we also
evaluate them on a synthetic dataset comprising ob-
jects placed uniformly at random at R

3. The query
and computational complexity of the five algorithms
is shown in Fig. 2(a) and (b).

www.netflixprize.com
http://isomap.stanford.edu/datasets.html
http://archive.ics.uci.edu/ml

Comparison-Based Learning with Rank Nets

We observe the same discrepancies betwen algorithms
we noted in Fig. 1. The linear growth in terms of logn
implies a linear relationship between both measures
of complexity w.r.t. the entropy H(µ) for all methods
(we ommit the relevant figure for lack of space). In
Fig. 2(b), we plot the query complexity of the robust
RankNetSearch algorithm outlined in Section 5.
For all simulations, the target success rate was set to
0.9, but the actual success rates we observed were con-
siderably higher, close to 0.99. We observe that, even
for high error rates ǫ, the query complexity remains
low. Moreover, the high success rates that we observe,
combined with the independence of the cost on n, sug-
gest that we can further reduce the number of queries
to lower values than the ones required by (5).

7. Conclusion

We presented RankNetSearch, an algorithm that
strikes an excellent balance between query and com-
putational costs. Further improving this trade-off, in
particular for more general kinds of noise, is an inter-
esting future direction for this line of work. Through-
out, we assumed that human inference of proximity is
accurately captured by a metric space structure. An
interesting research direction is assessing the validity
of this assumption through user trials.

References

Beygelzimer, A., Kakade, S., and Langford, J. Cover trees
for nearest neighbor. In ICML, 2006.

Clarkson, K. L. Nearest-neighbor searching and met-
ric space dimensions. In Nearest-Neighbor Methods for
Learning and Vision. 2006.

Clarkson, K.L. Nearest neighbor queries in metric spaces.
Discrete & Computational Geometry, 22(1):63–93, 1999.

Dasgupta, S. Analysis of a greedy active learning strategy.
NIPS, 2005.

Fredman, M. L. How good is the information theory bound
in sorting? In Theoretical Computer Science, 1976.

Golovin, D. and Krause, A. Adaptive submodularity: A
new approach to active learning and stochastic optimiza-
tion. In COLT, 2010.

Goyal, N., Lifshits, Y., and Schutze, H. Disorder in-
equality: a combinatorial approach to nearest neighbor
search. In WSDM, 2008.

Karbasi, A., Ioannidis, S., and Massoulié, L. Content
search through comparisons. In ICALP, 2011.

Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. Content-
based multimedia information retrieval: State of the art
and challenges. ACM Trans. Multimedia Comput. Com-
mun. Appl., 2, February 2006.

Lifshits, Y. and Zhang, S. Combinatorial algorithms for
nearest neighbors, near-duplicates and small-world de-
sign. In SODA, 2009.

Marchionini, G. Exploratory search: from finding to un-
derstanding. Communications of the ACM, 2006.

Nowak, R.D. The geometry of generalized binary search.
Transactions on Information Theory, 5, 2012.

Ruthven, I. Interactive information retrieval. Annual Re-
view of Information Science and Technology, 2008.

Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A.,
and Jain, R. Content-based image retrieval at the end of
the early years. IEEE Trans Pattern Anal Mach Intell,
2000.

Tschopp, D., Diggavi, S. N., Delgosha, P., and Mohajer,
S. Randomized algorithms for comparison-based search.
In NIPS, 2011.

A. Proof of Lemma 1

Using the ordered list containing the sets of equidistant
objects described in Section 3.1, for any z ∈ N , we
can partitionN into equivalence classesAz

1, A
z
2, . . . , A

z
k

such that for any two objects y, y′ ∈ N , y ∈ Az
i and

y′ ∈ Az
j with i < j if and only if d(y, z) < d(y′, z).

To construct R, it suffices to show that (4) can be
verified for any z, z′ ∈ E using only the above parti-
tion and µ. If so, a ρ-rank net can be constructed in
a greedy fashion as a maximal set whose points ver-
ify (4). This can be obtained by adding sequentially
an arbitrary object to the net and excluding from fu-
ture selections any nodes that violate (4) w.r.t. this
newly added object. Indeed, for all y ∈ E, By(dy) =
⋃ℓ

j=1 A
y
j , where ℓ = inf{i :

∑i
j=1 µ(A

y
j) ≥ ρµ(E)}.

The statement thus follows as (4) is equivalent to
y′ /∈ By(dy) ∨ y /∈ By′(dy′). To construct the Voronoi
balls By(ry) ⊆ E, y ∈ R, we initialize each such ball
to contain its center y. For each z ∈ E \R, let jmin be
the smallest j such that R ∩ Az

j 6= ∅; the object z is
then added to the ball By(ry) of every y ∈ N ∩Az

jmin
.

For each y, By(dy) can constructed in O(log |E|) time
via binary search on the ordered list of equidistant
objects. Constructing the rank net in a greedy fashion
requires determining which objects violate (4) w.r.t. a
newly added object on the net, which may take O(|E|)
time. Hence, the overall complexity of constructing R
is O(|E|(|R| + log |E|)). Finally, the construction of
the Voronoi balls requires O(|R|) steps per object in
E to assign each object to a ball.

B. Proof of Lemma 2

Note first that, for all distinct y, y′ ∈ R, the balls
B(y, dy(ρ,E)/4) ∩B(y′, dy′(ρ,E)/4) = ∅. To see this,
assume w.l.o.g. that dy ≥ dy′ which implies that
d(y, y′) ≥ dy − dy′ . This is due to the fact that
µ(B(y, dy′)) ≥ ρµ(E), and hence, by (3), dy can be
at most dy′ + d(y, y′). In case dy or dy′ is zero, clearly

Comparison-Based Learning with Rank Nets

d(y, y′) > dy/2 > dy/4+dy′/4. If 0 < dy′ < dy/2, then
d(y, y′) > dy/2 ≥ dy/4 + dy′/4.. If dy′ ≥ dy/2 > 0,
then d(y, y′) ≥ dy′ ≥ dy/2 > dy/4 + dy′/4.. Hence,
in all cases d(y, y′) > dy/4 + dy′/4 and as a result
B(y, dy/4) ∩B(y′, dy′/4) = ∅.

To prove Lemma 2, observe that dy ≤ 2R for all
y ∈ R since µ(y, d) ≥ µ(E) > ρµ(E) for d ≤ 2R.
Therefore, dy/4 ≤ R/2 and thus B(y, dy/4) ⊆
B(x, 2R). Hence, by the definition of c(µ),
∑

y∈R µ(B(y, dy/4)) ≤ µ(B(x, 2R)) ≤ cµ(E). More-

over,
∑

y∈R µ(B(y, dy/4)) ≥ c−2
∑

y∈R µ(B(y, dy)) ≥

c−2ρµ(E)|R|. Therefore, |R| ≤ c3/ρ.

C. Proof of Lemma 3

Observe first that, for all z ∈ E, there exists a y ∈
R such that z ∈ B(y, dy(ρ,E)). To see this, assume
otherwise. Then for any y ∈ R, d(z, y) > dy(ρ,E) ≥
min{dy(ρ,E), dz(ρ,E)} and we can add z to R, which
contradicts its maximality.

To prove Lemma 3, we consider the following two
cases. Suppose first 0 < ry ≤ dy. By (3), for any
r̃ < dy, we have µ(B(y, r̃) < ρµ(E). In particu-
lar, µ(B(y, dy/2) < ρµ(E). By the definition of c,
µ(B(y, ry) ≤ µ(B(y, dy) ≤ cρµ(E). For the second
case, suppose that ry > dy. Let z ∈ Vy is the point for
which d(y, z) = ry. By the above observation, we know
that there exists a y′ ∈ R such that d(z, y′) ≤ dy′ . As
ry > dy, y 6= y′. On the other hand, d(z, y′) ≥ d(z, y)
since z ∈ Vy. Using the triangle inequality, we get
d(y, y′) ≤ d(y, z) + d(y′, z) ≤ 2d(y′, z) ≤ 2dy′ . We
know that B(y, ry) ⊆ B(y′, d(y, y′) + ry). Since ry =
d(y, z) ≤ dy′ we can say B(y, ry) ⊆ B(y′, 3dy′). Fi-
nally, by the definition of c, we have µ(B(y, ry)) ≤
µ(B(y′, 3dy′)) ≤ c2µ(B(y′, dy′)) ≤ c3ρµ(E).

D. Proof of Theorem 2

Note first that, by induction, it can be shown that the
version space is a subset of E; correctness is implied
by this fact and the termination condition. To bound
the number of queries, we first show that the process
RankNet constructs a net with small cardinality.

Lemma 4. RankNet terminates at ρ > 1
4c3 .

Proof. To see that the while loop terminates, ob-
serve that, by Lemma 3, for small enough ρ <
minz∈E µ(z)/(c3µ(E)), all Voronoi balls By(ry) of the
ρ-rank net R will be singletons, so I will indeed be
empty. Suppose thus that the loop terminates at some
ρ = ρ∗. Since it did not terminate at ρ = 2ρ∗, there
exists a ball By(ry) of the 2ρ-rank net R such that
ry > 0 and µ(By(ry)) > 0.5µ(E). By Lemma 3,
µ(By(ry)) ≤ c32ρµ(E), and the lemma follows.
Hence, from Lemmas 2 and 4, we get that the rank
nets returned by RankNet have cardinality at most

4c6. On the other hand, by construction, a net cov-
ering a ball Byry consists of either singletons or balls
with mass less than 0.5µ(By(ry)). As a result, at each
iteration, moving to the next object either halves the
mass of the version space or leads to a leaf, and the
search terminates. As at any point the version space
has a mass greater than µ(t), the search will terminate
after traversing most ⌈log2(1/µ(t))⌉ iterations. Since,
at each level, the number of accesses to the oracle are
R − 1 ≤ 4c3, the total query cost for finding target t
is at most 4c6⌈log2(1/µ(t)⌉, and the query complexity
statement follows. Finally, from Lemmas 1 and 4, the
computational complexity of each RankNet call is at
most O

(

n(logn+ c3) log c
)

.

E. Proof of Theorem 3

We first show the following auxiliary result.

Lemma 5. Given a target t and a noisy oracle with
error probability bounded by ǫ, the tournament among
elements of the net R with repetitions kδ(ℓ, |R|) re-
turns the element in the set R that is closest to target
t with probability at least 1− (ℓ + 1/δ)−2.

Proof. We assume for simplicity that there are no ties,
i.e. there is a unique point in R that is closest to
t. The case with ties can be deduced similarly. We
first bound the probability p(k) that upon repeating
k times queries Ot(x, y), among x and y the one that
wins the majority of comparisons is not the closest to
t. Because of the bound ǫ on the error probability, one
has p(k) ≤ Pr(Bin(k, ǫ) ≥ k/2), where Bin(·, ·) denotes
the Binomial distribution. Azuma-Hoeffding inequal-
ity ensures that the right-hand side of the above is no
larger than exp(−k(1/2 − ǫ)2/2). Upon replacing the
number of repetitions k by the expression (5), one finds
that p(kδ(ℓ, |R|)) ≤ (ℓ+1/δ)−2/⌈log2(|R|)⌉. Consider
now the games to be played by the element within R
that is closest to t. There are at most ⌈log2(|R|)⌉ such
games. By the union bound, the probability that the
closest element loses on any one of these games is no
less than (ℓ+ 1/δ)−2, as announced.
By the union bound and the previous Lemma we
have conditionally on any target t ∈ N that
Pr(success|T = t) ≥ 1 −

∑

ℓ≥1(ℓ + 1/δ)−2).
The latter sum is readily bounded by δ. The
number of comparisons given that the target is

T = t is at most
∑⌈log

2
(1/µ(t))⌉

ℓ=1 2|Rℓ|kδ(ℓ, |Rℓ|) =

O
(

1
(1

2
−ǫ)2

log 1
µ(t) log(

1
δ + log 1

µ(t))
)

, where the O-

term depends only on the doubling constant c. The
bound on the expected number of queries follows by
averaging over t ∈ N .

