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Abstract

In this paper we propose a simple yet pow-
erful method for learning representations in
supervised learning scenarios where an input
datapoint is described by a set of feature vec-
tors and its associated output may be given
by soft labels indicating, for example, class
probabilities. We represent an input data-
point as a K-dimensional vector, where each
component is a mixture of probabilities over
its corresponding set of feature vectors. Each
probability indicates how likely a feature vec-
tor is to belong to one-out-of-K unknown
prototype patterns. We propose a proba-
bilistic model that parameterizes these pro-
totype patterns in terms of hidden variables
and therefore it can be trained with conven-
tional approaches based on likelihood maxi-
mization. More importantly, both the model
parameters and the prototype patterns can
be learned from data in a discriminative way.
We show that our model can be seen as a
probabilistic generalization of learning vector
quantization (LVQ). We apply our method to
the problems of shape classification, hyper-
spectral imaging classification and people’s
work class categorization, showing the supe-
rior performance of our method compared to
the standard prototype-based classification
approach and other competitive benchmarks.

1. Introduction

A fundamental problem in machine learning is that
of coming up with useful characterizations of the in-
put so that we can achieve better generalization ca-
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pabilities with our learning algorithms. We refer to
this problem as that of learning representations. This
has been a long standing goal in machine learning and
has been addressed throughout the years from differ-
ent perspectives. In fact, one of the simplest and oldest
attempts to tackle this problem was given by Rosen-
blatt (1962) with the Perceptron algorithm for classifi-
cation problems. In such an approach it was suggested
that we can have non-linear mappings of the inputs so
that the obtained representation allows us to discrimi-
nate between the classes with a simple linear function.
However, the mapping (or “features”) should have
been engineered beforehand instead of being learned
from the available data. Neural networks and their
back-propagation algorithm (Rumelhart et al., 1986)
became popular because they offered an automatic
way of learning flexible representations by introduc-
ing the so-called hidden layers and hidden units into
multilayer Perceptron architectures. Kernel-based al-
gorithms and, in particular, support vector machines
(SVMs, Scholkopf & Smola, 2001) offered a clever al-
ternative to neural nets, circumventing the problem of
learning representations by using kernels to map the
input into feature spaces where the patterns are likely
to be linearly separable. However, SVMs are inher-
ently non-probabilistic and unsuitable for applications
where one requires uncertainty measures around their
predictions.

In this paper we propose a simple yet powerful ap-
proach to learning representations for classification
problems where an original input datapoint is de-
scribed by a set of feature vectors and its associated
output may be given by soft labels indicating, for ex-
ample, class probabilities, degrees of membership or
noisy labels. Our approach to this problem is to rep-
resent an input datapoint as a K-dimensional vector,
where each component is a mixture of probabilities
over its corresponding set of feature vectors. Each
probability indicates how likely a feature vector is to
belong to one-out-of-K unknown prototype patterns.
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We propose a probabilistic model that parameterizes
these prototype patterns in terms of hidden variables
and therefore it can be trained with conventional ap-
proaches based on likelihood maximization. More im-
portantly, both the model parameters and the proto-
type patterns can be learned from data in a discrim-
inative way. To our knowledge, previous approaches
have not addressed the problem of discriminative pro-
totype learning within a consistent multi-class proba-
bilistic framework (see section 5 for details).

2. Problem Setting

In this paper we are interested in multi-class classifi-
cation problems for which an input point is character-
ized by a set of feature vectors S = {x(1), . . . ,x(M)},
where each feature vector may describe, for example,
some local characteristics of the input point. Addi-
tionally, we consider the general case where the out-
puts may be given by soft labels indicating, for exam-
ple, class probabilities, degrees of membership or noisy
class labels. Hence, our goal is to build a probabilistic
classifier based on given training data, which is com-
prised by the tuples D = {(S(n), P̃(n)), n = 1, . . . , N},
where S(n) is the set of feature vectors in the nth tu-
ple. In general, the number of feature vectors is dif-
ferent for each input and therefore we shall describe
it by Mn. Similarly, P̃(n) ∈ [0, 1]C , corresponds to
the C-dimensional vector of soft labels (e.g. empirical
probabilities) associated with the C output classes of
the nth training instance. Obviously, these probabili-
ties are constrained by

∑C
j=1 P̃ (yn = j) = 1, where yn

denotes the latent class assignment of datapoint n.

A common approach to prototype-based learning de-
scribes an input by a histogram of words from a vocab-
ulary of size K. This histogram is commonly known
as the bag-of-words representation. In order to spec-
ify the vocabulary it is customary to use clustering
methods such asK-means or generative models such as
Gaussian Mixtures, which are often used as a disjoint
step before training a specific classifier. The model for
extracting such representations is given by:

fk(x) =

{
1 iff ‖µk − x‖ < ‖µj − x‖ ∀j 6= k
0 otherwise

(1)

z
(n)
k =

∑
x∈S(n)

πkfk(x), (2)

where z is a K-dimensional vector to be used as the
input representation for a specific classifier; {µk}Kk=1

are usually referred to as the centers; and πk is set to
1/Mn. We will refer to each fk(x) as a prototype func-
tion as it performs the encoding of each D-dimensional
vector x into its corresponding (binary)K-dimensional

representation. It is important to realize that this
method is a winner-takes-all approach where each fea-
ture vector x is assigned to only one centre. This is
the main motivation for our method where we will re-
lax this assumption and propose a fully discriminative
probabilistic model for learning such representations.

Our model assumes a bag-of-words representation as
given by equation (2). However, here we consider that
the prototypes are probabilities and are given by:

fk(x) =
exp (−β‖µk − x‖2)∑K
j=1 exp (−β‖µj − x‖2)

, (3)

where β is a rate parameter (or inverse temperature).
Note that when β → ∞ Equation (3) becomes equiv-
alent to the hard limit in Equation (1). Therefore,
fk(x) is the probability of feature vector x belonging
to “cluster” k and zk is a mixture of these probabili-
ties.

In addition to defining how to map the set of input
vectors into parameterized probabilistic prototype rep-
resentations, our method requires the definition of a
discriminative probabilistic classifier. In principle, this
could be any classifier that focuses on defining the con-
ditional probability:

σi(z(X); Θ)
def
= p(y = i|z(X),Θ) (4)

directly in terms of our prototype representation z.

Here we have used X
def
= {x(j)}Mj=1 and made explicit

the dependency of z on its corresponding feature vec-
tors. In the sequel, for simplicity in the notation, we
will drop this dependency . Note that our model is a
(conditional) directed probabilistic model. This con-
trasts with other approaches such as latent-variable
CRFs which are undirected graphical models. As we
shall see later, we will focus on a softmax classifier due
to the simplicity and efficacy of this parametric model.
However, it is clear that we can also incorporate non-
parametric classifiers. We expect such approaches to
be more effective than their parametric counterparts
and we postpone their study to future work.

3. Parameter Learning

In this section we are interested in learning the pa-
rameters of our discriminative probabilistic prototype
framework. These parameters are: the rate parameter
β, the vocabulary or centers {µk}Kk=1 and the param-
eters of the discriminative classifier Θ. This could be
effected using a number of optimization methods in-
cluding simulated annealing and Markov Chain Monte
Carlo. Here we propose direct gradient-based opti-
mization of the data log-likelihood.
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3.1. Direct Likelihood Maximization with
Gradient-Based Methods

Assuming iid data, the log-likelihood of the model pa-
rameters given the data can be expressed as:

L(Θ, {µk}kk=1, β) =

N∑
n=1

Ln(Θ, {µk}Kk=1, β) (5)

=

N∑
n=1

P̃ (yn) logP
(
yn|zn(Θ, {µk}Kk=1, β)

)
, (6)

where P̃ (yn) refers to the soft labels associated with
input n, e.g. the empirical class probabilities. In order
to optimize the data log-likelihood we use a Quasi-
Newton method (BFGS) to which we provide the fol-
lowing gradient information:

∇µ`L =

N∑
n=1

∇µ`Ln ∂L
∂β

=

N∑
n=1

∂Ln

∂β
(7)

and

∇µ`Ln = (G(n,`))Tg(n), (8)

where:

g(n) def
= ∇znLn G(n,`) def

= ∇µ`zn (9)

g
(n)
k =

∂Ln

∂znk
G

(n,`)
k,d =

∂znk
∂µ`

d

(10)

for k, ` = 1, . . .K and d = 1, . . . D. The advantage of
the above formulation is that the partial derivatives
wrt the cluster centers can be computed in closed-
form. Note that although these updates are straight-
forward to derive, we specify all the details here for
completeness and for their later use when showing the
relation between our method and LVQ in Section 3.3.
The derivatives are given as follows:

∂Ln

∂µ`
d

=

K∑
k=1

∂Ln

∂znk

∂znk
∂µ`

d

. (11)

Moreover, by using equations (2) and (3) we have that:

∇µ`znk =
∑
x∈Sn

∇µ`fk(x) (12)

=


2β

∑
x∈Sn

fk(x)(1− fk(x))(x− µ`), iff k = `

2β
∑
x∈Sn

fk(x)f`(x)(µ` − x), otherwise.

(13)

A similar approach can be followed to compute the
partial derivatives wrt β. Hence we have that:

∂Ln

∂β
=

K∑
k=1

∂Ln

∂znk

∂znk
∂β

(14)

∂znk
∂β

=
∑
x∈Sn

fk(x)

(
K∑
`=1

‖µ` − x‖2f`(x)− ‖µk − x‖2
)

.

(15)

3.2. Discriminative Parametric Model:
Softmax Classifier

For the case of a parametric model such as the softmax
classifier:

P (y = i|z,Θ) =
exp((θi)T z)∑C
j=1 exp((θj)T z)

def
= σi(z; Θ) (16)

the local log-likelihood terms can be written as:

Ln =

C∑
j=1

P̃ (yn = j) log σj(zn; Θ). (17)

The corresponding derivatives wrt the prototype rep-
resentations are given by:

∇znLn =

C∑
j=1

(
P̃ (yn = j)− σj(zn; Θ)

)
θj . (18)

Finally, we also need the gradient information wrt the
model parameters (Θ):

∇θiL =

n∑
n=1

(
P̃ (yn = i)− σi(zn; Θ)

)
zn. (19)

Equations (5) and (19) can be modified so as to in-
clude a regularization term −λ tr (ΘTΘ), where λ is
a regularization parameter; tr (·) is the trace opera-
tor; and Θ is the matrix of weights with columns given
by each θi, i = 1 . . . , C. It is well known that the so-
lution for the weights in this case corresponds to the
MAP solution when considering a Gaussian prior over
the weights θi ∼ N (θi|0, λI). We can have a similar
prior or regularization for β.

We note here that optimization of the objective func-
tion in Equation (5) wrt to all the parameters is a
non-convex problem. However, as we shall see in sec-
tion 4, we use coordinate ascent and optimization of
the model parameters Θ, given all others fixed, is a
convex problem.
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3.3. Relation to LVQ

Learning Vector Quantization (LVQ, Kohonen, 1990)
is a prototype-based learning algorithm that uses
the class label information to adapt the prototypes
(i.e. cluster centers). The idea is that the prototypes
should move towards the training examples in their
corresponding class and away from training examples
with different labels. As in the k-means algorithm, the
assignment of datapoints to prototypes corresponds to
the rule in Equation (1). If we were going to update
the prototypes in our model with gradient ascent, this
update would become:

µ
(new)
` = µ

(old)
` + η∇µ`

L, (20)

where η is the learning rate.

By expanding Equation (11), substituting Equations
(12) and (18), and assuming hard labels, i.e. P̃ (yn)
is 1 for only one label and zero for all the others, we
should get:

µ`(new)
= µ`+

η

∑
x∈Sn

K∑
k=1

θyn

k −
C∑

j=1

θjkσ
j(z;θ)

 fk(x)f`(x)(µ` − x)

+
∑
x∈Sn

θyn

` −
C∑

j=1

θj`σ
j(z;θ)

 f`(x)(µ` − x)

 .

(21)

By taking the hard limit for the assignment of the sam-
ples to a single prototype (and assuming that all sam-
ples corresponding to a single data-point are assigned
to the same cluster): f`(x) = 1 and, consequently,
fk(x) = 0 for k 6= ` we have:

µ`(new)
= µ`+η

∑
x∈Sn

θyn

` −
C∑

j=1

θj`σ
j(z;θ)

 (µ`−x).

(22)
If |Sn| = 1 then the factor premultiplying (µ` − x)
can be absorbed into the learning rate and, therefore,
we obtain the LVQ update. In our model, this factor
is interpreted as the difference between the parameter
corresponding to the prototype ` for the label of the
current datapoint , i.e (θy

n

` ) and the average (wrt the
posterior probabilities) of the parameters of the other
classes. As a result, we can view the gradient-ascent
updates for our method as a relaxed version of LVQ.

4. Experiments and Results

In this section we present results on synthetic data,
shape classification, hyperspectral image classification

and people’s work class categorization. For all our ex-
periments, we employ our prototype learning approach
where we iterate the learning of the prototype param-
eters {µ`}K`=1, β and the model parameters Θ via co-
ordinate ascent on the model likelihood. We have ini-
tialized the cluster centers making use of k-means and
varied the size of the vocabulary, i.e. K, according to
the experimental vehicle. To illustrate the behavior of
our algorithm and to show its performance with re-
spect to competitive benchmarks, the first three prob-
lems studied (synthetic data, shape classification, hy-
perspectral image classification) consider the common
case of hard labels and our last experiment on people’s
work class categorization investigates the use of class
probabilities as soft labels.

4.1. Illustration on Synthetic Data

These experiments are based on a set of 20 datapoints
each comprised by a set of Mn ∈ {1, . . . , 20} feature
vectors in a 2-D space. Here we compare the baseline
model yielded by k-means clustering (with K = 2)
against our discriminative model. Figure 1 shows the
original datapoints in the two-dimensional space along
with the cluster centers (top). We see that the cluster
centers learned by our discriminative approach (Panel
b) are quite different even though the clusters obtained
by k-means (Panel a) are very close to those used
to generate the data. At the bottom panel we show
the prototype representation given by both methods
and we observe that the representation learned by our
method is much more discriminative as it takes into
consideration the class labels.

4.2. MPEG DataSet

Our first real dataset is given by the MPEG-7 CE-1
Part B database (Latecki et al., 2000), which we will
refer to as the mpeg-7 dataset. This contains 1400
binary shapes organized in 70 classes, each comprised
of 20 images. We have sampled 1 in every 10 pixels
on the shape contours and we have built a fully con-
nected graph whose edge-weights are given by the Eu-
clidean distances between each pair of pixel locations.
These weights are then normalized to be in the interval
[0, 1]. The feature vectors are given by the frequency
histograms of these distances for every node. In our
experiments, we have used 10 bins for the frequency
histogram computation and set K = 200.

For purposes of shape categorization, we compare
our method to three alternatives. The first one is a
prototype-based baseline akin to the bag of words ap-
proaches in computer vision (Fei-Fei & Perona, 2005).
Our baseline recovers prototypes via k-means cluster-
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Figure 1. Illustration of our model’s discriminative power on toy data. (a) The original two-dimensional data drawn
from a mixture of Gaussians with two components: one is an isotropic Gaussian with variance 1 and the other one is a
correlated Gaussian with covariance 0.95 and variance 1 on both dimensions. An input is represented by several datapoints
in the plot and the cluster centers as learned by k-means are shown as black dots. (b) The same data with the cluster
centers as learned by our discriminative probabilistic prototype classifier. (c) The representation obtained when using a
standard prototype-based approach (k-means). (d) The representation learned when using our discriminative probabilistic
prototype model.

ing. The shapes under study are then described by the
prototype-based representation which we then employ
as input to a classifier. The classifier used for this base-
line is also a softmax classifier as in our method. In
other words, the only difference between this baseline
method and our approach (probabilistic prototype) is
how these prototypes are learned.

The other two alternatives are specifically designed for
purposes of shape classification. These are the shape
and skeletal contexts in Belongie et al. (2002) and Xie
et al. (2008), respectively. Once the shape and skeletal
contexts are at hand, we train one-versus-all SVM clas-
sifiers whose parameters have been selected through
ten-fold cross validation. For all our shape categoriza-
tion experiments, we have divided the graphs in the
dataset into a training and a testing set. The train-
ing set comprises 50% randomly selected graphs, i.e.
700 and the other 50% of the data was used for test-
ing. For these partitions we have effected five trials.
The categorization results are shown in Table 1. The
table shows the mean percentage of correctly classi-
fied shapes and the corresponding variance. Despite

the basic strategy taken for the construction of our
graphs, which contrasts with the specialized nature of
the skeletal and shape contexts, our probabilistic pro-
totype method outperforms the alternatives.

4.3. SPECTRAL Dataset

This application considers hyperspectral imagery from
real-world scenes that include various types of materi-
als. We have annotated these images at a pixel-level
considering 10 different classes (C=10): tree trunk,
light poles, shadow on grass, grass, road, white line on
road, shadow on road, leaves, sky, and white regions on
sky. We considered 24 different images from which we
have extracted 1, 746, 708 data points with their corre-
sponding labels. In order to characterize an input data
point with a set of vectors (Sn) we have considered
neighborhood information according to 7×7 windows.
Hence, for each data point we have 49 feature vectors.
We have subsampled the data so as to include 1000
training instances and 16643 test instances across 10
different partitions.
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Table 1. Shape categorization results for the mpeg-7 dataset. The mean classification accuracy is shown along with (±)
one standard deviation when using 50% of the data for training and the rest for testing. Our probabilistic prototype
approach outperforms all other baseline methods.

Probabilistic
Prototype

Standard
Prototype

Shape Context
(Belongie et al., 2002)

Skeletal Context
(Xie et al., 2008)

85.49 ± 1.43 % 82.20 ± 0.98 % 77.55 ± 2.39 % 79.91 ± 1.78 %

Note that our method is effectively learning the pro-
totypes that can be used to represent the spectra for
the objects in the scene as a linear combination of the
spectral signatures of its material constituents. In geo-
sciences and process control this is known as unmixing
(Bergman, 2006). Current unmixing methods assume
availability of the end-member spectra, which usually
involves a cumbersome labeling of the end member
data, effected through expert intervention.

For comparison we use the standard prototype ap-
proach (based on k-means for learning the cen-
ters), and the InfoLoss (Lazebnik & Raginsky, 2009)
method. InfoLoss adapts the prototypes based on
the optimization of an information-theoretical crite-
rion. For this method, we have used an in-house im-
plementation whose parameter settings have been set
as described in Lazebnik & Raginsky (2009). For the
standard prototype approach and InfoLoss, as in our
method, we have used a softmax classifier so as to al-
low a direct representation-quality comparison via the
classification rates for our approach and those yielded
by the alternatives. In Table 2, we show the accuracy
of the methods evaluated along with two standard er-
rors. As before, probabilistic prototype refers to our
method and standard prototype refers to the represen-
tation computed via the direct application of k-means
for learning the centers. From the table, we can con-
clude that our method outperforms the alternatives by
delivering a mean categorization rate of 81.25%.

4.4. Test Likelihoods on MPEG-7 and
SPECTRAL

Now, we turn our attention to the evaluation of the
methods from a probabilistic point of view by report-
ing the likelihood of the models on the test data. In
Figure 2(a), we show the test data log-likelihood for
our probabilistic prototype approach and the baseline.
The bar corresponds to the mean across the five tri-
als and the segments account for two standard errors.
Note that the log-likelihood for our approach is signifi-
cantly greater than the one yielded by the standard ap-
proach. This is since the performance measures above
account for the correctness of the labels yielded by the

classifier devoid of their probability of error. Thus, our
method not only delivers better performance than the
alternatives, but also provides better probability esti-
mates. In Figure 2(b) we show similar results for the
spectral dataset. As with the mpeg-7 dataset, the
test data log-likelihood for the spectral dataset de-
livered by our approach is greater than the one yielded
by the alternatives and shows less variability.

4.5. ADULT Dataset

Finally, we applied our method to the adult dataset
from the UCI machine learning repository (Frank &
Asuncion, 2010). This dataset has been extracted from
census-based data and the original task was to predict
whether a person makes over $50K a year. It contains
continuous and discrete input variables including edu-
cation, age, work class (with eight different categories),
etc. In order to use this dataset as a test benchmark
for our method, we have grouped people’s records ac-
cording to the values of the discrete variables except
native country and work class and we have selected the
latter variable as our target labels. Hence, we have an
8-dimensional output variable. We represented an in-
put instance by the set of vectors that belong to the
same group (i.e. with the same values for all the dis-
crete features excluding native country). Similarly, we
have computed soft labels (P̃) by calculating for each
group the proportion of records that have the same
value for the corresponding label. Finally, we have
sub-sampled the data to have 4146 different instances
and considered 50% for training and the other 50% for
testing. The regularization parameters for our model
and the baseline have been set-up via cross-validation.

The (average) KL-divergence between the true (empir-
ical) class distribution and the predictive distribution
is 1.12 bits and if the soft labels were thresholded to
provide a hard class assignment the accuracy of the
model would be 77%. One interesting application of
our model on this dataset is the automatic “discovery”
of the latent population prototypes and how these re-
late to the class labels under consideration. Due to
space limitations, we have not included these results
here and postpone their analysis to future work.
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Table 2. Classification results for the spectral dataset. The mean classification accuracy is shown along with (±) two
standard errors when using 100 data-points per class for training and the rest for testing. Our probabilistic prototype
method outperforms the baseline methods.

Probabilistic
Prototype

Standard
Prototype

InfoLoss
(Lazebnik & Raginsky, 2009)

81.25 ± 0.72 % 75.17 ± 0.49 % 72.16 ± 0.82 %
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Figure 2. (a) The test data log likelihood on the mpeg-7 dataset, with K = 200 and stratified sampling for training
using 50% of the data and the rest for testing. The mean values are reported along with two standard errors across 5
replications of the experiment. (b) The test data log likelihood on the spectral dataset when using 1000 data-points for
training and K = 50.

5. Related Work

Generative models have been proposed as probabilistic
generalizations of ad-hoc learning methods mostly for
unsupervised learning scenarios (see e.g. Bishop et al.,
1998). The work by Seo & Obermayer (2002) is re-
lated to ours in their attempt to generalize LVQ but
their probabilistic model is inherently generative (see
their equation 4). Their objective function is based
on likelihood ratios and does not arise naturally from
their original model.

Neural networks and, more recently, deep belief net-
works (DBNs) have proved popular as methods for
learning latent representations with the goal of tack-
ling difficult problems in AI (see e.g. Hinton &
Salakhutdinov, 2006; Bengio & LeCun, 2007). In par-
ticular, our method can be seen as a generalization of
radial basis function (RBF) networks that considers
multiple probabilistic observations; applies a pooling
operator over the set of vectors belonging to the same
instance; and optimizes the parameters via a coordi-
nate ascent mechanism. There is also an interesting
relation between our proposed learning algorithm and
how deep architectures are currently trained as we ini-

tialize our method with k-means, which can been seen
as a pre-training stage, which is followed by a fine-
tuning stage in DBNs.

In the computer vision community, summarization
into a codebook has been used by a number of ap-
proaches in the literature. For example, Gemert et al.
(2008) replace histograms with kernel density estima-
tion (KDE) in the construction of codebooks and use
the extracted features in conjunction with SVMs (non-
probabilistic approach) for classification. It is interest-
ing to mention the different between InfoLoss (Lazeb-
nik & Raginsky, 2009) and our approach. The meth-
ods are similar in spirit but their difference is anal-
ogous to the difference between filter and wrapper
methods in feature selection. While InfoLoss focuses
on a filter metric (an information-theoretical objec-
tive function), our method directly includes the spe-
cific classifier in the learning process (wrapper). On a
similar vein, Boureau et al. (2010) propose the learn-
ing of mid-level features for recognition in computer
vision. Their work focuses on (multiple) binary classi-
fiers and does not provide consistent probabilistic out-
puts across all classes. It is well-known in the machine
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learning theoretical literature that simple approaches
to combining these classifiers such as one-against-all
are inconsistent in that given optimal binary classi-
fiers this “reduction” may not yield optimal multi-class
classifiers (see e.g. Beygelzimer et al., 2009).

Finally, recent work by Bergamo et al. (2011) has pro-
posed an approach to learning compact representa-
tions for novel category recognition. Their focus is
on learning compact descriptions that can be used, for
example, in image retrieval.

6. Conclusions

We have presented a probabilistic model for the dis-
criminative learning of latent representations, which
corresponds to a relaxed version of the popular ap-
proach of prototype-based classification. From the ap-
plication viewpoint, our method can be viewed as a
discriminative technique that can be used for unmixing
in geosciences and remote sensing (Bergman, 2006). It
can also be applied to other problems, such as popu-
lation modeling where labels and proportions of these
can be associated to groups of instances.

Our method requires, in general, a model for a prob-
abilistic discriminative classifier and for purposes of
illustrating the utility of our approach we have used
a softmax classifier. However, our approach can, in
principle, be used with any discriminative and prob-
abilistic classifier including non-parametric methods.
In the future we aim to explore the combination of
non-parametric methods with our prototype learning
approach and also investigate better optimization al-
gorithms for parameter learning, e.g. based on mean
field approximations.
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