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Abstract

The paper presents a new copula based
method for measuring dependence between
random variables. Our approach extends the
Maximum Mean Discrepancy to the copula
of the joint distribution. We prove that this
approach has several advantageous proper-
ties. Similarly to Shannon mutual informa-
tion, the proposed dependence measure is in-
variant to any strictly increasing transforma-
tion of the marginal variables. This is im-
portant in many applications, for example in
feature selection. The estimator is consis-
tent, robust to outliers, and uses rank statis-
tics only. We derive upper bounds on the
convergence rate and propose independence
tests too. We illustrate the theoretical con-
tributions through a series of experiments in
feature selection and low-dimensional embed-
ding of distributions.

1. Introduction

Measuring dependence between random variables is an
important problem in statistics, information theory,
and machine learning with a wide range of applications
in science and engineering. The most well-known de-
pendence measure is the Shannon mutual information,
which has found numerous applications recently. Al-
though this is the most popular dependence measure,
it is only one of the many other existing ones. In par-
ticular, it is a special case of the Rényi-α (Rényi, 1961)
and Tsallis-α mutual information (Tsallis, 1988).
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Other interesting dependence measures include the
maximal correlation coefficient (Rényi, 1959), kernel
mutual information (Gretton et al., 2003), the general-
ized variance and kernel canonical correlation analysis
(Bach, 2002), the Hilbert-Schmidt independence crite-
rion (Gretton et al., 2005), the Schweizer-Wolff mea-
sure (Schweizer & Wolff, 1981), and the distance based
correlation (Székely et al., 2007).

There is a tremendous list of dependence applications.
They have been used, for example, in causality detec-
tion, feature selection, active learning, structure learn-
ing, boosting, image registration, independent compo-
nent and subspace analysis. For more applications and
references, please see the supplementary material.

One reason why so many dependence measures have
been defined in the literature is that the problem is
challenging and researchers and practitioners are not
satisfied with the available measures and estimators
(Fernandes & Gloor, 2010). As Schweizer & Wolff
(1981) formalized in their dependence axioms, a good
dependence measure I has to have several properties.
The most important ones are as follows. (i) Depen-
dence I(X) is defined for X = (X1, . . . , Xd) ∈ Rd

d-dimensional random variables. (ii) I(X1, . . . , Xd)
is invariant to permutation. (iii) 0 ≤ I(X), and
I(X) = 0 iff (X1, . . . , Xd) are independent variables.
(iv) I(X1, . . . , Xd) is invariant to strictly increasing
transformation of Xi variables. For more discussion
on these axioms, see the Appendix. Among the above
mentioned dependence measures, only the Rényi, Tsal-
lis information, and the Schweizer-Wolff measure is in-
variant to strictly increasing transformations.

In addition to these constraints on the dependence
measure, we also want an efficient estimator that is
consistent, robust to outliers, has fast convergence
rate, and can be used in high-dimensions too. De-



Copula-based Kernel Dependency Measures

Figure 1. Illustration of the proposed dependence measure.
Using empirical copula transformation, first we transform
the data to have uniform marginals, then measure the dis-
tance to the joint uniform distribution with reproducing
kernel based divergence estimators.

pendence estimation is very challenging, especially in
nonparametric situations when we cannot assume that
the observations have an underlying density function
belonging to some parametric family. Many of the
above mentioned dependence measures can be defined
as some functionals of the density, thus an obvious way
for their estimation would be to estimate the densities
first. The density function, however, is a nuisance pa-
rameter in our case, and its estimation—especially in
higher dimensions—is known to be very difficult.

Due to these difficulties, all the existing dependence
estimators have their own shortcomings. For exam-
ple, the bound on the convergence rate of the Rényi
and Tsallis information estimator (Pál et al., 2010)
suffers from the curse of dimensionality. The avail-
able reproducing kernel based dependence measures
are not invariant to strictly increasing transformation
of the Xi marginal random variables. The estimator
of Székely et al. (2007) is not robust; one single large
enough outlier can arbitrarily ruin the estimator.

The main contributions of the paper are as follows. (i)
We introduce a new dependency measure I that satis-
fies the above listed axioms. (ii) We prove that I can
be efficiently estimated, and the calculation of the es-
timator is simple. The estimator is consistent, robust
to outliers, and uses rank statistics only. (iii) We also
provide an upper bound on the rate of convergence
and derive a test of independence. This bound shows
that the estimator can be efficiently used in large di-
mensions too.

Our main idea is to combine empirical copula trans-
formations with reproducing kernel based divergence
estimators. We will show that the empirical copula
transformation only slightly affects the convergence
rate, but the resulting dependence estimator possesses
all the above mentioned required properties. The pro-
posed method is illustrated in Figure 1.

One might wonder why it is important for a depen-
dence measure to be invariant to strictly increasing
transformations of the marginal variables. One reason
for this is that in many scenarios we need to com-
pare the estimated dependencies. This is the case for
example in feature selection and low-dimensional em-

bedding of random variables. In these problems we
can think of dependence as a “distance” between ran-
dom variables in the sense that when the dependence
is large, then the random variables are “close” to each
other, and when the dependence is small, then the
variables are far. However, if certain variables are
measured on different scales, then this distance can
be much different from the distance using other scales.
As a result, it might happen that different features
would be selected by the feature selection algorithm
if we measured a quantity e.g. in grams, kilograms,
pounds, or if we used log-scale. This is an odd situa-
tion that can be avoided with dependence measures
that are invariant to strictly increasing transforma-
tions of the marginal variables. As an application,
we will show how the proposed dependence measure
can be used for feature selection and low-dimensional
embedding of distributions.

The proofs can be found in the supplementary mate-
rial. There we also discuss the robustness properties
of the estimators and show how to use them in inde-
pendence tests.

Notation: In the rest of the paper X ∼ P will de-
note that the random variable X has distribution P .
E(X) and σ(X) stand for the expectation and stan-
dard deviation of X, respectively. For a random vari-
able X ∈ R, Ξ[X] denotes the standardized variable,
that is, Ξ[X]

.
= (X−E[X])/σ(X), which has zero mean

and unit variance. U [a, b] stands for the uniform dis-
tribution in the interval [a, b]. X1:m is shorthand no-
tation for the set of random variables {X1, . . . , Xm}.
The cardinality of a set S is denoted by |S|.

2. Maximum Mean Discrepancy

In this section we review some important properties
of the Maximum Mean Discrepancy (MMD), which is
a quantity used to measure the distance between dis-
tributions (Borgwardt et al., 2006; Fortet & Mourier,
1953). An appealing property of this quantity is that
it can be efficiently estimated from independent and
identically distributed (i.i.d.) samples.

Definition 1. Let F be a class of functions, P , Q be
probability distributions. The MMD between P and Q
on the function class F is defined as follows,

M[F , P,Q]
.
= sup

f∈F
(EX∼P [f(X)]− EY∼Q[f(Y)]).

Let H = {f : X → R} be a reproducing kernel Hilbert
Space (RKHS) with feature map ϕ(x) ∈ H (x ∈ X ),
and kernel k(x, y) = ⟨ϕ(x), ϕ(y)⟩H. It is well known
that ϕ(x) = k(·, x), and f(x) = ⟨f, ϕ(x)⟩H, which is
called the reproducing property of the RKHS. Later
we will also need the definition of universal kernels.
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Definition 2 (Universal kernel). A kernel k : X ×
X → R is universal whenever the associated RKHS
H is dense in C(X ), the space of bounded continuous
functions over X , with respect to the L∞ norm.

Steinwart (2001) has shown that the Gaussian
and Laplace kernels are universal. Let µ[P ]

.
=

EX∼P [ϕ(X)] = EX∼P [k(·,X)]. A sufficient condition
for this quantity to exist is EX∼P,X′∼P k(X,X′) < ∞,
where X and X′ are independent variables having dis-
tribution P .

For general F function sets,M[F , P,Q] can be difficult
to calculate and is not even symmetric in P and Q.
Nonetheless, when F is a unit ball of RKHSH, then for
all f ∈ F we also have that−f ∈ F , which implies that
M[F , P,Q] = M[F , Q, P ]. Furthermore, in this case
M2[F , P,Q] has a simple form that makes efficient
estimations possible. This is stated formally in the
following lemma (Borgwardt et al., 2006).

Lemma 3. When F is a unit ball of RKHS H and
µ[P ] < ∞, µ[Q] < ∞, then

M2[F , P,Q] = ∥µ[P ]− µ[Q]∥2H = EX,X′∼P [k(X,X′)]

− 2EX∼P,Y∼Q[k(X,Y)] + EY,Y′∼Q[k(Y,Y′)],

where X and X′ have distribution P , Y and Y′ have
distribution Q, and these random variables are all in-
dependent from each other.

In the remainder of the paper we will always assume
that F is a unit ball of RKHS H. Let X1:m =
(X1, . . . ,Xm) be an independent and identically dis-
tributed (i.i.d.) sample drawn from distribution P ,
and similarly let Y1:n = (Y1, . . . ,Yn) be an i.i.d. sam-
ple with distribution Q.

A biased (but asymptotically unbiased) estimator for
M[F , P,Q] can be easily given using the law of large
numbers:

Mb[F ,X1:m,Y1:n]
.
=

[
1

m2

m∑
i,j=1

k(Xi,Xj) (1)

+
1

n2

n∑
i,j=1

k(Yi,Yj)−
2

mn

m,n∑
i,j=1

k(Xi,Yj)

]1/2
.

An unbiased estimator for M2[F , P,Q] (when m = n)
has also been derived in Borgwardt et al. (2006):

M2
u[F ,X1:m,Y1:m] =

1

m(m− 1)

∑
i,j

h(Λi,Λj), (2)

which is a one sample U -statistic with h(Λi,Λj)
.
=

k(Xi,Xj)+ k(Yi,Yj)− k(Xi,Yj)− k(Xj ,Yi), where
Λi

.
= (Xi,Yi), and Λ1:m = (Λ1, . . . ,Λm) are i.i.d.

random variables. From the r.h.s. of Lemma 3, one can
see that E[h(Λi,Λj)] = M2[F , P,Q], which proves the
unbiasedness of the estimator M2

u[F ,X1:m,Y1:m].

3. The Copula of Distributions

Below we review a few important properties of the
copula of multivariate distributions that we will use in
our work (Nelsen, 1998).

The copula plays an important role when we study the
dependence among random variables. The marginal
variables X1, . . . , Xd are independent from each other,
if and only if the copula distribution is the multivari-
ate uniform distribution. In turn, we can measure
the dependence of the X1, . . . , Xd random variables
by measuring how far the copula distribution is from
the uniform distribution. The copula contains all the
information that we need to measure dependence, and
it is invariant to any nonlinear strictly increasing trans-
formations of the marginal variables.

The copula can be defined by the Sklar’s theorem
(Sklar, 1959) as follows. Let X = (X1, . . . , Xd) ∈ Rd

be a random variable. Denote the marginal cdf’s
of Xj by Fj : R → [0, 1]. Sklar’s theorem states
that a multivariate cumulative distribution function
H(x1, . . . , xd) = Pr(X1 ≤ x1, . . . , X

d ≤ xd) can
be written as H(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)),
where C is a unique distribution function on the
range of the Fi cdf functions. This distribution
function is called the copula of the joint distribu-
tion H. The distribution of the copula C is the
same as the joint distribution of Z = (Z1, . . . , Zd)

.
=

F(X) = (F1(X
1), . . . Fd(X

d)) ∈ Rd random vari-
ables. When the Fi cumulative distribution func-
tions are invertible, then F(X) have uniformly dis-
tributed marginal distributions on [0, 1], and the cop-
ula distribution can be calculated as C (y1, . . . , yd) =
H

(
F−1
1 (y1) , . . . , F

−1
d (yd)

)
, where 0 ≤ yi ≤ 1. The

relation of the joint distribution H, marginal distribu-
tions Fi, and copula C is illustrated in Figure 2.

Figure 2. Illustration of the copula. On the left: ran-
dom samples from a 2-dimensional distribution H. On
the right: the copula transformed sample points. They
are distributed according to the copula C. Every distri-
bution function H can be rewritten with its copula distri-
bution C and marginal distributions F1, F2 as H(X1 ≤
x1, X

2 ≤ x2) = C(F1(X
1 ≤ x1), F2(X

2 ≤ x2)). The cop-
ula C captures all the dependence between X1 and X2.
The marginal variables, X1 and X2, are independent iff
the copula distribution C is the uniform distrbution.
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4. Dependence Estimation

Let U = (U1, . . . , Ud) ∈ [0, 1]d be a random vari-
able with uniform distribution on the d-dimensional
unit cube, U ∼ U [0, 1]d. We define the dependence
among continuous random variables X1, . . . , Xd as the
MMD distance between the joint copula and the d-
dimensional uniform distribution:

I(X1, . . . , Xd)
.
= M(F , PZ, PU).

Definition 4. Let x1, x2 ∈ R. A function g : R → R
is strictly increasing, if g(x1) < g(x2) for all x1 < x2.

It is easy to see that I(X1, . . . , Xd) ≥ 0, and
I(X1, . . . , Xd) = I(g1(X

1), . . . , gd(X
d)) for any

gi strictly increasing functions. In other words,
I(X1, . . . , Xd) is invariant to strictly increasing trans-
formations of the marginal variables.

The following lemma states that I(X1, . . . , Xd) is in-
deed a well-defined dependence measure when kernel
k is universal.

Lemma 5. Let the kernel k be universal on [0, 1]d ×
[0, 1]d. Then I(X1, . . . , Xd) = 0, if and only if
X1, . . . , Xd are independent of each other.

In what follows we will provide a consistent estimator
for I(X) = I(X1, . . . , Xd). Let k : Rd × Rd → R be
a kernel function of RKHS H, and let Z

.
= F(X) be

a random variable drawn from the copula. Introduce
the following terms:

µ[PZ]
.
= EZ∼PZ

[k((Z1, . . . , Zd), ·)],
µ[PU]

.
= EU∼PU

[k((U1, . . . , Ud), ·)].

Thanks to Lemma 3, it is easy to see that
I2(X) = M2(F , PZ, PU) = ∥µ[PZ] − µ[PU]∥2H =
EZ,Z′∼PZ

[k(Z,Z′)] − 2EZ∼PZ,U∼PU
[k(Z,U)] +

EU,U′∼PU
[k(U,U′)].

Our goal is to estimate I(X) using the X1:m i.i.d. sam-
ple. This expression is the expected value of the kernel
k evaluated in random variables drawn from the uni-
form and the copula distributions. Assume that we
already have a Z1:m i.i.d. sample from the copula dis-
tribution. For simple kernel functions, the expectation
w.r.t. the uniform distribution has a simple form. For
example, when we use the Gaussian kernel, we have
the following unbiased estimator for I2(X):

M2
u[F ,Z1:m, PU] =

1

m(m− 1)

∑
i ̸=j

k(Zi,Zj)

− 2

m

m∑
i=1

d∏
j=1

∫ 1

0

exp

(
−(Zj

i − u)2

2σ2

)
du

+

(∫ 1

0

∫ 1

0

exp

(
−(u− u′)2

2σ2

)
dudu′

)d

,

which can be expressed by the erf Gauss error function.
For more complicated kernels, however, these integrals
can not be calculated analytically, therefore we need
to approximate them by sampling. In what follows we
will investigate this case.

Let U1:n = U1, . . . ,Un be an i.i.d. sample drawn from
the U [0, 1]d distribution, and let X, X1,. . . ,Xm be
i.i.d. samples having distribution PX. The F1, . . . ,
Fd distribution functions are unknown, but we can es-
timate them efficiently using the empirical distribution
functions. For x, xj ∈ R and 1 ≤ j ≤ d, let

F̂j(x)
.
= F̂j(x;X

j
1:m)

.
=

1

m
|{i : 1 ≤ i ≤ m,x ≤ Xj

i }|

F̂(x1, . . . , xd)
.
= (F̂1(x

1), . . . , F̂d(x
d)) ∈ Rd.

We call the maps F, F̂ the copula transformation,
and the empirical copula transformation, respectively.
The sample (Ẑ1, . . . , Ẑm)

.
= (F̂(X1), . . . , F̂(Xm)) ∈ Rd

is called the empirical copula (Dedecker et al., 2007).

Note that the j-th coordinate of Ẑi (1 ≤ i ≤ m) equals

Ẑj
i =

1

m
rank(Xj

i , {X
j
1 , X

j
2 , . . . , X

j
m}) ,

where rank(x,A) is the number of elements of A less
than or equal to x. Also, observe that the random vari-
ables Ẑ1, . . . , Ẑm are not even independent. Nonethe-
less, as we will see from Lemma 7, the empirical cop-
ula (Ẑ1, . . . , Ẑm) is a good approximation of an i.i.d.
sample (Z1, . . . ,Zm)

.
= (F(X1), . . . ,F(Xm)) from the

copula distribution of PX. Using (2), we have that

M2
u[F ,Z1:m,U1:m] =

1

m(m− 1)

∑
i ̸=j

[
k(Zi,Zj)

+k(Ui,Uj)− k(Zi,Uj)− k(Ui,Zj)

]
.

From (1), we can also see that

Mb[F ,Z1:m,U1:n] =

[
1

m2

m∑
i,j=1

k(Zi,Zj)

+
1

n2

n∑
i,j=1

k(Ui,Uj)−
2

mn

m,n∑
i,j=1

k(Zi,Uj)

]1/2
.

In these expressions Z1:m is not available to us. We es-
timate them using the empirical copula, Ẑj

.
= F̂(Xj),

j = 1, . . . ,m. An estimator for I2(X) can be given by

Î2u(X1:m), where

m(m− 1)Î2u(X1:m)
.
= m(m− 1)M2

u[F , Ẑ1:m,U1:m] =∑
i ̸=j

[
k(Ẑi, Ẑj) + k(Ui,Uj)− k(Ẑi,Uj)− k(Ui, Ẑj)

]
.

To calculate this quantity, we only need the ranks
of the marginal variables in the sample. Note that
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Î2u(X1:m) is not an unbiased estimator of I(X), but

we keep the notation Î2u to denote that it is derived
from the estimator M2

u.

Using the definition of Mb, we can also propose an-
other estimator for I(X):

Îb(X1:m)
.
= Mb[F , Ẑ1:m,U1:n] =

[
1

m2

m∑
i,j=1

k(Ẑi, Ẑj)

+
1

n2

n∑
i,j=1

k(Ui,Uj)−
2

mn

m,n∑
i,j=1

k(Ẑi,Uj)

]1/2
.

Both estimators are extremely simple to implement
requiring only kernel evaluations on the transformed
data and the uniform variables. One can also see that
the estimators are robust assuming k is bounded in
[0, 1]d × [0, 1]d (but can be unbounded outside of this
region, e.g. polynomial kernel). Thanks to the empiri-
cal copula transformation, we only need rank statistics
(Ẑ1:m) in the estimation, but the actual values of X1:m

sample points are not used. The contribution of one
single sample point is diminishing in the estimator as
we increase the sample size. Therefore, one arbitrar-
ily large outlier sample point cannot ruin the statistics
arbitrarily badly. For more discussion on this, see the
Appendix.

In what follows we will analyze the theoretical proper-
ties of these estimators. Assume that the kernel func-
tion k(·, z) is uniformly Lipschitz continuous on [0, 1]d,
i.e. there exists L > 0 such that for all z, z1, z2 ∈ [0, 1]d

we have that |k(z1, z)−k(z2, z)| ≤ L∥z1−z2∥. A typ-
ical example is the Gaussian kernel, for which it holds
that there exists L > 0 such that for all z, z1, z2 ∈
[0, 1]d∣∣∣∣exp(−∥z1 − z∥2

2σ2
)− exp(−∥z2 − z∥2

2σ2
)

∣∣∣∣ ≤ L∥z1 − z2∥.

Lemma 6. For all zi ∈ [0, 1]d, 1 ≤ i ≤ 4, we have
that

|k(z1, z2)− k(z3, z4)| ≤ L∥z1 − z3∥+ L∥z2 − z4∥.

The effect of the empirical copula transformation
can be studied by a version of the classical Kiefer-
Dvoretzky-Wolfowitz theorem due to Massart; see
e.g. Devroye & Lugosi (2001). As a simple implication

of this theorem, one can show that F̂ is a consistent
estimator of F, and the convergence is uniform:

Lemma 7 (Convergence of the empirical copula). Let
X1, . . . ,Xm be an i.i.d. sample from a probability dis-
tribution over Rd with marginal cdf’s F1, . . . , Fd. Let
F(X) be the copula defined above, and let F̂(X1:m) be

the empirical copula transformation. Then, for any
ϵ ≥ 0,

Pr

[
sup
x∈Rd

∥F(x)− F̂(x)∥2 > ϵ

]
≤ 2d exp(−2mϵ2

d
) .

Let 0 ≤ k(x, y) ≤ K be a bounded kernel function.
The following theorems state the almost sure consis-
tency of the dependence estimators, and provide upper
bounds on the rate of convergence.

Theorem 8 (Almost sure consistency). Almost surely
we have that

|Î2u(X1:m)− I2(X)|

= O

(
max

{√
dL2

m
log(4dm2),

√
K2

m
log(4m2)

})
.

From the below theorem it follows that when n grows
fast enough, then Îb is almost surely consistent as well.

Theorem 9 (Almost sure consistency). Let n = g(m)
for some function g such that limm→∞ g(m) = ∞. Al-
most surely it holds that

|Îb(X1:m)− I(X)| = O
(
max

{(
8dL2

m
log(4dm2)

)1/4

,

(
2K(m+ n)

mn
log(4m2)

)1/2
}

+

(
K

m

)1/2

+

(
K

n

)1/2)
.

As these bounds show, the proposed dependence esti-
mators can be used in high-dimensions as well; they
do not suffer from the curse of dimensionality. Based
on these estimators, one can derive independence tests
too. For details, see the Appendix.

5. Feature Selection

The above defined I(X) dependence measure is in-
variant to strictly increasing transformations of the
marginal variables. In this section we discuss the ben-
efits of this property in the feature selection problem.

Let us have d real valued features {X1, . . . , Xd}, and
a target value Y . Numerous feature selection meth-
ods use dependence estimation for selecting the most
relevant features to predict the target value Y . If we
want to select h features, then one obvious approach
would be to select those h features that together have
the highest dependence with Y . This subset selection
problem, unfortunately, is very difficult. Therefore,
several approximations and heuristics have been pro-
posed. For example, according to the so-called max-
relevance criterion (Peng & Ding, 2005), our goal is to
select a feature set S ⊆ {X1, . . . , Xd}, which max-
imizes the average dependence between the features
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and the target:

Ŝ = argmax
S

1

|S|
∑
Xi∈S

I(Xi, Y ). (3)

This approach might select highly redundant features,
i.e. the dependence among these features could be
large. This redundancy can be measured by the ex-
pression

∑
Xi,Xj∈S I(Xi, Xj)/|S|2.

When two features highly depend on each other, then
probably we do not lose too much if we remove one
of them. Therefore, our goal is to maximize relevance
while minimizing the redundancy among the features

Ŝ = argmax
S

∑
Xi∈S

I(Xi, Y )

|S|
−

∑
Xi,Xj∈S

I(Xi, Xj)

|S|2
. (4)

All we need is a good estimator for I(Xi, Xj) and
I(Xi, Y ) dependencies. Equation (3) and (4) objec-
tives are popular tools for feature selection. Here we
will not discuss the advantages and disadvantages of
them. We, however, would like to point out that when
someone uses objectives that involves dependence es-
timation, then we want these dependencies to be in-
variant to strictly increasing transformations of the
marginal variables.

6. Numerical Illustrations

We illustrate the theoretical contributions of this pa-
per through a series of numerical experiments demon-
strating properties of the copula-based kernel depen-
dency measure.

The M(F , PX,
∏d

i=1 PXi) measure could also be used
directly, without copula transformation, to estimate
dependence. In order to use this approach, we need to
generate m sample points from the product distribu-
tions of the marginals. Let τi(1 : m), (1 ≤ i ≤ d) de-
note independent random permutations of {1, . . . ,m}.
Then Π[X1:m]

.
= (X1

τ1(1:m), X
2
τ2(1:m), . . . , X

d
τd(1:m))

T

can be considered as samples from the
∏d

i=1 PXi

distribution. In other words, if X1:m is stored in
a d × m dimensional sample matrix and we inde-
pendently permute the elements of each row, then
the distributions of the rows (the marginal distribu-
tions of X) remain the same, but they become in-
dependent from each other. For brevity, we will call
the M(F , PX,

∏d
i=1 PXi) quantity MMD dependence

measure.

6.1. Feature Selection

In this experiment we show that I(X) can achieve bet-
ter performance in feature selection than MMD with-
out copula transformation (M(F , PX,

∏d
i=1 PXi)).

We constructed the following random variables: X1 ∼
U [0, 1], X2 ∼ U [0, 500], Y = 500 sin(4πX1). The task
in this experiment was to choose the feature between
X1 and X2 that contains the most information about
Y . This feature is of course X1 since Y is a deter-
ministic function of it, and X2 is independent of Y ; it
does not contain any information about Y . 300 sam-
ple points from the joint distrbutions of (X1,Y ) and
(X2,Y ) are shown in Figure 3(a) and Figure 3(b), re-
spectively. The empirical copula transformed points
of (Y,X1) and (Y,X2) are displayed in Figure 3(c)
and Figure 3(d). When we simply use MMD without
copula transformation (M(F , PY,Xi , PY ×PXi)), then
interestingly we got that the estimated dependence be-
tween Y and X1 (Mb(F , (Y,X1)1:m,Π[(Y,X1)1:m]),
column (A) of Figure 3(e)) was smaller than the
estimated dependence between between Y and X2

(Mb(F , (Y,X2)1:m,Π[(Y,X2)1:m]), column (B) of Fig-
ure 3(e)). As we can see in this problem, the MMD
without copula transformation could not select the
right feature. However, when we used copula trans-
formation, then the estimated dependence was larger
between Y and X1 than between Y and X2. The val-
ues of Îb((Y,X1)1:m) and Îb((Y,X2)1:m) are shown in
the (C) and (D) columns of Figure 3(e). In this exper-
iment we used Gaussian kernel with σ = 1.

6.2. Feature Standardization

A frequently used feature preprocessing step is to stan-
dardize the features, that is, linearly transform them
to have zero mean and unit variance (Ξ[X]). One
might wonder if this simple transformation can solve
the problem of Section 6.1. Below we show an example,
where that we have only two zero mean unit variance
features, and the MMD feature selection method that
is not invariant to the strictly increasing transforma-
tions of the features selects a feature that is actually
independent from the target value.

Let U ∼ U [0, 1], X1 .
= Ξ[1/U2], V ∼ U [0, 1]

X2 .
= Ξ[V ] independent random variables, and let

Y
.
= Ξ[sin(4πX1)]. The variables are standardized so

they have zero mean and standard variation 1. We
sampled 4,000 i.i.d. observations from our observed
features X1 and X2. The task again was to select
the feature that contains the most information about
Y . The solution to this problem is X1 again. The
meanings of the columns in Figure 4 are the same
as in Figure 3(e). When we simply use MMD with-
out copula transformation, then the estimated depen-
dence between between Y and X1 was smaller than
between Y and X2 (Mb(F , (Y,X1)1:m,Π[(Y,X1)1:m])
and Mb(F , (Y,X2)1:m,Π[(Y,X2)1:m]) in column (A)
and (B), respectively). The MMD without copula
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Figure 3. (a) Features Y and X1. (b) Features Y and X2. (c) Copula distribution of (Y,X1). (d) Copula distribution of
(Y,X2). Notations of the bar plot in (e): (A) MMD dependence between Y and X1 (Mb(F , (Y,X1)1:m,Π[(Y,X1)1:m]).
(B) MMD dependence between Y and X2 (Mb(F , (Y,X2)1:m,Π[(Y,X2)1:m]). (C) copula based dependence between Y

and X1 (Îb((Y,X1)1:m)). (D) copula based dependence between Y and X2 (Îb((Y,X2)1:m)).

transformation could not select the right feature. How-
ever, when we use copula transformation first, then we
can see that the estimated dependence between Y and
X1 is larger than between Y and X2, as expected.
(C) and (D) show Îb((Y,X1)1:m) and Îb((Y,X2)1:m),
respectively.
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Figure 4. (A-B) Dependence estimation without cop-
ula transformation: (A) MMD between Y and X1,
Mb(F , (Y,X1)1:m,Π[(Y,X1)1:m]), (B) MMD between Y
and X2, Mb(F , (Y,X2)1:m,Π[(Y,X2)1:m]). (C-D) De-
pendence estimation with copula transformation: (C)

Îb((Y,X1)1:m), (D) Îb((Y,X2)1:m).

6.3. Housing Dataset

In the following experiment we study our estima-
tors on the Housing dataset from the UCI repository
(Frank & Asuncion, 2010). The dataset contains 506
instances of 14 real valued attributes. The attributes
contain various features including per capita crime rate
by town, full-value property-tax rate per $10000, av-
erage number of rooms per dwelling, percentage of
lower status of the population, median value of owner-
occupied homes in $1000’s, etc. Our goal is to predict
some of these attributes and select the most important
features for this prediction. Since the dataset contains
very different features, it is highly nontrivial how to
scale them for feature selection when the applied de-
pendence measure is not invariant to strictly increas-
ing transformations of the marginals. This, however,
is not an issue for our proposed dependence measure.
In this experiment our goal was to predict the “median

value of owner-occupied homes in $1000’s” (feature 14)
using one single feature. We used m = n = 300 in-
stances for training, and the rest of the data for testing.
We applied Gaussian kernel (σ2 = 1/12) in the estima-
tors. The MMD without copula transformation chose
the “average number of rooms per dwelling” (feature
6) as the closest feature. When instead of MMD we

used the proposed Îb estimator, it selected the “lower
status of the population” (feature 13). To study the
prediction errors of the selected features, we trained
linear regressors for each feature using them as ex-
planatory variables. The prediction errors on the test
data are shown in Figure 5. In this experiment the
smallest error was achieved by the feature that Îb se-
lected (feature 13). MMD without the copula transfor-
mation selected the feature that gave only the second
smallest error (feature 6).

Low-dimensional embedding can help us visualize the
pairwise dependence structure of random variables.
For each feature Xi, Xj , we estimated the d(i, j) =
exp(−I(Xi, Xj)) quantities. This d(i, j) is large when
Xi, Xj is independent, and small when the depen-
dence between them is large. We considered them
as “distances” (although the triangle inequality does
not hold between them), and then applied multi-
dimensional scaling to embed them into a 2d space.
The Housing dataset was used in this experiment too
using the same set-up as in the previous study. To es-
timate the dependence between the features, we tested
again Îb (Figure 6(a)) and MMD without copula trans-
formation (Figure 6(b)). We can observe that the lo-
cations of these embedded points are very different.
If we applied any strictly increasing transformations
to the marginal variables, it would not affect the em-
bedding with copula transformation, but we would get
very different results when we use MMD without cop-
ula transformation. For more numerical experiments,
see the supplementary material.
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Figure 6. Low-dimensional embedding of the features using
dependence as a proximity measure.

7. Discussion and Conclusion

We introduced a new RKHS-based dependence mea-
sure that operates on the copula of continuous distri-
butions. We have shown that the dependence measure
is invariant to strictly increasing transformations of
the marginal variables, and this property is important
in feature selection and low-dimensional embedding of
distributions. We also proposed estimators that are al-
most surely consistent, robust, use rank statistics only,
and do not suffer from the curse of dimensionality. We
derived upper bounds on the rates of convergence and
illustrated the theory through a series of numerical ex-
periments.
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