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Abstract

We present a max-margin nonparametric
latent feature relational model, which u-
nites the ideas of max-margin learning and
Bayesian nonparametrics to discover discrim-
inative latent features for link prediction and
automatically infer the unknown latent so-
cial dimension. By minimizing a hinge-loss
using the linear expectation operator, we can
perform posterior inference efficiently with-
out dealing with a highly nonlinear link like-
lihood function; by using a fully-Bayesian
formulation, we can avoid tuning regulariza-
tion constants. Experimental results on re-
al datasets appear to demonstrate the bene-
fits inherited from max-margin learning and
fully-Bayesian nonparametric inference.

1. Introduction

As the availability and scope of social networks and
relational datasets increase, a considerable amount of
attention has been devoted to the statistical analysis of
such data, which is typically represented as a graph in
which the vertices represent entities and edges repre-
sent links between entities. Link prediction is one fun-
damental problem in analyzing these social network or
relational data, and its goal is to predict unseen links
between entities given the observed links. Often there
is extra information about links and entities such as at-
tributes and timestamps (Liben-Nowell & Kleinberg,
2003; Backstrom & Leskovec, 2011; Miller et al., 2009)
that can be used to help with prediction.

Recently, various approaches based on probabilistic
models have been developed for link prediction. One
class of such models utilize a latent feature matrix
and a link function (e.g., the commonly used sig-
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moid function) (Hoff, 2007; Miller et al., 2009) to de-
fine the link formation probability distribution. These
latent feature models were shown to generalize laten-
t class (Nowicki & Snijders, 2001; Airoldi et al., 2008)
and latent distance (Hoff et al., 2002) models and are
thus able to represent both homophily and stochastic
equivalence, which are important properties common-
ly observed in real-world social network and relational
data. The parameters for these probabilistic models
are typically estimated with MLE or their posterior
distributions are inferred with Monte Carlo method-
s. Such techniques have demonstrated competitive re-
sults on various datasets. However, to determine the
unknown dimensionality of the latent feature space (or
latent social space), most of the existing approach-
es rely on a general model selection procedure, e.g.,
cross-validation, which could be expensive by compar-
ing many different settings. The work (Miller et al.,
2009) is an exception, which presents a nonparametric
Bayesian method to automatically infer the unknown
social dimension.

This paper presents an alternative way to develop non-
parametric latent feature relational models. Instead
of defining a normalized link likelihood model, we pro-
pose to directly minimize some objective function (e.g.,
hinge-loss) that measures the quality of link predic-
tion, under the principle of maximum entropy discrim-
ination (MED) (Jaakkola et al., 1999; Jebara, 2002),
which was introduced as an elegant framework to in-
tegrate max-margin learning and Bayesian generative
modeling. The present work extends MED in sever-
al novel ways to solve the challenging link prediction
problem. First, like (Miller et al., 2009), we use non-
parametric Bayesian techniques to automatically re-
solve the unknown dimension of a latent social space,
and thus our work represents an attempt towards unit-
ing Bayesian nonparametrics and max-margin learn-
ing, which have been largely treated as two isolated
topics. Second, we present a fully-Bayesian method
to avoid tuning regularization constants. By mini-
mizing a hinge-loss, our model avoids dealing with a
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highly nonlinear link likelihood (e.g., sigmoid) and can
be efficiently solved using variational methods, where
the sub-problems of max-margin learning are solved
with existing high-performance solvers. Experimental
results on three real datasets appear to demonstrate
that 1) using max-margin learning can significantly
improve the link prediction performance, and 2) using
fully-Bayesian methods, we can avoid tuning regular-
ization constants without sacrificing the performance,
and dramatically decrease running time.

The paper is structured as follows. Sec 2 introduces
existing latent feature models, as well as a new insight
about the connections between these models. Sec 3
presents the max-margin latent feature relational mod-
el and a fully-Bayesian formulation. Sec 4 presents
empirical results. Finally, Sec 5 concludes.

2. Latent Feature Relational Models

Assume we have an N × N relational link matrix Y ,
where N is the number of entities. We consider the
binary case, where the entry Yij = +1 (or Yij = −1)
indicates the presence (or absence) of a link between
entity i and entity j. We emphasize that all the la-
tent feature models introduced below can be extended
to deal with real or categorical Y . Y is not fully ob-
served. The goal of link prediction is to learn a model
from observed links such that we can predict the val-
ues of unobserved entries of Y . In some cases, we may
have observed attributes Xij ∈ RD that affect the link
between i and j.

In a latent feature relational model, each entity is
associated with a vector µi ∈ RK , a point in a latent
feature space (or latent social space). Then, the link
likelihood is generally defined as

p(Yij = 1|Xij , µi, µj) = Φ(µ+ β⊤Xij + ψ(µi, µj)), (1)

where a common choice of Φ is the sigmoid function,
i.e., Φ(t) = 1

1+e−t . For the latent distance mod-
el (Hoff et al., 2002), we have

ψ(µi, µj) = −d(µi, µj), where d is a distance function.

For the latent eigenmodel (Hoff, 2007), which gener-
alizes the latent distance model and the latent class
model for modeling symmetric relational data, we have

ψ(µi, µj) = µ⊤
i Dµj , where D is a diagonal matrix.

In the above models, the dimension K is unknown
a priori, and a model selection procedure (e.g.,
cross-validation) is needed. The nonparametric
latent feature relational model (LFRM) (Miller et al.,
2009) leverages the recent advances in Bayesian
nonparametrics to automatically infer the latent

dimension. Moreover, LFRM differs from the above
models by inferring binary latent features and defining

ψ(µi, µj) = µ⊤
i Wµj , where µi ∈ {0, 1}∞.

We will use Z to denote a binary feature matrix, where
each row corresponds to the latent feature of an entity.
For LFRM, we have Z = [µ⊤

1 ; · · · ;µ⊤
N ]. Fully-Bayesian

inference with MCMC sampling is usually performed
for these models by imposing appropriate priors on la-
tent features and model parameters. In LFRM, Indian
buffet process (IBP) (Griffiths & Ghahramani, 2006)
was used as the prior of Z to induce a sparse latent
feature vector for each entity.

Miller et al. discussed the expressiveness of LFRM
over latent class models. Here, we provide another
support for the expressiveness. For modeling symmet-
ric relational data, we usually constrain W to be sym-
metric (Miller et al., 2009). Since a symmetric real
matrix is diagonalizable, i.e., there exists an orthogo-
nal matrix Q satisfying that Q⊤WQ is a diagonal ma-
trix, denoted again by D, we have W = QDQ⊤. Thus
we can treat ZQ as the effective real-valued latent fea-
tures and conclude that LFRM subsumes the latent
egienmodel for modeling symmetric relational data.

3. Max-margin Latent Feature Models

Now, we present the max-margin latent feature model
for link prediction. We first briefly review the basic
concepts of MED (Jaakkola et al., 1999; Jebara, 2002).

3.1. MED

We consider binary classification, where the response
variable Y takes values from {+1,−1}. Let X be an
input feature vector and F (X; η) be a discriminant
function parameterized by η. Let D = {(Xn, Yn)}Nn=1

be a training set and define hℓ(x) = max(0, ℓ − x),
where ℓ is a positive cost parameter. Unlike standard
SVMs, which estimate a single η, MED learns a dis-
tribution p(η) by solving an entropic regularized risk
minimization problem with prior p0(η)

min
p(η)

KL(p(η)∥p0(η)) + CR(p(η)), (2)

where C is a positive constant; KL(p∥q) is the KL di-
vergence; R(p(η)) =

∑
n h1(YnEp(η)[F (Xn; η)]) is the

hinge-loss that captures the large-margin principle un-
derlying the MED prediction rule

Ŷ = signEp(η)[F (X; η)]. (3)

By defining F as the log-likelihood ratio of a Bayesian
generative model, MED provides an elegant way to
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integrate the discriminative max-margin learning and
Bayesian generative modeling. MED subsumes SVM
as a special case and has been extended to incorporate
latent variables (Jebara, 2002; Zhu et al., 2009) and
to perform structured output prediction (Zhu & Xing,
2009). Recent work has further extended MED to u-
nite Bayesian nonparametrics and max-margin learn-
ing (Zhu et al., 2011a;b), which have been largely
treated as isolated topics, for learning better classi-
fication models. The present work contributes by in-
troducing a novel generalization of MED to perform
the challenging relational link prediction.

3.2. MED Latent Feature Relational Model

Now, we present the max-margin latent feature model
for link prediction. Based on the above discussions, we
use the same formulations as the most general LFRM
model. Specifically, we represent each entity using a
set of binary features and let Z to denote the binary
feature matrix, of which each row corresponds to an
entity and each column corresponds to a feature. The
entry Zik = 1 means that entity i has the feature k.

If the features Zi and Zj are given, we can naturally
define the latent discriminant function as

f(Zi, Zj ;Xij ,W, η) =ZiWZ⊤
j + η⊤Xij (4)

= Tr(WZ⊤
j Zi) + η⊤Xij ,

where W is a real-valued matrix and the entry Wkk′ is
the weight that affects the link from entity i to entity j
if entity i has feature k and entity j has feature k′. For
finite sized matrices Z with K columns, we can define
the prior as a Beta-Bernoulli process (Meeds et al.,
2007). In the infinite case, where Z has an infinite
number of columns, we adopt the Indian buffet pro-
cess (IBP) prior over the unbounded binary matrices
as described in (Griffiths & Ghahramani, 2006).

Let Θ = {W,η} be all the parameters. To make this
model Bayesian, we also treat Θ as random, with a
prior p0(Θ). To make prediction, we need to get rid of
the uncertainty of latent variables, and we define the
effective discriminant function as an expectation

f(Xij) = Ep(Z,Θ)[f(Zi, Zj ;Xij ,Θ)]. (5)

Then, the prediction rule is Ŷij = signf(Xij). Let I
be the set of pairs that have observed links. The hinge
loss of the expected prediction rule is

Rℓ(p(Z,Θ)) =
∑

(i,j)∈I
hℓ(Yijf(Xij)), (6)

Let p0(Z) be the prior on the latent feature matrix.
We define the MED latent feature relational model

(MedLFRM) as solving the problem

min
p(Z,Θ)∈P

KL(p(Z,Θ)∥p0(Z,Θ)) + CRℓ(p(Z,Θ)) (7)

In graphical models, it is well known that introducing
auxiliary variables could simplify the inference by con-
verting marginal dependence into conditional indepen-
dence. Here, we follow this principle and introduce ad-
ditional variables for the IBP prior p0(Z). One elegant
way to do that is the stick-breaking representation of
IBP (Teh et al., 2007). Specifically, let πk ∈ (0, 1) be
a parameter associated with column k of Z. The pa-
rameters π are generated by a stick-breaking process,
that is, π1 = ν1, and πk = νkπk−1 =

∏k
i=1 νi, where

νi ∼ Beta(α, 1). Given πk, each Znk in column k is
sampled independently from Bernoulli(πk). This pro-
cess results in a decreasing sequence of probabilities
πk, and the probability of seeing feature k decreases
exponentially with k on a finite dataset. With this
representation, we have the augmented MedLFRM

min
p(ν,Z,Θ)

KL(p(ν, Z,Θ)∥p0(ν, Z,Θ)) + CRℓ(p(Z,Θ)) (8)

where p0(ν, Z,Θ) = p0(ν)p(Z|ν)p0(Θ).

We make two comments about the above definition-
s. First, we have adopted the similar method as
in (Zhu et al., 2011a;b) to define the discriminant func-
tion using the expectation operator, instead of the tra-
ditional log-likelihood ratio of a Bayesian generative
model with latent variables (Jebara, 2002; Lewis et al.,
2006). The linearity of expectation makes our for-
mulation simpler than the one that could be achieved
by using a highly nonlinear log-likelihood ratio. Sec-
ond, although a likelihood model can be defined as
in (Zhu et al., 2011a;b) to perform hybrid learning, we
have avoided doing that because the sigmoid link likeli-
hood model in Eq. (1) is highly nonlinear and it could
make the hybrid problem hard to solve.

3.2.1. Inference with Truncated Mean-Field

The above problem has nice properties. For example,
Rℓ is a piece-wise linear functional of p and f is linear
of Θ. While sampling methods could lead to more
accurate results, variational methods are usually more
efficient and they also have an objective to monitor
the convergence behavior. Here, we introduce a simple
variational method to explore such properties, which
turns out to perform well in practice. Specifically, we
make the truncated mean-field assumption

p(ν, Z,Θ) = p(Θ)

K∏

k=1

p(νk|γk)(
N∏

i=1

p(Zik|ψik)), (9)

where p(νk|γk) = Beta(γk1, γk2), p(Zik|ψik) =
Bernoulli(ψik) and K is a truncation level. Then,
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problem (8) can be solved using an iterative procedure
that alternates between:

Solving for p(Θ): by fixing p(ν, Z), the subproblem
can be equivalently written in a constrained form

min
p(Θ),ξ

KL(p(Θ)∥p0(Θ)) + C
∑

(i,j)∈I
ξij (10)

∀(i, j) ∈ I, s.t. : Yij(Tr(E[W ]Z̄ij) + E[η]⊤Xij) ≥ ℓ− ξij ,

where Z̄ij = Ep[Z⊤
j Zi] is the expected latent features

and ξ = {ξij} are slack variables. By Lagrangian
duality theory, we have the optimal solution

p(Θ) ∝ p0(Θ) exp
{ ∑

(i,j)∈I
ωijYij(Tr(W Z̄ij) + η⊤Xij)

}
.

where ω = {ωij} are Lagrangian multipliers.

For the commonly used standard normal prior p0(Θ),
we have the optimal solution

p(Θ) = p(W )p(η) =
( ∏

kk′
N (Λkk′ , 1)

)( ∏

d

N (κd, 1)
)
,

where the means are Λkk′ =
∑

(i,j)∈I ωijYijE[ZikZjk′ ]

and κd =
∑

(i,j)∈I ωijYijX
d
ij . The dual problem is

max
ω

∑

(i,j)

ℓωij − 1

2
(∥Λ∥2

2 + ∥κ∥2
2)

s.t. : 0 ≤ ωij ≤ C, ∀(i, j) ∈ I.

Equivalently, the mean parameters Λ and κ can be
directly obtained by solving the primal problem

min
Λ,κ,ξ

1

2
(∥Λ∥2

2 + ∥κ∥2
2) + C

∑

(i,j)∈I
ξij (11)

∀(i, j) ∈ I, s.t. : Yij(Tr(ΛZ̄ij) + κ⊤Xij) ≥ ℓ− ξij ,

which is a binary classification SVM. We can solve it
with any existing high-performance solvers, such as
SVMLight or LibSVM.

Solving for p(ν, Z): by fixing p(Θ),the subproblem is

min
p(ν,Z)

KL(p(ν, Z)∥p0(ν, Z)) + CRℓ(p(Z,Θ)).

With the truncated mean-field assumption, we have

Tr(ΛZ̄ij) =

{
ψiΛψ

⊤
j if i ̸= j

ψiΛψ
⊤
i +

∑
k Λkkψik(1 − ψik) if i = j

We defer the evaluation of the KL-divergence to Ap-
pendix A. For p(ν), since the margin constraints are
not dependent on ν, we can get the same solutions as
in (Doshi-Velez et al., 2009).

We can solve for p(Z) using sub-gradient methods. Let

Ii = {j : j ̸= i, (i, j) ∈ I and Yijf(Xij) ≤ ℓ}
I′

i = {j : j ̸= i, (j, i) ∈ I and Yjif(Xji) ≤ ℓ}.

Due to the fact that ∂xhℓ(g(x)) equals to −∂xg(x) if
g(x) ≤ ℓ; 0 otherwise, we have the subgradient

∂ψik
Rℓ = −

∑

j∈Ii

YijΛk·ψ
⊤
j −

∑

j∈I′
i

YjiψjΛ·k

−I(Yiif(Xii) ≤ ℓ)Yii(Λkk(1 − ψik) + Λk·ψ
⊤
i ),

where Λk· (Λ·k) denotes the kth row (column) of Λ,
and I(·) is an indicator function. Let the subgradient
equal to 0, and we get the update equation

ψik = Φ
( k∑

j=1

Ep[log νj ] − Lνk + C∂ψik
Rℓ

)
. (12)

where Lνk is a lower bound of Ep[log(1−∏k
j=1 νj)] (See

Appendix A).

3.3. The Fully-Bayesian Model

MedLFRM has one regularization parameter C, which
normally plays an important role in large-margin clas-
sifiers, especially on sparse and imbalanced dataset-
s. To search a good value of C, cross-validation is
a typical approach, but it could be computationally
expensive by comparing many candidates. Under the
probabilistic formulation, we could provide an alter-
native way to control model complexity automatical-
ly, at least in part. Below, we present a fully-Bayesian
MedLFRM model by introducing appropriate priors
for the hyper-parameters.

Normal-Gamma Prior: For simplicity, we assume
that the prior is an isotropic normal distribution1

with common mean µ and precision τ

p0(Θ|µ, τ) =
∏

kk′
N (µ, τ−1)

∏

d

N (µ, τ−1). (13)

To complete the model, we use a Normal-Gamma
hyper-prior for µ and τ :

p0(µ|τ) = N (µ0, (n0τ)
−1), p0(τ) = G(

ν0
2
,

2

S0
), (14)

where G is the Gamma distribution, µ0 is the prior
mean, ν0 is the prior degrees of freedom, n0 is the
prior sample size, S0 is the prior sum of squared er-
rors. We denote this Normal-Gamma distribution by
NG(µ0, n0,

ν0
2 ,

2
S0

).

We note that the normal-Gamma prior has been used
in a marginalized form as a heavy-tailed prior for de-
riving sparse estimates (Griffin & Brown, 2010). Here,
we use it for automatically inferring the regulariza-
tion constants, which replace the role of C in prob-
lem (8). Also, our Bayesian approach is different from

1A more flexible prior will be the one that uses different
means and variances for different components of Θ. We
leave this extension for future work.
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the previous methods that were developed for estimat-
ing the hyper-parameters of SVM, by optimizing a log-
evidence (Gold et al., 2005) or an estimate of the gen-
eralization error (Chapelle et al., 2002).

Formally, with the above hierarchical prior, we define
Bayesian MedLFRM (BayesMedLFRM) as solving

min
p(ν,Z,µ,τ,Θ)

{
KL(p(ν, Z, µ, τ,Θ)∥p0(ν, Z, µ, τ,Θ))

+Rℓ(p(Z,Θ))

}

where p0(ν, Z, µ, τ,Θ) = p0(ν, Z)p0(µ, τ)p0(Θ|µ, τ).
For this problem, we can develop a similar iterative
algorithm as for MedLFRM. Specifically, the sub-step
of inferring p(ν, Z) does not change. For p(µ, τ,Θ),
the sub-problem (in equivalent constrained form) is

min
p(µ,τ,Θ),ξ

KL(p(µ, τ,Θ)∥p0(µ, τ,Θ)) +
∑

(i,j)∈I
ξij

∀(i, j) ∈ I, s.t. :Yij(Tr(E[W ]Z̄ij) + E[η]⊤Xij) ≥ ℓ− ξij ,

which is convex but intractable to solve directly.
Here, we make the mild mean-field assumption that
p(µ, τ,Θ) = p(µ, τ)p(Θ). Then, we iteratively solve
for p(Θ) and p(µ, τ), as summarized below. We defer
the details to Appendix B.

For p(Θ), we have the mean-field update equation

p(Wkk′) = N (Λkk′ , λ−1), p(ηd) = N (κd, λ
−1), (15)

where Λkk′ = E[µ] + λ−1
∑

(i,j)∈I ωijYijE[ZikZjk′ ],

κd = E[µ] + λ−1
∑

(i,j)∈I ωijYijX
d
ij , and λ = E[τ ].

Similar as in MedLFRM, the mean of Θ can be
obtained by solving the following problem

min
Λ,κ,ξ

λ

2
(∥Λ − E[µ]E∥2

2 + ∥κ− E[µ]e∥2
2) +

∑

(i,j)∈I
ξij

s.t. :Yij(Tr(ΛZ̄ij) + κ⊤Xij) ≥ ℓ− ξij , ∀(i, j) ∈ I,

where e is a K × 1 vector with all entries being
the unit 1 and E = ee⊤ is a K × K matrix. Let
Λ′ = Λ − E[µ]E and κ′ = κ − E[µ]e, we have the
transformed problem

min
Λ′,κ′,ξ

λ

2
(∥Λ′∥2

2 + ∥κ′∥2
2) +

∑

(i,j)∈I
ξij (16)

∀(i, j) ∈ I, s.t. :Yij(Tr(Λ′Z̄ij) + (κ′)⊤Xij) ≥ ℓij − ξij

where ℓij = ℓ−E[µ]Yij(Tr(EZ̄ij)+e⊤Xij) is the adap-
tive cost. The problem can be solved using an existing
binary SVM solver with slight changes to consider the
sample-varying costs. Comparing with problem (11),
we can see that BayesMedLFRM automatically infers
the regularization constant λ (or equivalently C), by
iteratively updating the posterior distribution p(τ), as
explained below.

The mean-field update equation for p(µ, τ) is

p(µ, τ) = NG(µ̃, ñ, ν̃, S̃), (17)

where µ̃= K2Λ̄+Dκ̄+n0µ0

K2+D+n0
, ñ=n0+K

2+D, ν̃=ν0+K
2+D,

S̃ = E[SW ] + E[Sη] + S0 +
n0(K

2(Λ̄ − µ)2 +D(κ̄− µ)2)

K2 +D + n0
,

and SW = ∥W − W̄E∥2
2, Sη = ∥η − η̄e∥2

2. From
p(µ, τ), we can compute the expectation and variance,
which are needed in updating p(Θ)

E[µ] = µ̃, E[τ ] =
ν̃

S̃
, and Var(µ) =

S̃

ñ(ν̃ − 2)
.

4. Experiments

Now, we provide empirical studies on several real
datasets to demonstrate the effectiveness of the max-
margin principle in learning latent feature relational
models, as well as the effectiveness of fully-Bayesian
methods in avoiding tuning the hyper-parameter C.

4.1. Multi-relational Datasets

We report the results of MedLFRM and BayesMedL-
FRM on the two benchmark datasets which were used
in (Miller et al., 2009) to evaluate the performance of
latent feature relational models. One dataset contains
54 relations of 14 countries along with 90 given features
of the countries, and the other one contains 26 kinship
relationships of 104 people in the Alyawarra tribe in
Central Australia. On average, there is a probability
of about 0.21 that a link exists for each relation on
the countries dataset, and the probability of a link is
about 0.04 for the kinship dataset. So, the kinship
dataset is extremely imbalanced (i.e., much more neg-
ative examples than positive examples). To deal with
this imbalance in learning max-margin MedLFRM, we
use different regularization constants for the positive
(C+) and negative (C−) examples. We refer the read-
ers to (Akbani et al., 2004) for other possible choices.
In our experiments, we set C+ = 10C− = 10C for sim-
plicity and tune the parameter C. For BayesMedLFR-
M, this equality is held during all iterations.

Depending on the input data, the latent features
might not have interpretable meanings (Miller et al.,
2009). In the experiments, we focus on the effective-
ness of max-margin learning in learning latent feature
relational models. We also compare with two well-
established class-based algorithms – IRM (i.e., infinite
relational model) (Kemp et al., 2006) and MMSB (i.e.,
mixed membership stochastic block) (Airoldi et al.,
2008), both of which were tested in (Miller et al.,
2009). In order to compare with their reported results,
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Table 1. AUC on the countries and kinship datasets. Bold indicates the best performance.

Countries single Countries global Alyawarra single Alyawarra global

SVM 0.8180 ± 0.0000 0.8180 ± 0.0000 — —
LR 0.8139 ± 0.0000 0.8139 ± 0.0000 — —

MMSB 0.8212 ± 0.0032 0.8643 ± 0.0077 0.9005 ± 0.0022 0.9143 ± 0.0097
IRM 0.8423 ± 0.0034 0.8500 ± 0.0033 0.9310 ± 0.0023 0.8943 ± 0.3000

LFRM rand 0.8529 ± 0.0037 0.7067 ± 0.0534 0.9443 ± 0.0018 0.7127 ± 0.0300
LFRM w/ IRM 0.8521 ± 0.0035 0.8772 ± 0.0075 0.9346 ± 0.0013 0.9183 ± 0.0108

MedLFRM 0.9173 ± 0.0067 0.9255 ± 0.0076 0.9552 ± 0.0065 0.9616 ± 0.0045
BayesMedLFRM 0.9178 ± 0.0045 0.9260 ± 0.0023 0.9547 ± 0.0028 0.9600 ± 0.0016

we use the same setup for the experiments. Specifical-
ly, for each dataset, we held out 20% of the data during
training and report the AUC (i.e., area under the Re-
ceiver Operating Characteristic or ROC curve) for the
held out data. As in (Miller et al., 2009), we consider
two settings – “global” and “single”. For the global
setting, we infer a single set of latent features for all
relations; and for the single setting, we infer indepen-
dent latent features for each relation and the overall
AUC is an average of the AUC scores of all relations.

For MedLFRM and BayesMedLFRM, we randomly
initialize the posterior mean of W uniformly in the
interval [0, 0.1]; initialize ψ to uniform (i.e., 0.5) cor-
rupted by a random noise distributed uniformly at
the interval [0, 0.001]; and initialize the mean of η
to be zero. All the following results of MedLFRM
and BayesMedLFRM are averages over 5 randomly ini-
tialized runs, again similar as in (Miller et al., 2009).
For MedLFRM, the hyper-parameter C is selected via
cross-validation during training. For BayesMedLFR-
M, we use a very weak hyper-prior by setting µ0 = 0,
n0 = 1, ν0 = 2, and S0 = 1. We set the cost parameter
ℓ = 9 in all experiments.

Table 1 shows the results. We can see that in
both settings and on both datasets, the max-margin
based latent feature relational model MedLFRM sig-
nificantly outperforms LFRM that uses a likelihood-
based approach with MCMC sampling. Comparing
BayesMedLFRM and MedLFRM, we can see that us-
ing the fully-Bayesian technique with a simple Normal-
Gamma hierarchical prior, we can avoid tuning the
regularization constant C, without sacrificing the link
prediction performance. To see the effectiveness of la-
tent feature models, we also report the performance of
logistic regression (LR) and linear SVM on the coun-
tries dataset, which has input features. We can see
that a latent feature or latent class model generally
outperforms the methods that are built on raw input
features for this particular dataset.

Figure 1 shows the performance of MedLFRM on the
countries dataset when using and not using input fea-
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Figure 1. AUC scores of MedLFRM with and without in-
put features on the countries dataset.

tures. We consider the global setting. Here, we also
study the effects of truncation level K. We can see
that in general using input features can boost the per-
formance. Moreover, even if using latent features only,
MedLFRM can still achieve very competitive perfor-
mance, better than the performance of the likelihood-
based LFRM that uses both latent features and input
features. Finally, it is sufficient to get good perfor-
mance by setting the truncation level K to be larger
than 40. We set K to be 50 in the experiments.

4.2. Predicting NIPS coauthorship

The second experiments are done on the coauthorship
data constructed from the NIPS dataset which con-
tains a list of all papers and authors from NIPS 1-
17. To compare with LFRM, we use the same dataset
as in (Miller et al., 2009), which contains 234 authors
who had published with the most other people2. To
better fit the symmetric coauthor link data, we restrict
our models to be symmetric, i.e., the posterior mean
of W is a symmetric matrix, as in (Miller et al., 2009).
For MedLFRM and BayesMedLFRM, this symmetry
constraint can be easily satisfied when solving the
SVM problems (11) and (16). To see the effects of the

2The average probability of forming a link on this data
is about 0.02, again very imbalanced. We tried the same s-
trategy as for the kinship dataset by using different regular-
ization constants. The results are not significantly different
from those by using a common C. K = 80 is sufficient for
these experiments.
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Figure 2. (a-b) Objective values and test AUC during iterations for MedLRFM; and (c-d) objective values and test AUC
during iterations for Bayesian MedLRFM on the countries dataset with 5 randomly initialized runs.
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Figure 3. (a-b) Objective values and test AUC during iterations for MedLRFM; and (c-d) objective values and test AUC
during iterations for Bayesian MedLRFM on the kinship dataset with 5 randomly initialized runs.

Table 2. AUC on the NIPS coauthorship data. Bold indi-
cates the best performance.

MMSB 0.8705 ± 0.0130

IRM 0.8906 ± —
LFRM rand 0.9466 ± —

LFRM w/ IRM 0.9509 ± —
MedLFRM 0.9642 ± 0.0026

BayesMedLFRM 0.9636 ± 0.0036
Asymmetric MedLFRM 0.9140 ± 0.0130

Asymmetric BayesMedLFRM 0.9146 ± 0.0047

symmetry constraint, we also report the results of the
asymmetric MedLFRM and asymmetric BayesMedL-
FRM, which do not impose the symmetry constrain-
t on the posterior mean of W . As in (Miller et al.,
2009), we train the model on 80% of the data and use
the remaining data for test.

Table 2 shows the results, where the results of LFR-
M, IRM and MMSB were reported in (Miller et al.,
2009). Again, we can see that using the discrimina-
tive max-margin training, the symmetric MedLFRM
and BayesMedLFRM outperform all other likelihood-
based methods, using either latent feature or latent
class models; and the fully-Bayesian MedLFRM model
performs comparably with MedLFRM while avoiding
tuning the hyper-parameter C. Finally, the asymmet-
ric MedLFRM and BayesMedLFRM models perform
much worse than their symmetric counterpart models,
but still better than the latent class models.

4.3. Stability and Running Time

Figure 2 shows the change of the objective function
as well as the change of the AUC scores on test da-
ta of the countries dataset during the iterations for
both MedLFRM and BayesMedLFRM. For MedLFR-
M, we report the results with the best C selected via
cross-validation. We can see that the variational infer-
ence algorithms for both models converge quickly to a
particular region. Since we use sub-gradient descent
to update the distribution of Z and the subproblems
of solving for p(Θ) can in practice only be approxi-
mately solved, the objective function has some distur-
bance, but within a relatively very small interval. For
the AUC scores, we have similar observations, name-
ly, within several iterations, we could have very good
link prediction performance. The disturbance is again
maintained within a small region, which is reasonable
for our approximate inference algorithms. Comparing
the two models, we can see that BayesMedLFRM has
similar behaviors as MedLFRM, which demonstrates
the effectiveness of using fully-Bayesian techniques to
automatically learn the hyper-parameter C. Figure 3
presents the results on the kinship dataset, from which
we have the same observations. We omit the results
on the NIPS dataset for saving space.

Finally, Figure 4 shows the training time and test time
of MedLFRM and Bayesian MedLFRM on each of the
three datasets. For MedLFRM, we show the single
run with the optimum parameter C, selected via inner
cross-validation. We can see that using Bayesian infer-



Max-Margin Nonparametric Latent Feature Models for Link Prediction

Contries Kinship NIPS
100

101

102

103

104

105

Tr
ai

n−
Ti

m
e 

(s
ec

)

Countries Kinship NIPS
10−2

10−1

100

101

102

Te
st

−T
im

e 
(s

ec
)

MedLFRM BayesMedLFRM

Figure 4. Training and test time on different datasets.

ence, the running time does not increase much, being
generally comparable with that of MedLFRM. But s-
ince MedLFRM needs to select the hyper-parameter
C, it will need much more time than BayesMedLFRM
to finish the entire training on a single dataset.

5. Conclusions and Future Work

We have presented a discriminative max-margin latent
feature relational model for link prediction. Under a
Bayesian-style max-margin formulation, our work nat-
urally integrates the ideas of Bayesian nonparametric-
s to automatically resolve the unknown dimensional-
ity of a latent social space. Furthermore, we present
a fully-Bayesian formulation, which can avoid tuning
regularization constants. We developed efficient varia-
tional methods to perform posterior inference. Empir-
ical results on several real datasets appear to demon-
strate the benefits inherited from both max-margin
learning and fully-Bayesian methods.

Our current analysis is focusing on small static net-
work snapshots. For future work, we are interested in
learning more flexible latent feature relational models
to deal with large dynamic networks and reveal more
subtle network evolution patterns. We are also inter-
ested in developing Monte Carlo sampling methods,
which have been widely used in previous latent fea-
ture relational models.
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