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Abstract

Clustering analysis by nonnegative low-
rank approximations has achieved remark-
able progress in the past decade. However,
most approximation approaches in this di-
rection are still restricted to matrix factor-
ization. We propose a new low-rank learn-
ing method to improve the clustering per-
formance, which is beyond matrix factoriza-
tion. The approximation is based on a two-
step bipartite random walk through virtual
cluster nodes, where the approximation is
formed by only cluster assigning probabil-
ities. Minimizing the approximation error
measured by Kullback-Leibler divergence is
equivalent to maximizing the likelihood of
a discriminative model, which endows our
method with a solid probabilistic interpre-
tation. The optimization is implemented
by a relaxed Majorization-Minimization algo-
rithm that is advantageous in finding good lo-
cal minima. Furthermore, we point out that
the regularized algorithm with Dirichlet prior
only serves as initialization. Experimental re-
sults show that the new method has strong
performance in clustering purity for various
datasets, especially for large-scale manifold
data.

1. Introduction

Cluster analysis assigns a set of objects into groups so
that the objects in the same cluster are more similar
to each other than to those in other clusters. Opti-
mization of most clustering objectives is NP-hard and
relaxation to “soft” clustering is often required. A non-
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negativity constraint, together with various low-rank
matrix approximation objectives, has widely been used
for the relaxation purpose in the past decade.

The most popular nonnegative low-rank approxi-
mation method is Nonnegative Matrix Factorization
(NMF). It finds a matrix that approximates the simi-
larities and can be factorized into several nonnegative
low-rank matrices. NMF was originally applied to vec-
torial data, where Ding et al. (2010) have shown that
NMF is equivalent to the classical k-means method.
Later NMF was applied to the (weighted) graph given
by the pairwise similarities. For example, Ding et al.
(2008) presented Nonnegative Spectral Cuts by using a
multiplicative algorithm; Arora et al. (2011) proposed
Left Stochastic Decomposition that approximates a
similarity matrix based on Euclidean distance and a
left-stochastic matrix. Another stream in the same
direction is topic modeling. Hofmann (1999) gave a
generative model in Probabilistic Latent Semantic In-
dexing (PLSI) for counting data, which is essentially
equivalent to NMF using Kullback-Leibler (KL) di-
vergence and Tri-factorizations. Bayesian treatment
of PLSI by using Dirichlet prior was later introduced
by Blei et al. (2001). Symmetric PLSI with the same
Bayesian treatment is called Interaction Component
Model (ICM) (Sinkkonen et al., 2008).

Despite remarkable progress, the above relaxation ap-
proaches are still not fully satisfactory in all of the fol-
lowing requirements that affect the clustering perfor-
mance using nonnegative low-rank approximation: (1)
approximation error measure that takes into account
sparse similarities, (2) decomposition form of the ap-
proximating matrix, where the decomposing matrices
should contain just enough parameters for clustering
but not more, and (3) normalization of the approxi-
mating matrix, which ensures relatively balanced clus-
ters and equal contribution of each data sample. Lack-
ing one or more of these dimensions can severely affect
clustering performance.
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In this paper we present a new nonnegative low-rank
approximation method for clustering, which satisfies
all of the above three requirements. First, because
datasets often lie in curved manifolds such that only
similarities in a small neighborhood are reliable, we
adopt KL-divergence to handle the resulting sparsity.
Second, different from PLSI, we enforce an equal con-
tribution of every data sample and then directly con-
struct the decomposition over the probabilities from
samples to clusters. Third, these probabilities form
the only decomposing matrix to be learned in our ap-
proach and directly gives the answer for probabilistic
clustering. Furthermore, our decomposition method
leads to a doubly-stochastic approximating matrix,
which was shown to be desired for balanced graph cuts
(Zass & Shashua, 2006). We name our new method
DCD because it is based on Data-Cluster-Data ran-
dom walks.

In order to solve the DCD learning objective, we pro-
pose a novel relaxed Majorization-Minimization algo-
rithm to handle the new matrix decomposition type.
Our relaxation strategy works robustly in finding sast-
isfactory local optimizers under the stochasticity con-
straint. Furthermore, we argue that complexity con-
trol such as Bayesian priors only provides initialization
for the new algorithm. This eliminates the problem of
hyperparameter selection in the prior.

Empirical comparison with NMF and other graph-
based clustering approaches demonstrates that our
method can achieve the best or nearly the best clus-
tering purity in all tasks. For some datasets, the new
method significantly improves the state-of-the-art.

After this introductory part, we present the new
method in Section 2, including its learning objec-
tive, probabilistic model, optimization and initializa-
tion techniques. In Section 3, we point out the con-
nections and differences between our method and other
recent related work. Experimental settings and results
are given in Section 4. Finally we conclude the paper
and discuss some future work in Section 5.

2. Clustering by DCD

Suppose the similarities between n data samples are
precomputed and given in a nonnegative symmetric
matrix A. This matrix can be seen as (weighted) affin-
ity of an undirected similarity graph where each node
corresponds to a data sample (data node). A clus-
tering analysis algorithm takes such input and divides
the data nodes into r disjoint subsets. In probabilistic
clustering analysis, we want to find P (k|i), the prob-
ability of assigning the ith sample to the kth cluster,

where i = 1, . . . , n and k = 1, . . . , r. In the following,
i, j and v stand for data sample (node) indices while
k and l stand for cluster indices.

2.1. Learning objective

Some of our work was inspired by the AnchorGraph
(Liu et al., 2010) which was used in large approxi-
mative graph construction based on a two-step ran-
dom walk between data nodes through a set of an-
chor nodes. Note that AnchorGraph is not a clustering
method.

If we augment the input similarity graph by r cluster
nodes, the cluster assigning probabilities can be seen as
single-step random walk probabilities from data nodes
to the augmented cluster nodes. Without preference
to any particular samples, we impose uniform prior
P (i) = 1/n over the data nodes. By this prior, the
reversed random walk probabilities can then be calcu-
lated by the Bayes formula

P (i|k) =
P (k|i)P (i)∑
v P (k|v)P (v)

=
P (k|i)∑
v P (k|v)

. (1)

Consider next the probability of two-step random
walks from ith data node to jth data node via all clus-
ter nodes (DCD random walk):

P (i|j) =
∑
k

P (i|k)P (k|j) =
∑
k

P (k|i)P (k|j)∑
v P (k|v)

. (2)

This probability defines another similarity between
two data nodes, Âij = P (i|j), with respect to clus-
ter nodes. Note that this matrix has rank at most
equal to r. The learning target is now to find a good
approximation between the input similarities and the
DCD random walk probabilities:

A ≈ Â. (3)

AnchorGraph does not provide any error measure for
the above approximation. A conventional choice in
NMF is the squared Euclidean distance, which em-
ploys the underlying assumption that the noise is ad-
ditive and Gaussian.

In real-world clustering tasks for multivariate datasets,
data points often lie in a curved manifold. Conse-
quently, similarities based on Euclidean distances are
reliable only in a small neighborhood. Such local-
ity causes high sparsity in the input similarity ma-
trix. Sparsity also commonly exists for real-world net-
work data. Because of the sparsity, Euclidean dis-
tance is improper for the approximation in Eq. (3),
because additive Gaussian noise should lead to a dense
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observed graph. In contrast, (generalized) Kullback-
Leibler divergence is more suitable for the approxima-
tion. The underlying Poisson noise characterizes rare
occurrences that are present in our sparse input. We
can now formulate our learning objective as the fol-
lowing optimization problem:

min
W≥0

DKL(A||Â) =
∑
ij

(
Aij log

Aij

Âij
−Aij + Âij

)
(4)

s.t.
∑
k

Wik = 1, i = 1, . . . , n, (5)

where we write Wik = P (k|i) for convenience and thus

Âij =
∑
k

WikWjk∑
vWvk

. (6)

Note that Â is symmetric as it is easy to verify that
P (i|j) = P (j|i). Therefore, Â is also doubly stochastic
because it is left-stochastic by probability definition.

2.2. Probabilistic model

The optimization objective has an analogous statisti-
cal model with the PLSI. Dropping the constant terms
from DKL(A||Â), the objective is equivalent to maxi-
mizing ∑

ij

Aij log Âij . (7)

This can be identified as the log-likelihood of
the following generative model if Aij are integers:
for t = 1, . . . , T , add one to entry (i, j) ∼
Multinomial

(
1
n Â, 1

)
, whose likelihood is given by

p(A) =

T∏
t=1

1

n
Âij =

∏
ij

(
1

n
Âij

)Aij

,

where T =
∑
ij Aij .

The above model simply uses uniform prior on rows of
W . It does not prevent from using informative priors
or complexity control. A natural choice for probabili-
ties is the Dirichlet distribution (α > 0)

p(Wi1, . . . ,Wir|α) =
Γ(rα)

[Γ(α)]
r

r∏
k=1

Wα−1
ik , (8)

which is also the conjugate prior of multinomial dis-
tribution. The Dirichlet prior reduces to be uniform
when α = 1.

Although it is possible to construct a multi-level
graphical model similar to the Dirichlet process topic
model, we emphasize that the smallest approximation
error (or perplexity) is our final goal. Dirichlet prior is
used only in order to ease the optimization. Therefore
we do not employ more complex generative models;
see Section 2.4 for more discussion.

2.3. Optimization

The optimization problem with Dirichlet prior on W
is equivalent to minimizing

J (W ) = −
∑
ij

Aij log Âij − (α− 1)
∑
ik

logWik (9)

There are two ways to handle the constraint Eq. (5).
First, one can develop the multiplicative algorithm by
the procedure proposed by Yang & Oja (2011) by ne-
glecting the stochasticity constraint, and then normal-
ize the rows of W after each update. However, the op-
timization by this way easily gets stuck in poor local
minima in practice.

Here we employ a relaxing strategy to handle the con-
straint. We first introduce Lagrangian multipliers for
the constraints:

L(W,λ) = J (W ) +
∑
i

λi

(∑
k

Wik − 1

)
. (10)

Unlike traditional constrained optimization that solves
the fixed-point equations, we employ a heuristic to find
the multipliers λ. Denote ∇ = ∇+ −∇− the gradient
of J with respect to W , where ∇+ and ∇− are the
positive and (unsigned) negative parts, respectively.
This suggests a fixed-point update rule for W :

W ′ik = Wik
∇−ik − λi
∇+
ik

. (11)

Imposing
∑
kW

′
ik = 1, we obtain

λi =
bi − 1

ai
, (12)

where ai and bi are given in Algorithm 1. Next we
show that the augmented objective Eq. (10) decreases
after each iteration with the above λ.

Theorem 1. Denote Wnew the updated matrix after
each iteration. It holds that L(Wnew, λ) ≤ L(W,λ)
with λi = (bi − 1)/ai.

Proof. The algorithm construction mainly follows the
Majorization-Minimization procedure (see e.g. Yang &

Oja, 2011). We use W and W̃ to distinguish the cur-
rent estimate and the variable, respectively.



Clustering by Low-Rank Doubly Stochastic Matrix Decomposition

Algorithm 1 Relaxed MM Algorithm for DCD

Input: similarity matrix A, number of clusters r,
nonnegative initial guess of W .
repeat

Zij =

(∑
k

WikWjk∑
vWvk

)−1
Aij

sk =
∑
vWvk

∇−ik = 2 (ZW )ik s
−1
k + αW−1ik

∇+
ik =

(
WTZW

)
kk
s−2k +W−1ik

ai =
∑
l

Wil

∇+
il

, bi =
∑
l

Wil
∇−il
∇+
il

Wik ←Wik
∇−ikai + 1

∇+
ikai + bi

until W is unchanged
Output: cluster assigning probabilities W .

(Majorization)

Let φijk =
WikWjk∑
vWvk

(∑
l

WilWjl∑
vWvl

)−1
.

L(W̃ )

≤−
∑
ijk

Aijφijk

[
log W̃ik + log W̃jk − log

∑
v

W̃vk

]
− (α− 1)

∑
ik

log W̃ik +
∑
ik

λiWik + C1

≤−
∑
ijk

Aijφijk

[
log W̃ik + log W̃jk −

∑
v W̃vk∑
vWvk

]
− (α− 1)

∑
ik

log W̃ik +
∑
ik

λiWik + C2

≤−
∑
ijk

Aijφijk

[
log W̃ik + log W̃jk −

∑
v W̃vk∑
vWvk

]
− (α− 1)

∑
ik

log W̃ik +
∑
ik

λiWik

+
∑
ik

(
1

ai
+

1

Wik

)
Wik

(
W̃ik

Wik
− log

W̃ik

Wik
− 1

)
+ C2

≡G(W̃ ,W ),

where C1 and C2 are constants irrelevant to the vari-
able W̃ . The first two inequalities follow the CCCP
majorization (Yang & Oja, 2011) using the convex-
ity and concavity of − log() and log(), respectively.
The third inequality is called “moving term” technique
used in multiplicative updates (Yang & Oja, 2010).

It adds the same constant 1
ai

+ 1
Wik

to both numer-
ator and denominator in order to guarantee that the
updated matrix entries are positive, which is imple-
mented by using a further upper-bound of zero. All
the above upper bounds are tight at W̃ = W , i.e.
G(W,W ) = J (W ).

(Minimization)

∂G

∂W̃ik

=∇+
ik −

1

Wik
− Wik

W̃ik

(
∇−ik −

1

Wik

)
+ λi +

(
1

ai
+

1

Wik

)
Wik

(
1

Wik
− 1

W̃ik

)
=− Wik

W̃ik

(
∇−ik +

1

ai

)
+

(
∇+
ik +

bi
ai

)
.

Setting the gradient to zero gives

W new
ik = Wik

∇−ik + 1
ai

∇+
ik + bi

ai

(13)

Multiplying both numerator and denominator by ai
gives the last update rule in Algorithm 1. Therefore,
L(W new, λ) ≤ G(W new,W ) ≤ L(W,λ).

Algorithm 1 jointly minimizes the approximation er-
ror and drives the rows of W towards the probability
simplex. The Lagrangian multipliers are automatically
selected by the algorithm, without extra human tuning
labor. The quantities bi are the row sums of the uncon-
strained multiplicative learning result, while the quan-
tities ai balance between the gradient learning force
and the probability simplex attraction. Besides con-
venience, we find that this relaxation strategy works
more robustly than the brute-force normalization after
each iteration.

2.4. Initialization

The optimization problems of many clustering anal-
ysis methods, including ours, are non-convex. Usu-
ally finding the global optimum is very expensive or
even NP-hard. When local optimizers are used, the
optimization trajectory can easily get stuck in poor
local optima if the algorithm starts from an arbitrary
random guess. Proper initialization is thus needed to
achieve satisfactory performance.

The cost of the initialization should be much cheaper
than the main algorithm. There are two popular
choices: k-means and Normalized Cut (Ncut). The
first one can only be applied to vectorial data and
could be slow for large-scale high-dimensional data.
Here we employ the second initialization method.
While the original Ncut is NP-hard, the relaxed Ncut
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problem can be efficiently solved via spectral methods
(Shi & Malik, 2000). Furthermore, it is particularly
suitable for sparse graph input, which is our focus in
this paper.

Besides Ncut, we emphasize that the minimal approxi-
mation error is our sole learning objective and all reg-
ularized versions, e.g. with different Dirichlet priors,
only serve as initialization. This is because cluster-
ing analysis, unlike supervised learning problems, does
not need to provide inference for unseen data. That
is, the complexity control such as Bayesian priors is
not meant for better generalization performance, but
for better-shaped space to facilitate optimization. In
this sense, we can use the results of diverse regular-
ized versions or even other clustering algorithms as
starting guesses, and pick the one with the smallest
approximation error among multiple runs.

In implementation, we first convert an initialization
clustering result to an n × r binary indicator matrix,
and then add a small positive perturbation to all en-
tries. Next, the perturbed matrix is fed to our opti-
mization algorithm (with α = 1 in Algorithm 1).

3. Related Work

Our method intersects with several other machine
learning approaches. Here we discuss some of these
directions, pinpointing the connections and our new
contributions.

3.1. Topic Model

A topic model is a type of statistical model for discov-
ering the abstract “topics” that occur in a collection of
documents. An early topic model was PLSI (Hofmann,
1999) which maximizes the following log-likelihood for
symmetric input A:∑

ij

Aij log
∑
k

P (k)P (i|k)P (j|k). (14)

One can see that PLSI has similar form as Eq. (7).
Both objectives can be equivalently expressed by non-
negative low-rank approximation using KL-divergence.

The major difference is the decomposition form of
the approximating matrix. There are two ways to
model the hierarchy between latent variables and the
observed ones. Topic model uses the pure genera-
tive way while our method employs the discriminative
way. PLSI gives the clustering results indirectly. One
should apply Bayes formula to evaluate P (k|i) using
P (i|k) and P (k). There are n× r − 1 free parameters
to be learned in the latter two quantities. In contrast,
our method directly learns the cluster assigning prob-

abilities P (k|i) which contains only n × (r − 1) free
parameters. This difference can be large when there
are only a few clusters (e.g. r = 2 or r = 3).

It is known that the performance of PLSI can be
improved by using Bayesian non-parametric model-
ing. Bayesian treatment for the symmetric version of
PLSI leads to Interaction Component Model (Sinkko-
nen et al., 2008). It associates Dirichlet priors to the
PLSI factorizing matrices and then makes use of the
conjugacy between Dirichlet and multinomial to derive
collapsed Gibbs sampling or variational optimization
methods.

An open problem of Bayesian methods is how to de-
termine the hyperparameters that control the priors.
Asuncion et al. (2009) found that wrongly chosen pa-
rameters can lead to only mediocre or even poor per-
formance. The automatic hyperparameters updating
method proposed by Minka (2000) does not necessar-
ily lead to good solution in terms of perplexity (Asun-
cion et al., 2009) or clustering purity in our exper-
iments (see Section 4). Hofmann (1999); Asuncion
et al. (2009) suggested to select the hyperparameters
using the smallest approximation error for some held-
out matrix entries, which is however more costly and
might weaken or even break the cluster structure.

By contrast, there is no such prior hyperparameter se-
lection problem in our method. The algorithms using
various priors only play their role in the initialization.
Among the runs with different starting points, we sim-
ply select the one with the smallest approximation er-
ror.

3.2. Nonnegative Matrix Factorization

Nonnegative Matrix Factorization is one of the earliest
methods for relaxing clustering problems by nonnega-
tive low-rank approximation (see e.g. Xu et al., 2003).
The research on NMF also opened the door for multi-
plicative majorization-minimization algorithms for op-
timization over nonnegative matrices. In the original
NMF, an input nonnegative matrix X is approximated
by a product of two low-rank matricesW andH. Later
researchers found that more constraints or normaliza-
tions should be imposed on the factorizing matrices to
achieve desired performance.

Orthogonality is a popular choice (see e.g. Ding et al.,
2006) for highly sparse factorizing matrices, especially
the cluster indicator matrix. However, the orthogonal-
ity constraint seems exclusive of other constraints or
priors. In practice, the orthogonality favors Euclidean
distance as the approximation error measure for sim-
ple update rules, which is against our requirement for
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sparse graph input.

Stochasticity seems more natural for relaxing hard
clustering to probabilities. Recently Arora et al.
(2011) proposed a symmetric NMF using left-
stochastic factorizing matrices called LSD. Their
method also directly learns the cluster assigning prob-
abilities. However, LSD is also restricted to Euclidean
distance.

Our method has two major differences from LSD.
First, we use Kullback-Leibler divergence which is
more suitable for sparse graph input or curved man-
ifold data. This also enables us to make use of the
Dirichlet and multinomial conjugacy pair. Second, our
decomposition has good interpretation in terms of a
random walk. Furthermore, imbalanced clustering is
implicitly penalized because of the denominator in Eq.
(6).

3.3. AnchorGraph

DCD uses the same matrix decomposition as Anchor-
Graph. However, there are several major differences
between the two methods. First of all, AnchorGraph is
not made for clustering, but for constructing the graph
input. AnchorGraph has no learning objective that
captures the global structure of data such as clusters.
Each row of the decomposing matrix in AnchorGraph
is learned individually and only encodes the local in-
formation. There is no learning over the decomposing
matrix as a whole. Furthermore, anchors are either
selected from data samples or pre-learned by e.g. k-
means. By contrast, cluster nodes in our formulation
are virtual. They are not vectors and need no physical
storage.

4. Experiments

4.1. Compared methods

We have compared our method with eight other clus-
tering algorithms that can take a symmetric nonnega-
tive sparse matrix as input. The compared algorithms
range from classical to state-of-the-art methods with
various principles: graph cuts including Normalized
Cut (Ncut) (Shi & Malik, 2000), Nonnegative Spectral
Cut (NSC) (Ding et al., 2008), and 1-Spectral ratio
Cheeger cut (1-Spec) (Hein & Bühler, 2010); nonneg-
ative matrix factorization including Projective NMF
(PNMF) (Yang & Oja, 2010), Symmetric 3-Factor Or-
thogonal NMF (ONMF) (Ding et al., 2006), and Left-
Stochastic Decomposition (LSD) (Arora et al., 2011);
topic models including Probabilistic Latent Seman-
tic Indexing (PLSI) (Hofmann, 1999) and Interaction
Component Model (ICM) (Sinkkonen et al., 2008).

Table 1. Statistics of selected datasets.

Dataset #samples #classes

Amazon 96 2
Iris 150 3
Votes 435 2
ORL 400 40
PIE 1166 53
YaleB 1292 38
Coil20 1440 20
Isolet 1559 26
Mfeat 2000 10
Webkb4 4196 4
7sectors 4556 7
USPS 9298 10
PenDigits 10992 10
LetReco 20000 26
MNIST 70000 10

The detailed settings of the compared methods are as
follows. We implemented NSC, PNMF, ONMF, LSD,
PLSI, and DCD using multiplicative updates. For
these methods, we ran their update rules for 10,000 it-
erations to ensure that all algorithms have sufficiently
converged. We used the default setting for 1-Spec.
ICM uses collapsed Gibbs sampling, where each round
of the sampling sweeps the graph once. We ran the
ICM sampling for 100,000 rounds to ensure that the
MCMC burn-in is converged (it took about one day
for the largest dataset). The hyperparameters in ICM
are automatically adjusted by using Minka’s method
(Minka, 2000).

Despite mediocre results, Ncut runs very fast and gives
pretty stable outputs. We thus used it for initializa-
tion. After getting the Ncut cluster indicator matrix,
we add 0.2 to all entries and feed it as starting point
for other methods, which is a common initialization
setting for NMF methods. The other three initial-
ization points for our method are provided by Ncut
followed by DCD using three different Dirichlet priors
(α = 1.2, α = 2, and α = 5). The clustering result of
our method is reported by the run with the smallest
approximation error, see Eq. (4).

4.2. Datasets

The performance of clustering methods were evaluated
using real-world datasets. In particular, we focus on
data that lie in a curved manifold. We thus selected
15 such datasets which are publicly available from a
variety of domains. The data sources are given in the
supplemental document.

The statistics of the selected datasets are summarized
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Table 2. Clustering purities for the compared methods on various data sets.

Dataset Ncut PNMF NSC ONMF PLSI LSD 1-Spec ICM DCD

Amazon 0.63 0.76 0.63 0.63 0.63 0.68 0.63 0.63 0.78
Iris 0.90 0.93 0.90 0.33 0.91 0.97 0.91 0.97 0.97
Votes 0.72 0.72 0.72 0.73 0.73 0.72 0.72 0.73 0.73
ORL 0.81 0.82 0.82 0.03 0.83 0.81 0.80 0.20 0.83
PIE 0.67 0.66 0.68 0.02 0.68 0.69 0.64 0.12 0.68
YaleB 0.45 0.43 0.46 0.03 0.51 0.45 0.39 0.10 0.51
Coil20 0.81 0.71 0.82 0.05 0.82 0.78 0.75 0.63 0.81
Isolet 0.57 0.55 0.56 0.04 0.58 0.57 0.57 0.36 0.58
Mfeat 0.75 0.77 0.79 0.10 0.77 0.78 0.80 0.69 0.78
Webkb4 0.54 0.41 0.54 0.40 0.59 0.62 0.40 0.49 0.62
7sectors 0.25 0.29 0.25 0.24 0.37 0.35 0.25 0.38 0.41
USPS 0.74 0.75 0.74 0.77 0.73 0.79 0.74 0.60 0.81
PenDigits 0.80 0.78 0.80 0.10 0.80 0.86 0.80 0.52 0.89
LetReco 0.24 0.25 0.23 0.04 0.28 0.29 0.18 0.21 0.32
MNIST 0.77 0.74 0.79 0.11 0.79 0.76 0.88 0.95 0.97

in Table 1. In brief, Amazon are book similarities
according to amazon.com buying records; Votes are
voting records in US congress by two different par-
ties; ORL, PIE, YaleB are face images collected un-
der different conditions; COIL20 are small toy images;
Isolet and LegReco are handwritten English letter im-
ages; Webkb4 and 7sectors are text document collec-
tions; Mfeat, USPS, PenDigits, MNIST are handwrit-
ten digit images.

We preprocessed the above datasets to produce sim-
ilarity graph input except Amazon which is already
in sparse graph format. We extracted the scattering
features (Mallat, 2012) for image data except Isolet
and Mfeat which have their own feature representa-
tion. We used Tf-Idf features for text documents.

After feature extraction, we constructed a K-Nearest-
Neighbor (KNN) graph for each dataset. We set K =
5 for the six smallest datasets (except Amazon) and
K = 10 for the other datasets. We then symmetrized
and binarized the KNN graph B to obtain the input
similarities A (i.e. Aij = 1 if Bij = 1 or Bji = 1, and
Aij = 0 otherwise).

4.3. Results

Clustering performance of the compared methods is
evaluated by clustering purity

purity =
1

n

r∑
k=1

max
1≤l≤r

nlk (15)

where nlk is the number of data samples in the cluster
k that belong to ground-truth class l. A larger purity
in general corresponds to better clustering result. The

clustering purities for the compared methods are given
in Table 2.

Our method has strong performance in terms of clus-
tering purity. DCD wins 12 out of 15 selected datasets.
Even for the other three datasets, DCD is the first or
second runner-up, with purities tied with or very close
to the winner.

The new method is particularly more advantageous
for large datasets. Note that the datasets in Table
2 are ordered by their sizes. We can see that there
are some other winners or joint winners for smaller
datasets, for example, LSD for the PIE faces or 1-Spec
for the Mfeat digits. PLSI performs quite similarly
with DCD for these small clustering tasks. However,
DCD demonstrates clear win over the other methods
for the five largest datasets.

DCD has remarkable performance for the largest
dataset MNIST. In this case, clustering as unsuper-
vised learning by using our method has even achieved
classification accuracy (i.e. purity) very close to many
modern supervised approaches1, whereas we only need
ten labeled samples to remove the cluster-class permu-
tation ambiguity.

5. Conclusions

We have presented a new clustering method based on
nonnegative low-rank approximation with three ma-
jor original contributions: (1) a novel decomposition
approach for the approximating matrix derived from
a two-step random walk; (2) a relaxed majorization-

1see http://yann.lecun.com/exdb/mnist/

amazon.com
http://yann.lecun.com/exdb/mnist/
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minimization algorithm for finding better approximat-
ing matrices; (3) a strategy that uses regularization
with the Dirichlet prior as initialization. Experimen-
tal results showed that our method works robustly for
various selected datasets and can improve clustering
purity for large manifold datasets.

There are some other dimensions that affect clustering
performance. Our practice indicates that initialization
could play an important role because most current al-
gorithms are only local optimizers. Using Dirichlet
prior is only one way to smooth the objective function
space. One could use other priors or regularization
techniques to achieve better initializations.

Another dimension is the input graph. We have fo-
cused on the grouping procedure given that the simi-
larities are precomputed. One should notice that bet-
ter features or a better similarity measure can signif-
icantly improve clustering purity. Though we did not
use AnchorGraph for the sake of including topic mod-
els in our comparison, it could be more beneficial to
construct both approximated and approximating ma-
trices by the same principle. This also suggests that
clustering analysis could be performed in a deeper way
using hierarchical pre-training. Detailed implementa-
tion should be investigated in the future.
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