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Abstract

We consider the most common variants of
linear regression, including Ridge, Lasso and
Support-vector regression, in a setting where
the learner is allowed to observe only a fixed
number of attributes of each example at
training time. We present simple and effi-
cient algorithms for these problems: for Lasso
and Ridge regression they need the same to-
tal number of attributes (up to constants) as
do full-information algorithms, for reaching a
certain accuracy. For Support-vector regres-
sion, we require exponentially less attributes
compared to the state of the art. By that,
we resolve an open problem recently posed
by Cesa-Bianchi et al. (2010).

Experiments show the theoretical bounds to
be justified by superior performance com-
pared to the state of the art.

1. Introduction

In regression analysis the statistician attempts to learn
from examples the underlying variables affecting a
given phenomenon. For example, in medical diagnosis
a certain combination of conditions reflects whether a
patient is afflicted with a certain disease.

In certain common regression cases various limitations
are placed on the information available from the exam-
ples. In the medical example, not all parameters of a
certain patient can be measured due to cost, time and
patient reluctance.

In this paper we study the problem of regression in
which only a small subset of the attributes per exam-
ple can be observed. In this setting, we have access to
all attributes and we are required to choose which of
them to observe. Recently, Cesa-Bianchi et al. (2010)
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studied this problem and asked the following interest-
ing question: can we efficiently learn the optimal re-
gressor in the attribute efficient setting with the same
total number of attributes as in the unrestricted regres-
sion setting? In other words, the question amounts to
whether the information limitation hinders our ability
to learn efficiently at all. Ideally, one would hope that
instead of observing all attributes of every example,
one could compensate for fewer attributes by analyz-
ing more examples, but retain the same overall sample
and computational complexity.

Indeed, we answer this question on the affirmative for
the main variants of regression: Ridge and Lasso. For
support-vector regression we make significant advance-
ment, reducing the parameter dependence by an expo-
nential factor. Our results are summarized in the table
below 1, which gives bounds for the number of exam-
ples needed to attain an error of ε, such that at most
k attributes 2 are viewable per example. We denote
by d the dimension of the attribute space.

Regression New bound Prev. bound

Ridge O
(
d
kε2

)
O
(
d2 log d

ε

kε2

)
Lasso O

(
d log d
kε2

)
O
(
d2 log d

ε

kε2

)
SVR O

(
d
k

)
· eO(log2 1

ε ) O
(
e

d2

kε2

)
Table 1. Our sample complexity bounds.

Our bounds imply that for reaching a certain accuracy,
our algorithms need the same number of attributes
as their full information counterparts. In particular,
when k = Ω(d) our bounds coincide with those of full
information regression, up to constants (cf. Kakade
et al. 2008).

We complement these upper bounds and prove that
Ω( dε2 ) attributes are in fact necessary to learn an ε-

1The previous bounds are due to (Cesa-Bianchi et al.,
2010). For SVR, the bound is obtained by additionally
incorporating the methods of (Cesa-Bianchi et al., 2011).

2For SVR, the number of attributes viewed per example
is a random variable whose expectation is k.
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accurate Ridge regressor. For Lasso regression, Cesa-
Bianchi et al. (2010) proved that Ω(dε ) attributes are
necessary, and asked what is the correct dependence
on the problem dimension. Our bounds imply that the
number of attributes necessary for regression learning
grows linearly with the problem dimensions.

The algorithms themselves are very simple to imple-
ment, and run in linear time. As we show in later sec-
tions, these theoretical improvements are clearly visi-
ble in experiments on standard datasets.

1.1. Related work

The setting of learning with limited attribute obser-
vation (LAO) was first put forth in (Ben-David &
Dichterman, 1998), who coined the term “learning
with restricted focus of attention”. Cesa-Biachi et
al. (2010) were the first to discuss linear prediction
in the LAO setting, and gave an efficient algorithm
(as well as lower bounds) for linear regression, which
is the primary focus of this paper.

2. Setting and Result Statement

2.1. Linear regression

In the linear regression problem, each instance is a
pair (x, y) of an attributes vector x ∈ Rd and a target
variable y ∈ R. We assume the standard framework
of statistical learning (Haussler, 1992), in which the
pairs (x, y) follow a joint probability distribution D
over Rd×R. The goal of the learner is to find a vector
w for which the linear rule ŷ ← w>x provides a good
prediction of the target y. To measure the performance
of the prediction, we use a convex loss function `(ŷ, y) :
R2 → R. The most common choice is the squared loss
`(ŷ, y) = 1

2 (ŷ−y)2, which stands for the popular least-
squares regression. Hence, in terms of the distribution
D, the learner would like to find a regressor w ∈ Rd
with low expected loss, defined as

LD(w) = E(x, y)∼D[`(w>x, y)] . (1)

The standard paradigm for learning such regressor is
seeking a vector w ∈ Rd that minimizes a trade-off
between the expected loss and an additional regular-
ization term, which is usually a norm of w. An equiv-
alent form of this optimization problem is obtained by
replacing the regularization term with a proper con-
straint, giving rise to the problem

min
w∈Rd

LD(w) s.t. ‖w‖p 6 B , (2)

where B > 0 is a regularization parameter and p > 1.
The main variants of regression differ on the type of

`p norm constraint as well as the loss functions in the
above definition:

• Ridge regression: p = 2 and squared loss,

`(ŷ, y) = 1
2 (ŷ − y)2 .

• Lasso regression: p = 1 and squared loss.

• Support-vector regression: p = 2 and the δ-
insensitive absolute loss (Vapnik, 1995),

`(ŷ, y) = |ŷ − y|δ := max{0, |ŷ − y| − δ} .

Since the distribution D is unknown, we learn by re-
lying on a training set S = {(xt, yt)}mt=1 of examples,
that are assumed to be sampled independently from D.
We use the notation `t(w) := `(w>xt, yt) to refer to
the loss function induced by the instance (xt, yt).

We distinguish between two learning scenarios. In the
full information setup, the learner has unrestricted
access to the entire data set. In the limited attribute
observation (LAO) setting, for any given example
pair (x, y), the learner can observe y, but only k at-
tributes of x (where k > 1 is a parameter of the prob-
lem). The learner can actively choose which attributes
to observe.

2.2. Limitations on LAO regression

Cesa-Biachi et al. (2010) proved the following sample
complexity lower bound on any LAO Lasso regression
algorithm.

Theorem 2.1. Let 0 < ε < 1
16 , k > 1 and d > 4k.

For any regression algorithm accessing at most k at-
tributes per training example, there exist a distribution
D over {x : ‖x‖∞ 6 1} × {±1} and a regressor w?

with ‖w?‖1 6 1 such that the algorithm must see (in
expectation) at least Ω( dkε ) examples in order to learn
a linear regressor w with LD(w)− LD(w?) < ε.

We complement this lower bound, by providing a
stronger lower bound on the sample complexity of
any Ridge regression algorithm, using information-
theoretic arguments.

Theorem 2.2. Let ε = Ω(1/
√
d). For any regression

algorithm accessing at most k attributes per training
example, there exist a distribution D over {x : ‖x‖2 6
1} × {±1} and a regressor w? with ‖w?‖2 6 1 such
that the algorithm must see (in expectation) at least
Ω( d

kε2 ) examples in order to learn a linear regressor w,
‖w‖2 6 1 with LD(w)− LD(w?) 6 ε.

Our algorithm for LAO Ridge regression (see section 3)
imply this lower bound to be tight up to constants.
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Note, however, that the bound applies only to a par-
ticular regime of the problem parameters 3.

2.3. Our algorithmic results

We give efficient regression algorithms that attain the
following risk bounds. For our Ridge regression algo-
rithm, we prove the risk bound

E [LD(w̄)] 6 min
‖w‖26B

LD(w) +O

(
B2

√
d

km

)
,

while for our Lasso regression algorithm we establish
the bound

E [LD(w̄)] 6 min
‖w‖16B

LD(w) +O

(
B2

√
d log d

km

)
.

Here we use w̄ to denote the output of each algorithm
on a training set of m examples, and the expectations
are taken with respect to the randomization of the
algorithms. For Support-vector regression we obtain
a risk bound that depends on the desired accuracy ε.
Our bound implies that

m = O

(
d

k

)
· exp

(
O

(
log2 B

ε

))
.

examples are needed (in expectation) for obtaining an
ε-accurate regressor.

3. Algorithms for LAO least-squares
regression

In this section we present and analyze our algorithms
for Ridge and Lasso regression in the LAO setting.
The loss function under consideration here is the
squared loss, that is, `t(w) = 1

2 (w>xt− yt)2. For con-
venience, we show algorithms that use k+1 attributes
of each instance, for k > 1 4.

Our algorithms are iterative and maintain a regressor
wt along the iterations. The update of the regressor
at iteration t is based on gradient information, and
specifically on gt := ∇`t(wt) that equals (w>

t xt− yt) ·
xt for the squared loss. In the LAO setting, however,
we do not have the access to this information, thus we
build upon unbiased estimators of the gradients.

3Indeed, there are (full-information) algorithms that are
known to converge in O(1/ε) rate – see e.g. (Hazan et al.,
2007).

4We note that by our approach it is impossible to learn
using a single attribute of each example (i.e., with k = 0),
and we are not aware of any algorithm that is able to do so.
See (Cesa-Bianchi et al., 2011) for a related impossibility
result.

Algorithm 1 AERR
Parameters: B, η > 0

Input: training set S = {(xt, yt)}t∈[m] and k > 0
Output: regressor w̄ with ‖w̄‖2 6 B
1: Initialize w1 6= 0, ‖w1‖2 6 B arbitrarily
2: for t = 1 to m do
3: for r = 1 to k do
4: Pick it,r ∈ [d] uniformly and observe xt[it,r]
5: x̃t,r ← dxt[it,r] · eit,r
6: end for
7: x̃t ← 1

k

∑k
r=1 x̃t,r

8: Choose jt ∈ [d] with probability wt[j]
2/‖wt‖22,

and observe xt[jt]
9: φ̃t ← ‖wt‖22 xt[jt]/wt[jt]− yt

10: g̃t ← φ̃t · x̃t
11: vt ← wt − ηg̃t
12: wt+1 ← vt ·B/max{‖vt‖2, B}
13: end for
14: w̄← 1

m

∑m
t=1 wt

3.1. Ridge regression

Recall that in Ridge regression, we are interested in the
linear regressor that is the solution to the optimization
problem (2) with p = 2, given explicitly as

min
w∈Rd

LD(w) s.t. ‖w‖2 6 B , (3)

Our algorithm for the LAO setting is based on a
randomized Online Gradient Descent (OGD) strategy
(Zinkevich, 2003). More specifically, at each iteration t
we use a randomized estimator g̃t of the gradient gt to
update the regressor wt via an additive rule. Our gra-
dient estimators make use of an importance-sampling
method inspired by (Clarkson et al., 2010).

The pseudo-code of our Attribute Efficient Ridge Re-
gression (AERR) algorithm is given in Algorithm 1.
In the following theorem, we show that the regressor
learned by our algorithm is competitive with the opti-
mal linear regressor having 2-norm bounded by B.

Theorem 3.1. Assume the distribution D is such that
‖x‖2 6 1 and |y| 6 B with probability 1. Let w̄ be the
output of AERR, when run with η =

√
k/2dm. Then,

‖w̄‖2 6 B and for any w? ∈ Rd with ‖w?‖2 6 B,

E [LD(w̄)] 6 LD(w?) + 4B2

√
2d

km
.

3.1.1. Analysis

Theorem 3.1 is a consequence of the following two lem-
mas. The first lemma is obtained as a result of a stan-
dard regret bound for the OGD algorithm (see Zinke-
vich 2003), applied to the vectors g̃1, . . . , g̃m.
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Lemma 3.2. For any ‖w?‖2 6 B we have

m∑
t=1

g̃>
t (wt −w?) 6

2B2

η
+
η

2

m∑
t=1

‖g̃t‖22 . (4)

The second lemma shows that the vector g̃t is an un-
biased estimator of the gradient gt := ∇`t(wt) at it-
eration t, and establishes a “variance” bound for this
estimator. To simplify notations, here and in the rest
of the paper we use Et[·] to denote the conditional ex-
pectation with respect to all randomness up to time t.

Lemma 3.3. The vector g̃t is an unbiased estimator
of the gradient gt := ∇`t(wt), that is Et[g̃t] = gt. In
addition, for all t we have Et[‖g̃t‖22] 6 8B2d/k.

For a proof of the lemma, see (Hazan & Koren, 2011).
We now turn to prove Theorem 3.1.

Proof (of Theorem 3.1). First note that as ‖wt‖2 6
B, we clearly have ‖w̄‖2 6 B. Taking the expectation
of (4) with respect to the randomization of the algo-
rithm, and letting G2 := maxtEt[‖g̃t‖22], we obtain

E

[
m∑
t=1

g>
t (wt −w?)

]
6

2B2

η
+
η

2
G2m .

On the other hand, the convexity of `t gives `t(wt)−
`t(w?) 6 g>

t (wt − w?). Together with the above this
implies that for η = 2B/G

√
m,

E

[
1

m

m∑
t=1

`t(wt)

]
6

1

m

m∑
t=1

`t(w?) + 2
BG√
m
.

Taking the expectation of both sides with respect to
the random choice of the training set, and using G 6
2B
√

2d/k (according to Lemma 3.3), we get

E

[
1

m

m∑
t=1

LD(wt)

]
6 LD(w?) + 4B2

√
2d

km
.

Finally, recalling the convexity of LD and using
Jensen’s inequality, the Theorem follows.

3.2. Lasso regression

We now turn to describe our algorithm for Lasso re-
gression in the LAO setting, in which we would like to
solve the problem

min
w∈Rd

LD(w) s.t. ‖w‖1 6 B . (5)

The algorithm we provide for this problem is based on
a stochastic variant of the EG algorithm (Kivinen &
Warmuth, 1997), that employs multiplicative updates

Algorithm 2 AELR
Parameters: B, η > 0

Input: training set S = {(xt, yt)}t∈[m] and k > 0
Output: regressor w̄ with ‖w̄‖1 6 B
1: Initialize z+1 ← 1d , z−1 ← 1d
2: for t = 1 to m do
3: wt ← (z+t − z−t ) ·B/(‖z+t ‖1 + ‖z−t ‖1)
4: for r = 1 to k do
5: Pick it,r ∈ [d] uniformly and observe xt[it,r]
6: x̃t,r ← dxt[it,r] · eit,r
7: end for
8: x̃t ← 1

k

∑k
r=1 x̃t,r

9: Choose jt ∈ [d] with probability |w[j]|/‖w‖1,
and observe xt[jt]

10: φ̃t ← ‖wt‖1 sign(wt[jt])xt[jt]− yt
11: g̃t ← φ̃t · x̃t
12: for i = 1 to d do
13: ḡt[i]← clip(g̃t[i], 1/η)
14: z+t+1[i]← z+t [i] · exp(−η ḡt[i])
15: z−t+1[i]← z−t [i] · exp(+η ḡt[i])
16: end for
17: end for
18: w̄← 1

m

∑m
t=1 wt

based on an estimation of the gradients ∇`t. The mul-
tiplicative nature of the algorithm, however, makes it
highly sensitive to the magnitude of the updates. To
make the updates more robust, we “clip” the entries
of the gradient estimator so as to prevent them from
getting too large. Formally, this is accomplished via
the following “clip” operation:

clip(x, c) := max{min{x, c},−c}

for x ∈ R and c > 0. This clipping has an even stronger
effect in the more general setting we consider in Sec-
tion 4.

We give our Attribute Efficient Lasso Regression
(AELR) algorithm in Algorithm 2, and establish a cor-
responding risk bound in the following theorem.

Theorem 3.4. Assume the distribution D is such that
‖x‖∞ 6 1 and |y| 6 B with probability 1. Let w̄ be

the output of AELR, when run with η = 1
4B2

√
2k log 2d

5md ,

Then, ‖w̄‖1 6 B and for any w? ∈ Rd with ‖w?‖1 6
B we have

E [LD(w̄)] 6 LD(w?) + 4B2

√
10d log 2d

km
,

provided that m > log 2d.
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3.2.1. Analysis

In the rest of the section, for a vector v we let v2

denote the vector for which v2[i] = (v[i])2 for all i.

In order to prove Theorem 3.4, we first consider the
augmented vectors z′t := (z+t , z

−
t ) ∈ R2d and ḡ′t :=

(ḡt,−ḡt) ∈ R2d, and let pt := z′t/‖z′t‖1. For these
vectors, we have the following.

Lemma 3.5.
m∑
t=1

p>
t ḡ
′
t 6 min

i∈[2d]

m∑
t=1

ḡ′t[i] +
log 2d

η
+ η

m∑
t=1

p>
t (ḡ′t)

2

The lemma is a consequence of a second-order regret
bound for the Multiplicative-Weights algorithm, essen-
tially due to (Clarkson et al., 2010). By means of this
lemma, we establish a risk bound with respect to the
“clipped” linear functions ḡ>

t w.

Lemma 3.6. Assume that ‖Et[g̃2
t ]‖∞ 6 G2 for all t,

for some G > 0. Then, for any ‖w?‖1 6 B, we have

E

[
m∑
t=1

ḡ>
t wt

]
6 E

[
m∑
t=1

ḡ>
t w?

]
+B

(
log 2d

η
+ ηG2m

)
Our next step is to relate the risk generated by the lin-
ear functions g̃>

t w, to that generated by the “clipped”
functions ḡ>

t w.

Lemma 3.7. Assume that ‖Et[g̃2
t ]‖∞ 6 G2 for all t,

for some G > 0. Then, for 0 < η 6 1/2G we have

E

[
m∑
t=1

g̃>
t wt

]
6 E

[
m∑
t=1

ḡ>
t wt

]
+ 4BηG2m .

The final component of the proof is a “variance”
bound, similar to that of Lemma 3.3.

Lemma 3.8. The vector g̃t is an unbiased estimator
of the gradient gt := ∇`t(wt), that is Et[g̃t] = gt. In
addition, for all t we have ‖Et[g̃t]2‖∞ 6 8B2d/k.

For the complete proofs, refer to (Hazan & Koren,
2011). We are now ready to prove Theorem 3.4.

Proof (of Theorem 3.4). Since ‖wt‖1 6 B for all t, we
obtain ‖w̄‖2 6 B. Next, note that as Et[g̃t] = gt, we
have E[

∑m
t=1 g̃

>
t wt] = E[

∑m
t=1 g

>
t wt]. Putting Lem-

mas 3.6 and 3.7 together, we get for η 6 1/2G that

E

[
T∑
t=1

g>
t (wt −w?)

]
6 B

(
log 2d

η
+ 5ηG2m

)
.

Proceeding as in the proof of Theorem 3.1, and choos-

ing η = 1
G

√
log 2d
5m , we obtain the bound

E [LD(w̄)] 6 LD(w?) + 2BG

√
5 log 2d

m
.

Note that for this choice of η we indeed have η 6 1/2G,
as we originally assumed that m > log 2d. Finally,
putting G = 2B

√
2d/k as implied by Lemma 3.8, we

obtain the bound in the statement of the theorem.

4. Support-vector regression

In this section we show how our approach can be
extended to deal with loss functions other than the
squared loss, of the form

`(w>x, y) = f(w>x− y) , (6)

(with f real and convex) and most importantly, with
the δ-insensitive absolute loss function of SVR, for
which f(x) = |x|δ := max{|x| − δ, 0} for some fixed
0 6 δ 6 B (recall that in our results we assume
the labels yt have |yt| 6 B). For concreteness, we
consider only the 2-norm variant of the problem (as
in the standard formulation of SVR)—the results we
obtain can be easily adjusted to the 1-norm setting.
We overload notation, and keep using the shorthand
`t(w) := `(w>xt, yt) for referring the loss function in-
duced by the instance (xt, yt).

It should be highlighted that our techniques can be
adapted to deal with many other common loss func-
tions, including “classification” losses (i.e., of the form
`(w>x, y) = f(y · w>x)). Due to its importance and
popularity, we chose to describe our method in the
context of SVR.

Unfortunately, there are strong indications that SVR
learning (more generally, learning with non-smooth
loss function) in the LAO setting is impossible via our
approach of unbiased gradient estimations (see Cesa-
Bianchi et al. 2011 and the references therein). For
that reason, we make two modifications to the learn-
ing setting: first, we shall henceforth relax the budget
constraint to allow k observed attributes per instance
in expectation; and second, we shall aim for biased
gradient estimators, instead of unbiased as before.

To obtain such biased estimators, we uniformly ε-
approximate the function f by an analytic func-
tion fε and learn with the approximate loss func-
tion `εt (w) = fε(w

>xt − yt) instead. Clearly, any ε-
suboptimal regressor of the approximate problem is an
2ε-suboptimal regressor of the original problem. For
learning the approximate problem we use a novel tech-
nique, inspired by (Cesa-Bianchi et al., 2011), for esti-
mating gradients of analytic loss functions. Our esti-
mators for∇`εt can then be viewed as biased estimators
of ∇`t (we note, however, that the resulting bias might
be quite large).
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Procedure 3 GenEst

Parameters: {an}∞n=0 — Taylor coefficients of f ′

Input: regressor w, instance (x, y)

Output: φ̂ with E[φ̂] = f ′(w>x− y)
1: Let N = d4B2e.
2: Choose n > 0 with probability Pr[n] = (1

2 )n+1

3: if n 6 2 log2N then
4: for r = 1, . . . , n do
5: Choose j ∈ [d] with probability w[j]2/‖w‖22,

and observe x[j]
6: θ̃r ← ‖w‖22 x[j]/w[j]− y
7: end for
8: else
9: for r = 1, . . . , n do

10: Choose j1, . . . , jN ∈ [d] w.p. w[j]2/‖w‖22, (in-
dependently), and observe x[j1], . . . ,x[jN ]

11: θ̃r ← 1
N

∑N
s=1‖w‖22 x[js]/w[js]− y

12: end for
13: end if
14: φ̂← 2n+1an · θ̃1θ̃2 · · · θ̃n

4.1. Estimators for analytic loss functions

Let f : R → R be a real, analytic function (on the
entire real line). The derivative f ′ is thus also analytic
and can be expressed as f ′(x) =

∑∞
n=0 anx

n where
{an} are the Taylor expansion coefficients of f ′.

In Procedure 3 we give an unbiased estimator of
f ′(w>x − y) in the LAO setting, defined in terms of
the coefficients {an} of f ′. For this estimator, we have
the following (proof is omitted).

Lemma 4.1. The estimator φ̂ is an unbiased esti-
mator of f ′(w>x − y). Also, assuming ‖x‖2 6 1,

‖w‖2 6 B and |y| 6 B, the second-moment E[φ̂2]
is upper bounded by exp(O(log2B)), provided that the
Taylor series of f ′(x) converges absolutely for |x| 6 1.
Finally, the expected number of attributes of x used by
this estimator is no more than 3.

4.2. Approximating SVR

In order to approximate the δ-insensitive absolute loss
function, we define

fε(x) =
ε

2
ρ

(
x− δ
ε

)
+
ε

2
ρ

(
x+ δ

ε

)
− δ

where ρ is expressed in terms of the error function erf,

ρ(x) = x erf(x) +
1√
π
e−x

2

,

and consider the approximate loss functions `εt (w) =
fε(w

>xt − yt). Indeed, we have the following.

Algorithm 4 AESVR
Parameters: B, δ, η > 0 and accuracy ε > 0

Input: training set S = {(xt, yt)}t∈[m] and k > 0
Output: regressor w̄ with ‖w̄‖2 6 B
1: Let a2n = 0 for n > 0, and

a2n+1 =
2√
π
· (−1)n

n!(2n+ 1)
, n > 0 (7)

2: Execute algorithm 1 with lines 8–9 replaced by:
x′t ← xt/ε
y+t ← (yt + δ)/ε, y−t ← (yt − δ)/ε
φ̃t ← 1

2 [GenEst(wt,x
′
t, y

+
t ) + GenEst(wt,x

′
t, y
−
t )]

3: Return the output w̄ of the algorithm

Claim 4.2. For any ε > 0, fε is convex, analytic on
the entire real line and

sup
x∈R
|fε(x)− |x|δ| 6 ε .

The claim follows easily from the identity |x|δ = 1
2 |x−

δ| + 1
2 |x + δ| − δ. In addition, for using Procedure 3

we need the following simple observation, that follows
immediately from the series expansion of erf(x).

Claim 4.3. ρ′(x) =
∑∞
n=0 a2n+1x

2n+1, with the coef-
ficients {a2n+1}n>0 given in (7).

We now give the main result of this section, which is
a sample complexity bound for the Attribute Efficient
SVR (AESVR) algorithm, given in Algorithm 4.

Theorem 4.4. Assume the distribution D is such that
‖x‖2 6 1 and |y| 6 B with probability 1. Then, for
any w? ∈ Rd with ‖w?‖2 6 B, we have E [LD(w̄)] 6
LD(w?) + ε where w̄ is the output of AESVR (with η
properly tuned) on a training set of size

m = O

(
d

k

)
· exp

(
O

(
log2 B

ε

))
. (8)

The algorithm queries at most k+ 6 attributes of each
instance in expectation.

Proof. First, note that for the approximate loss func-
tions `εt we have

∇`εt (wt) = 1
2

[
ρ′(w>

t x
′
t − y+t ) + ρ′(w>

t x
′
t − y−t )

]
· xt .

Hence, Lemma 4.1 and Claim 4.3 above imply that g̃t
in Algorithm 4 is an unbiased estimator of ∇`εt (wt).
Furthermore, since ‖x′t‖2 6 1

ε and |y±t | 6 2Bε ,

according to the same lemma we have Et[φ̃
2
t ] =

exp(O(log2 B
ε )). Repeating the proof of Lemma 3.3,
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we then have

Et[‖g̃t‖22] = Et[φ̃
2
t ] ·Et[‖x̃t‖22] = exp(O(log2 B

ε )) · d
k
.

Replacing G2 in the proof of theorem 3.1 with the
above bound, we get for the output of Algorithm 4,

E [LD(w̄)] 6 LD(w?) + exp(O(log2 B
ε ))

√
d

km
,

which imply that for obtaining an ε-accurate regressor
w̄ of the approximate problem, it is enough to take m
as given in (8). However, claim 4.2 now gives that w̄
itself is an 2ε-accurate regressor of the original prob-
lem, and the proof is complete.

5. Experiments

In this section we give experimental evidence that sup-
port our theoretical bounds, and demonstrate the su-
perior performance of our algorithms compared to the
state of the art. Naturally, we chose to compare our
AERR and AELR algorithms 5 with the AER algo-
rithm of (Cesa-Bianchi et al., 2010). We note that
AER is in fact a hybrid algorithm that combines 1-
norm and 2-norm regularizations, thus we use it for
benchmarking in both the Ridge and Lasso settings.

We essentially repeated the experiments of (Cesa-
Bianchi et al., 2010) and used the popular MNIST
digit recognition dataset (LeCun et al., 1998). Each
instance in this dataset is a 28 × 28 image of a hand-
written digit 0− 9. We focused on the “3 vs. 5” task,
on a subset of the dataset that consists of the “3” dig-
its (labeled −1) and the “5” digits (labeled +1). We
applied the regression algorithms to this task by re-
gressing to the labels.

In all our experiments, we randomly split the data to
training and test sets, and used 10-fold cross-validation
for tuning the parameters of each algorithm. Then,
we ran each algorithm on increasingly longer prefixes
of the dataset and tracked the obtained squared-error
on the test set. For faithfully comparing partial- and
full-information algorithms, we also recorded the total
number of attributes used by each algorithm.

In our first experiment, we executed AELR, AER and
(offline) Lasso on the “3 vs. 5” task. We allowed
both AELR and AER to use only k = 4 pixels of
each training image, while giving Lasso unrestricted
access to the entire set of attributes (total of 784) of
each instance. The results, averaged over 10 runs on

5The AESVR algorithm is presented mainly for the-
oretical considerations, and was not implemented in the
experiments.
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Figure 1. Test squared error of Lasso algorithms with k =
4, over increasing prefixes of the “3 vs. 5” dataset.

random train/test splits, are presented in Figure 1.
Note that the x-axis represents the cumulative num-
ber of attributes used for training. The graph ends at
roughly 48500 attributes, which is the total number
of attributes allowed for the partial-information algo-
rithms. Lasso, however, completes this budget after
seeing merely 62 examples.

As we see from the results, AELR keeps its test er-
ror significantly lower than that of AER along the en-
tire execution, almost bridging the gap with the full-
information Lasso. Note that the latter has the clear
advantage of being an offline algorithm, while both
AELR and AER are online in nature. Indeed, when
we compared AELR with an online Lasso solver, our
algorithm obtained test error almost 10 times better.

In the second experiment, we evaluated AERR, AER
and Ridge regression on the same task, but now allow-
ing the partial-information algorithms to use as much
as k = 56 pixels (which amounts to 2 rows) of each
instance. The results of this experiment are given in
Figure 2. We see that even if we allow the algorithms
to view a considerable number of attributes, the gap
between AERR and AER is large.

6. Conclusions and Open Questions

We have considered the fundamental problem of statis-
tical regression analysis, and in particular Lasso and
Ridge regression, in a setting where the observation
upon each training instance is limited to a few at-
tributes, and gave algorithms that improve over the
state of the art by a leading order term with respect
to the sample complexity. This resolves an open ques-
tion of (Cesa-Bianchi et al., 2010). The algorithms are
efficient, and give a clear experimental advantage in
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Figure 2. Test squared error of Ridge algorithms with k =
56, over increasing prefixes of the “3 vs. 5” dataset.

previously-considered benchmarks.

For the challenging case of regression with general con-
vex loss functions, we describe exponential improve-
ment in sample complexity, which apply in particular
to support-vector regression.

It is interesting to resolve the sample complexity gap
of 1

ε which still remains for Lasso regression, and to
improve upon the pseudo-polynomial factor in ε for
support-vector regression. In addition, establishing
analogous bounds for our algorithms that hold with
high probability (other than in expectation) appears
to be non-trivial, and is left for future work.

Another possible direction for future research is adapt-
ing our results to the setting of learning with (ran-
domly) missing data, that was recently investigated—
see e.g. (Rostamizadeh et al., 2011; Loh & Wainwright,
2011). The sample complexity bounds our algorithms
obtain in this setting are slightly worse than those pre-
sented in the current paper, and it is interesting to
check if one can do better.
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