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Abstract

We consider the `1-regularized least-squares
problem for sparse recovery and compressed
sensing. Since the objective function is not
strongly convex, standard proximal gradi-
ent methods only achieve sublinear conver-
gence. We propose a homotopy continuation
strategy, which employs a proximal gradient
method to solve the problem with a sequence
of decreasing regularization parameters. It
is shown that under common assumptions in
compressed sensing, the proposed method en-
sures that all iterates along the homotopy
solution path are sparse, and the objective
function is effectively strongly convex along
the solution path. This observation allows
us to obtain a global geometric convergence
rate for the procedure. Empirical results are
presented to support our theoretical analysis.

1. Introduction

This paper proposes and analyzes an efficient numeri-
cal method for solving the `1-regularized least-squares
(`1-LS) problem

minimize
x

1

2
‖Ax− b‖22 + λ‖x‖1, (1)

where x ∈ Rn is the vector of unknowns, A ∈ Rm×n
and b ∈ Rm are the problem data, and λ > 0 is a regu-
larization parameter. Here ‖ · ‖2 denotes the standard
Euclidean norm, and ‖x‖1 =

∑
i |xi| is the `1 norm

of x. This is a convex optimization problem, and we
use x?(λ) to denote its (global) optimal solution.
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The `1-LS problem has important applications in ma-
chine learning, signal processing, and statistics. It has
received significant attention in recent years due to the
emergence of compressed sensing theory, which builds
upon the fundamental idea that a finite-dimensional
signal having a sparse or compressible representation
can be recovered from a small set of linear, nonadap-
tive measurements. We are especially interested in
solving the `1-LS problem in such a context, with the
goal of recovering a sparse vector under measurement
noise. More precisely, we consider a linear model

b = Ax̄+ z,

where x̄ is the sparse vector we would like to recover
in statistical applications, and z is a noise vector. We
assume that the noise level, measured by ‖AT z‖∞, is
relatively small compared with the regularization pa-
rameter λ. This scenario is of great modern interest,
and various properties of the solution x?(λ) have been
investigated. In particular, it is known that under suit-
able conditions on A such as the restricted isometry
property (RIP), and as long as λ ≥ c‖AT z‖∞ (for some
universal constant c), one can obtain a recovery bound
of the optimal form:

‖x?(λ)− x̄‖22 = O
(
λ2‖x̄‖0

)
, (2)

where ‖x̄‖0 denotes the number of nonzero entries in x̄.
For example, see (Meinshausen & Bühlmann, 2006;
Zhang & Huang, 2008; Zhang, 2009; Bickel et al., 2009;
Koltchinskii, 2009; van de Geer & Bühlmann, 2009).
The constant inO(·) depends only on the so-called RIP
condition that we will discuss later on, and this bound
achieves the optimal order of recovery. Moreover, it
is known that in this situation, the solution x?(λ) is
sparse (Zhang & Huang, 2008).

In this paper, we develop an efficient numerical method
for solving the `1-LS problem in the context of sparse
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recovery described above. In particular, we focus on
the case when m < n (i.e., the linear system Ax = b
is underdetermined) and the solution x?(λ) is sparse
(which requires the parameter λ to be sufficiently
large). Under such assumptions, our method has prov-
able lower complexity than previous algorithms.

1.1. Previous algorithms

There have been extensive research on numerical
methods for solving (1) and its several variations. Here
we briefly summarize the computational complexities
of several methods that are most relevant to our ap-
proach, in terms of finding an ε-optimal solution.

Proximal gradient methods take the following basic
form at each iteration k = 0, 1, . . .

x(k+1) = arg min
y

{
f(x(k)) +∇f(x(k))T (y − x(k))

+
Lk
2
‖y − x(k)‖22 + λ‖y‖1

}
, (3)

where we used the shorthand f(x) = (1/2)‖Ax− b‖22,
and Lk is a parameter chosen at each iteration (e.g.,
using a line-search procedure). The minimization
problem in (3) has a closed-form solution

x(k+1) = softh

(
x(k) − 1

Lk
∇f(x(k)) ,

λ

Lk

)
, (4)

where softh : Rn × R+ → Rn is the well-known soft-
thresholding operator, defined as

(softh(x, α))i = sgn(xi) max {|xi|−α, 0} , i = 1, . . . , n.

Iterative methods that use the update rule (4) in-
clude Daubechies et al. (2004); Nesterov (2007); Hale
et al. (2008); Wright et al. (2009). Their major com-
putational effort per iteration is to form the gradient
∇f(x) = AT (Ax − b), which costs O(mn) flops for a
generic dense matrix A. With appropriate choices of
the parameters Lk, the proximal-gradient method (3)
has an iteration complexity O(1/ε).

Variations and extensions of the proximal gradient
method have been proposed to speed up the conver-
gence in practice (Bioucas-Dias & Figueiredo, 2007;
Wright et al., 2009; Wen et al., 2010). Nesterov’s op-
timal gradient methods for minimizing smooth convex
functions (Nesterov, 2004; 2005) have also been ex-
tended to minimize composite objective functions such
as in the `1-LS problem (Nesterov, 2007; Tseng, 2008;
Becker et al., 2011). These accelerated methods have
the iteration complexity O(1/

√
ε). They typically gen-

erate two or three concurrent sequences of iterates, but
their computational cost per iteration is still O(mn),
which is the same as simple gradient methods.

Exact homotopy path-following methods were devel-
oped in the statistics literature to compute the com-
plete LASSO path when varying the regularization
parameter λ from large to small (Osborne et al., 2000;
Efron et al., 2004). These methods exploit the piece-
wise linearity of the solution as a function of λ, and
identify the next breakpoint along the solution path by
examining the optimality conditions (also called active
set or pivoting method in optimization). With efficient
numerical implementations (using updating or down-
dating of submatrix factorizations), the computational
cost at each breakpoint is O(mn + ms2), where s is
the number of nonzeros in the solution. Such methods
can be quite efficient if s is small. However, in general,
there is no convergence result bounding the number of
breakpoints for this class of methods.

1.2. Proposed approach and contributions

We consider an approximate homotopy continuation
method, where the key idea is to solve (1) with a
large regularization parameter λ first, and then grad-
ually decreases λ until the target regularization is
reached. For each fixed λ, we employ a proximal gra-
dient method of the form (3) to solve (1) up to an ad-
equate precision (to be specified later), and then use
this approximate solution to serve as the initial point
for the next value of λ. We call the resulting method
Proximal-Gradient Homotopy (PGH) method.

This is not a new idea. Approximate homotopy con-
tinuation methods that use proximal gradient meth-
ods for solving each stage (with a fixed value of λ)
have been studied in, e.g., Hale et al. (2008); Wright
et al. (2009); Wen et al. (2010), and superior empirical
performance have been reported when the solution is
sparse. However, there has been no effective theoreti-
cal analysis for their overall iteration complexity. As a
result, some important algorithmic choices are mostly
based on heuristics and ad hoc factors.

In this paper, we present a PGH method that has prov-
able low iteration complexity. Under the assumptions
that the target value of λ is sufficiently large (so that
the final solution is sparse) and the matrix A satis-
fies a RIP-like condition, our PGH method exhibits
a global geometric rate of convergence, with an over-
all computational complexity of O(mn log(1/ε)) in or-
der to achieve accuracy ε. Moreover, it is sufficient to
choose λ ≥ c‖AT z‖∞ (for some universal constant c),
which implies that the final solution satisfies a recovery
bound of the optimal form (2).

The low iteration complexity of our PGH method is
achieved by actively exploiting the fast local linear
convergence of the standard proximal gradient method
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when the solution x?(λ) is sparse. Under a RIP-like
assumption on A, the sparsity implies that along the
homotopy path, the objective function in (1) is effec-
tively strongly convex, and hence global geometric rate
can be established using the analysis of proximal gra-
dient methods by Nesterov (2007).

2. Preliminaries and notations

In this section, we first introduce composite gradient
mapping and some of its key properties developed by
Nesterov (2007). We then describe Nesterov’s proxi-
mal gradient method with adaptive line search, which
we will use to solve the `1-LS problem at each stage
of our PGH method. Finally we discuss the restricted
eigenvalue conditions that allow us to show the local
geometric convergence of Nesterov’s algorithm.

2.1. Composite gradient mapping

To simplify presentation, let f(x) = (1/2)‖Ax − b‖22.
Then the `1-LS problem can be written as

minimize
x

{
φλ(x) , f(x) + λ‖x‖1

}
, (5)

The optimality condition of (5) states that x? is a
solution if and only if there exists ξ ∈ ∂‖x?‖1) such
that ∇f(x?)+λξ = 0 (see, e.g., Rockafellar, 1970, Sec-
tion 27). Therefore, a good measure of the quality of
an approximate solution is the quantity

ωλ(x) , min
ξ∈∂‖x‖1

‖∇f(x) + λξ‖∞. (6)

We call ωλ(x) the optimality residue of x. Given the
gradient ∇f(x), it can be computed with O(n) flops.
We will use it in the stopping criterion of our method.

Composite gradient mapping was introduced by Nes-
terov (2007). For any fixed point y and a given con-
stant L > 0, we define a local model of φλ(x) around y
using a quadratic approximation of f :

ψλ,L(y;x) = f(y)+∇f(y)T (x−y)+
L

2
‖x−y‖22+λ‖x‖1,

and let

Tλ,L(y) = arg min
x

ψλ,L(y;x). (7)

We note that Tλ,L(x) can be computed using (4). The
composite gradient mapping of φλ at y is defined as

gλ,L(y) = L(y − Tλ,L(y)).

The following property of composite gradient mapping
was shown in Nesterov (2007, Theorem 2):

Lemma 1. For any y ∈ Rn and any L > 0,

ψλ,L(y;Tλ,L(y)) ≤ φλ(y)− 1

2L
‖gλ,L(y)‖22.

Algorithm 1 {x+,M} ← LineSearch(λ, x, L)

input: λ > 0, x ∈ Rn, L > 0
parameter: γinc > 1
repeat
x+ ← Tλ,L(x)
If φλ(x+) > ψλ,L(x;x+) then L← Lγinc

until φλ(x+) <= ψλ,L(x;x+)
M ← L
return {x+,M}

Algorithm 2 {x̂, M̂} ← ProxGrad(λ, ε̂, x(0), L0)

input: λ > 0, ε̂ > 0, x(0) ∈ Rn, L0 ≥ Lmin

parameters: Lmin > 0, γdec ≥ 1
repeat for k = 0, 1, 2, . . .
{x(k+1),Mk} ← LineSearch(λ, x(k), Lk)
Lk+1 ← max{Lmin,Mk/γdec}

until ωλ(x(k+1)) ≤ ε̂
x̂← x(k+1)

M̂ ←Mk

return {x̂, M̂}

2.2. Nesterov’s proximal gradient method
with adaptive line-search

With the machinery of composite gradient mapping,
Nesterov developed several variants of proximal gra-
dient methods (2007). We use the non-accelerated
primal-gradient version described in Algorithms 1
and 2, which correspond to (3.1) and (3.2) in Nesterov
(2007), respectively. To use this algorithm, we need to
first choose an initial optimistic estimate Lmin for the
Lipschitz constant Lf (i.e., 0 < Lmin ≤ Lf ) and two
adjustment parameters γdec ≥ 1 and γinc > 1.

Each iteration of the proximal gradient method gener-
ates the next iterate in the form of

x(k+1) = Tλ,Mk
(x(k)),

where Mk is chosen by the line search procedure in
Algorithm (1). The line search procedure starts with
an estimated Lipschitz constant Lk, and increases its
value by the factor γinc until the stopping criteria is
satisfied. The stopping criteria for line search ensures

φλ(x(k+1)) ≤ ψλ,Mk

(
x(k), x(k+1)

)
≤ φλ(x(k))− 1

2Mk

∥∥gλ,Mk
(x(k))

∥∥2

2
, (8)

where the last inequality follows from Lemma 1.
Therefore, we have the objective value φλ(x(k)) de-
crease monotonically with k, unless the gradient map-
ping gλ,Mk

(x(k)) = 0. In the latter case, x(k+1) is an
optimal solution.
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Nesterov established the following iteration complexi-
ties of Algorithm 2 for finding an ε-optimal solution: if
φλ is convex but not strongly convex, then the conver-
gence is sublinear, with an iteration complexity O(1/ε)
(Nesterov, 2007, Theorem 4); if φλ is strongly convex,
then the convergence is geometric, with an iteration
complexity O(log(1/ε)) (Nesterov, 2007, Theorem 5).
A nice property of this algorithm is that we do not need
to know a priori if the objective function is strongly
convex or not. It will automatically exploit the strong
convexity whenever it holds.

For our interested case m < n, the objective function
in Problem (1) is not strongly convex. Therefore, if
we directly use Algorithm 2 to solve this problem, we
can only get the O(1/ε) sublinear convergence. Never-
theless, we can use a homotopy continuation strategy
to enforce that all iterates along the solution path are
sufficiently sparse. Under a RIP-like assumption on A
(which we explain next), this implies that the objec-
tive function is effectively strongly convex along the
homotopy path, and hence global geometric rate can
be established using Nesterov’s analysis.

2.3. Restricted eigenvalue conditions

We first define some standard notations for sparse re-
covery. For a vector x ∈ Rn, let

supp(x) = {j : xj 6= 0}, ‖x‖0 = |supp(x)|.

Throughout the paper, we denote supp(x̄) by S̄, and
use S̄c for its complement. We use the notations xS̄
and xS̄c to denote the restrictions of a vector x to the
coordinates indexed by S̄ and S̄c, respectively.

Various conditions for sparse recovery have appeared
in the literature. The most well-known of such con-
ditions is the restricted isometry property (RIP) in-
troduced in Candès & Tao (2005). In this paper, we
analyze the numerical solution of the `1-LS problem
under a slight generalization, which we refer to as re-
stricted eigenvalue condition.

Definition 1. Given an integer s > 0, we say that A
satisfies the restricted eigenvalue condition at sparsity
level s if there exists positive constants ρ−(A, s) and
ρ+(A, s) such that

ρ+(A, s) = sup

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
,

ρ−(A, s) = inf

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
.

Note that a matrix A satisfies the original definition
of restricted isometry property with RIP constant ν

Algorithm 3 x̂(tgt) ← Homotopy(A, b, λtgt, ε, Lmin)

input A ∈ Rm×n, b ∈ Rn, λtgt > 0, ε > 0, Lmin > 0
parameters: η ∈ (0, 1), δ ∈ (0, 1)
initialize: λ0 ← ‖AT b‖∞, x̂(0) ← 0, M̂0 ← Lmin

N ← bln(λ0/λtgt) / ln(1/η)c
for K = 0, 1, 2, . . . , N − 1 do
λK+1 ← ηλK
ε̂K+1 ← δλK+1

{̂x(K+1), M̂K+1}←ProxGrad
(
λK+1, ε̂K+1, x̂

(K), M̂K

)
end for
{x̂(tgt), M̂tgt} ← ProxGrad

(
λtgt, ε, x̂

(N), M̂N

)
return x̂(tgt)

at sparsity level s if and only if ρ+(A, s) ≤ 1 + ν and
ρ−(A, s) ≥ 1 − ν. More generally, the strong convex-
ity of the objective function in (1), namely φλ(x), is
equivalent to ρ−(A,n) > 0. However, since we are in-
terested in the situation of m < n, which implies that
ρ−(A,n) = 0, we know that φλ is not strongly con-
vex. Nevertheless, for s < m, it is still possible that
the condition ρ−(A, s) > 0 holds. This means that if
both x and y are sparse vectors, then φλ is strongly
convex along the line segment that connects x and y.

The convergence rate of our PGH method depends on
a restricted condition number, defined as

κ(A, s) =
ρ+(A, s)

ρ−(A, s)
. (9)

In particular, if the matrix A has RIP constant ν at
sparsity level s, then κ(A, s) ≤ (1 + ν)/(1− ν).

3. A proximal-gradient homotopy
method

The key idea of a proximal-gradient homotopy (PGH)
method is to solve (1) with a large regularization pa-
rameter λ0 first, and then gradually decreases λ until
the target regularization is reached. For each fixed λ,
we employ Nesterov’s PG method described in Algo-
rithms 1 and 2, to solve problem (1) up to an adequate
precision. Then we use this approximate solution to
warm start the PG method for the next value of λ.

Our proposed PGH method is listed as Algorithm 3.
To make the presentation more clear, we use λtgt to de-
note the target regularization parameter. The method
starts with λ0 = ‖AT b‖∞, which is the smallest value
for λ such that the `1-LS problem has the trivial solu-
tion 0 (by examining the optimality condition). Our
method has two additional parameters η ∈ (0, 1) and
δ ∈ (0, 1). They control the algorithm as follows:

• The sequence of values for the regularization pa-
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rameter is determined as λK = ηKλ0 for K =
1, 2, . . ., until the target value λtgt is reached.

• For each λK except λtgt, we solve problem (1)
with a proportional precision δλK . For the last
stage λtgt, we solve to the absolute precision ε.

As discussed in the introduction, sparse recovery by
solving the `1-LS problem requires two types of con-
ditions: the regularization parameter λ is relatively
large compared with the noise level, and the matrix A
satisfies certain RIP or restricted eigenvalue condition.
It turns out that such conditions are also sufficient for
fast convergence of our PGH method. More precisely,
we have the following assumption:

Assumption 1. Suppose b = Ax̄+z. Let S̄ = supp(x̄)
and s̄ = |S̄|. There exist γ > 0 and δ′ ∈ (0, 1) such
that γ > (1 + δ′)/(1− δ′) and

λtgt ≥ max

{
4,

γ + 1

(1− δ′)γ − (1 + δ′)

}
‖AT z‖∞. (10)

Moreover, there exists an integer s̃ such that ρ−(A, s̄+
2s̃) > 0 and

s̃ >
16
(
γincρ+(A, s̄+ 2s̃) + 2ρ+(A, s̃)

)
ρ−(A, s̄+ s̃)

(1 + γ)s̄. (11)

We also assume that Lmin ≤ γincρ+(A, s̄+ 2s̃).

In this paper, we show that by choosing the parame-
ters η and δ in Algorithm 3 appropriately, these condi-
tions imply that all iterates along the solution path are
sparse. Our proof employs a similar argument as that
of Zhang & Huang (2008). Before stating the main
convergence results, we make some further remarks on
Assumption 1.

• The condition (10) states that the λ must be
sufficiently large to dominate the noise. Such a
condition is adequate for sparse recovery applica-
tions because recovery performance given in (2)
achieves optimal error bound under stochastic
noise model by picking λ of the order ‖AT z‖∞.
Moreover, it is also necessary because when λ is
smaller than the noise level, the solution x?(λ)
will not be sparse anymore, which defeats the
practical purpose of using `1 regularization.

• The existence of s̃ satisfying the conditions (11)
is necessary and standard in sparse recovery anal-
ysis. This is closely related to the RIP condi-
tion of Candès & Tao (2005) which assumes that
there exist some s > 0, and ν ∈ (0, 1) such that
κ(A, s) < (1 + ν)/(1 − ν). In fact, if RIP is sat-
isfied with ν = 0.2 at s = 193(1 + γ)s̄, then we

may take γinc = 2 and s̃ = 96(1 + γ)s̄ so that the
condition (11) is satisfied. Although for practi-
cal purpose these constants are rather large, it is
worth mentioning that our analysis focuses on the
high level message, without paying special atten-
tion to optimizing the constants.

Our first result below concerns the local geometric
convergence of Algorithm 2. Basically, if the start-
ing point x(0) is sparse and the optimality condition
is satisfied with adequate precision, then all iterates
along the solution path are sparse, and Algorithm 2
has geometric convergence. To simplify the presenta-
tion, we use a single symbol κ to denote the restricted
condition number

κ = κ(A, s̄+ 2s̃) =
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ 2s̃)
.

Theorem 1. Suppose Assumption 1 holds. If the ini-
tial point x(0) in Algorithm 2 satisfies∥∥x(0)

S̄c

∥∥
0
≤ s̃, ωλ(x(0)) ≤ δ′λ, (12)

then for all k ≥ 0, we have
∥∥x(k)

S̄c

∥∥
0
≤ s̃, and

φλ(x(k))− φ?λ ≤
(

1− 1

4γincκ

)k (
φλ(x(0))− φ?λ

)
,

where φ?λ = φλ(x?(λ)) = minx φλ(x).

Due to space limit, all proofs for results presented in
this paper are given in the supplementary material.

Our next result gives the overall iteration complexity
of the PGH method in Algorithm 3. Roughly speaking,
if the parameters δ and η are chosen appropriately,
then the total number of proximal-gradient steps for
finding an ε-optimal solution is O(ln(1/ε)).

Theorem 2. Suppose Assumption 1 holds with λtgt ≤
λ0 and the parameters δ and η are chosen such
that (1 + δ)/(1 + δ′) ≤ η < 1. Let N =⌊
ln (λ0/λtgt) / ln η−1

⌋
, then

1. The condition (12) holds for each call of Algo-
rithm 2. For K = 0, . . . , N − 1, the number of
proximal-gradient steps in each call of Algorithm 2
is no more than

ln

(
C

δ2

)/
ln

(
1− 1

4γincκ

)−1

,

where C = 8γinc(1 + κ)2(1 + γ)κs̄.

2. For K = 0, . . . , N−1, the outer-loop iterates x̂(K)

satisfies

φλtgt
(x̂(K))− φ?λtgt

≤ η2(K+1) 4.5(1 + γ)λ2
0s̄

ρ−(A, s̄+ s̃)
, (13)
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and we have the sparse recovery bound

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0

√
s̄

ρ−(A, s̄+ s̃)
.

3. When Algorithm 3 terminates, the total number
of proximal-gradient steps is no more than

ln(λ0/λtgt)
ln η−1 ln

(
C
δ2

)
+ ln max

(
1,

λ2
tgtC

ε2

)
ln
(

1− 1
4γincκ

)−1 ,

and the output x̂(tgt) satisfies

φλtgt
(x̂(tgt))− φ?λtgt

≤ 4(1 + γ)λtgts̄

ρ−(A, s̄+ s̃)
ε.

We have the following remarks regarding these results:

• The precision ε in Algorithm 3 is measured against
the optimality residue ωλ(x). In terms of the ob-
jective gap, suppose ε0 > 0 is the target precision
to be reached. Let

K0 =

⌈
1

2
ln

(
4.5(1 + γ)λ2

0s̄

ρ−(A, s̄+ s̃)ε0

)/
ln η−1

⌉
− 1.

From the inequality (13), we see that if 0 ≤ K0 ≤
N − 1, then for all K ≥ K0,

φλtgt(x̂
(K))− φ?λtgt

≤ ε0.

If we let ε0 → 0 and run the PGH method forever,
then the number of proximal-gradient iterations is
no more than O(ln(λ0/ε0)) to achieve an ε0 accu-
racy both on the gap of objective value and on the
optimality residue ωλ(·) ≤ ε0. This means that
the PGH method achieves a global geometric rate
of convergence.

• When the restricted condition number κ is large,
we can use the approximation

ln

(
1− 1

4γincκ

)−1

≈ 1

4γincκ
.

Then the overall iteration complexity can be es-
timated by O (κ ln (λ0/ε)), which is proportional
to the restricted condition number κ.

• Even if we solve each stage to high precision with
ε̂K+1 = min(ε, δλK+1), the global convergence
rate is still near geometric, and the total num-
ber of proximal-gradient steps is no more than
O((ln(λ0/ε))

2).

Theorem 2 plus restricted strong convexity immedi-
ately implies that the approximate solutions x̂(K) (and
the last step solution x̂(tgt)) also converge to x?(λtgt)
at a globally geometric rate. A particularly interest-
ing case is noise-free compressed sensing using the basis
pursuit formulation

minimize ‖x‖1 subject to Ax = b,

which has the optimal solution x̄. For this problem,
we can simply run Algorithm 3 with λtgt = 0. While
the convergence metrics such as objective value gap
or optimality residue are no longer informative in this
case, Theorem 2 implies the following numerical con-
vergence result after K iterations:

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0

√
s̄

ρ−(A, s̄+ s̃)
.

This requires no more than O(K) proximal-gradient
steps in the PGH method. This result can be inter-
preted as a global geometric rate of convergence for
solving the BP problem.

4. Numerical experiments

In this section, we illustrate the numerical properties of
our PGH method by comparing it with several other
methods. More specifically, we implemented the fol-
lowing methods for solving the `1-LS problem:

• PG: Nesterov’s proximal gradient method with
adaptive line search (Algorithm 2).

• PGH: our proposed PGH method in Algorithm 3.

• ADG: Nesterov’s accelerated dual gradient
method Nesterov (2007, Algorithm (4.9)).

• ADGH: the method outlined in Algorithm 3, but
with PG replaced by ADG for the inner loop.

We generated a random instance of (1) with dimen-
sions m = 1000 and n = 5000. The entries of the ma-
trix A ∈ Rm×n are generated independently with the
uniform distribution over the interval [−1,+1]. The
vector x̄ ∈ Rn was generated with the same distri-
bution at 100 randomly chosen coordinates (all other
coordinates of x̄ was set to zero). The noise z ∈ Rm is
a dense vector with independent random entries with
the uniform distribution over the interval [−0.01, 0.01].
Finally the vector b was obtained as b = Ax̄ + z. In
our experiment, we choose λtgt = 1. For this partic-
ular instance we have roughly ‖AT z‖∞ ≈ 0.411. The
PGH method started with λ0 = ‖AT b‖∞ = 483.5.
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(a) Objective gap.
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(b) Sparsity along solution path.
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(c) Optimality residues.
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(d) Line search results.

Figure 1. Solving a random instance of the `1-LS problem. Problem sizes: m = 1000, n = 5000, s̄ = 100, and λtgt = 1.
Entries of A ∈ Rm×n were generated with independent uniform distribution over [−1,+1], and entries of the noise vector z
has uniform distribution with ‖z‖∞ = 0.01. Algorithmic parameters: γinc = 2, γdec = 2, η = 0.7, and δ = 0.2.

Figure 1 illustrates various numerical properties of
the four different methods for solving this random in-
stance. We used the parameters γinc = 2 and γdec = 2
in all four methods. For the two homotopy methods
(whose acronyms end with the letter H), we used the
parameters η = 0.7 and δ = 0.2. In all four subfigures,
the horizontal axes show the cumulative count of inner
iterations (total number of proximal-gradient steps).
For the two homotopy methods, the vertical line seg-
ments in Figures 1(a) and 1(c) indicate switchings of
homotopy stages (when the value of λ is reduced by
the factor η) — they reflect the change of objective
function for the same vector x(k).

Figure 1(a) shows the objective gap φλ(x(k)) − φ?λtgt

versus the number of iterations k. The PG method
solves the problem with the target regularization pa-

rameter λtgt directly. For the first 350 or so itera-
tions, it demonstrated a slow sublinear convergence
rate (theoretically O(1/k)), but converged rapidly for
the last 30 iterations with a linear rate. Referring to
Figure 1(b), we see that the slow convergence phase of
PG is associated with relatively dense iterates (with
NNZs ranging from 5,000 to a few hundreds), while
the fast linear convergence in the end coincides with
sparse iterates with ‖x(k)‖0 around 100. In contrast,
the PGH method maintains sparse iterates (always less
than 300) along the whole solution path, and demon-
strates geometric convergence at each stage of homo-
topy continuation.

Figure 1(c) shows the optimality residues of differ-
ent methods versus the number of iterations k. They
demonstrate similar trends as the objective function



A Proximal-Gradient Homotopy Method for the `1-Regularized Least-Squares Problem

gap, but clearly they oscillate along the solution path
and do not decrease monotonically. Figure 1(d) plots
the local Lipschitz constants returned by the line
search procedure at each iteration. We see that the
adaptive line-search method settles with much smaller
Mk when the iterates are sparse. There is a striking
similarity between the final stages of the PG method
and the PGH method. However, the PGH method
avoids the slow sublinear convergence by maintaining
sparse iterates along its whole solution path.

Also plotted in Figure 1 are numerical characteristics
of the ADG and ADGH methods. We see that the
ADG method is much faster than the PG method in
the early phase, which can be explained by its much
faster convergence rate, i.e., O(1/k2) instead of O(1/k)
for PG. However, it stays with the sublinear rate even
when the iterates x(k) becomes very sparse. The rea-
son is that ADG cannot automatically exploit the local
strong convexity as PG does, so it eventually lags be-
hind when the solution is very sparse. In the method
ADGH, we combine the homotopy continuation strat-
egy with the ADG method. It improves a lot compared
with ADG, but still does not have geometric conver-
gence and thus is much slower than the PGH method.
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