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Abstract

We propose a new learning method for het-
erogeneous domain adaptation (HDA), in
which the data from the source domain and
the target domain are represented by hetero-
geneous features with different dimensions.
Using two different projection matrices, we
first transform the data from two domains
into a common subspace in order to measure
the similarity between the data from two
domains. We then propose two new feature
mapping functions to augment the trans-
formed data with their original features and
zeros. The existing learning methods (e.g.,
SVM and SVR) can be readily incorporated
with our newly proposed augmented feature
representations to effectively utilize the da-
ta from both domains for HDA. Using the
hinge loss function in SVM as an example,
we introduce the detailed objective function
in our method called Heterogeneous Fea-
ture Augmentation (HFA) for a linear case
and also describe its kernelization in order
to efficiently cope with the data with very
high dimensions. Moreover, we also devel-
op an alternating optimization algorithm to
effectively solve the nontrivial optimization
problem in our HFA method. Comprehen-
sive experiments on two benchmark datasets
clearly demonstrate that HFA outperforms
the existing HDA methods.

1. Introduction

In real-world applications, it is often expensive and
time-consuming to collect the labeled data. Transfer
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learning (a.k.a., domain adaptation), as a new machine
learning strategy, has attracted growing attention
because it can learn robust classifiers with very few
labeled data from the target domain by leveraging
a large amount of labeled data from other existing
domains (a.k.a., source domains).

Domain adaptation methods have been successfully
used for different research fields such as natural lan-
guage processing and computer vision (Blitzer et al.,
2006; 2007; Daumé III, 2007; Duan et al., 2010;
2012b;a; Wu & Dietterich, 2004). However, all those
methods assume that the data from different domains
are represented by the same type of features with the
same dimension. Thus, they cannot deal with the
problem where the dimensions of data from the source
and target domains are different, which is known as
heterogeneous domain adaptation (HDA) (Dai et al.,
2009; Yang et al., 2009).

In the literature, a few works have been proposed
for the HDA problem. Dai et al. (2009) proposed
to learn a feature translator between the source
and target domains by assuming that the data from
both domains share co-occurrence attributes (i.e.,
text data). The same assumption was also used
in (Yang et al., 2009; Zhu et al., 2011) for text-aid
image clustering and classification. However, this
assumption may not be well satisfied in many appli-
cations such as the object recognition task where only
visual features are used. Based on structural corre-
spondence learning (Blitzer et al., 2006), two method-
s (Prettenhofer & Stein, 2010; Wei & Pal, 2010) were
recently proposed to extract the so-called pivot fea-
tures from the source and target domains, which is
specifically designed for the cross-language text classi-
fication task. And these pivot features are constructed
by text words which have explicit semantic meanings.

For more general HDA tasks, Shi et al. (2010) proposed
a method called Heterogeneous Spectral Mapping
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(HeMap) to discover a common feature subspace by
learning two feature mapping matrices as well as the
optimal projection of the data from both domains, in
which the valuable label information is not exploited.
Harel and Mannor (2011) learned rotation matrices to
match source data distributions to that of the target
domain. However, this method does not use the valu-
able training labels, either. Wang et al. (2011) used the
class labels of the training data to learn the manifold
alignment by simultaneously maximizing the intra-
domain similarity and the inter-domain dissimilarity.
By kernelizing the method in (Saenko et al., 2010),
Kulis et al. (2011) proposed to learn an asymmetric
kernel transformation to transfer feature knowledge
between the data from the source and target domains.

In this work, we propose a new method called Het-
erogeneous Feature Augmentation (HFA) for heteroge-
neous domain adaptation. Considering the data from
different domains are represented by features with
different dimensions, we first transform the data from
the source and target domains into a common subspace
by using two different projection matrices P and Q.
Then, we propose two new feature mapping functions
to augment the transformed data with their original
features and zeros. With the new augmented feature
representations, we propose to learn the projection
matrices P andQ by using the standard SVM with the
hinge loss function in a linear case. We also describe
its kernelization in order to efficiently cope with the
data with very high dimension. To simplify the
nontrivial optimization problem in HFA, we introduce
an intermediate variable H called as a transformation
metric to combine P and Q. We then develop an
alternating optimization algorithm to simultaneously
solve for the dual problem of SVM and the optimal
transformation metric H.

We summarize the main contributions of this work:

• The newly proposed augmented features in our
HFA method can be readily incorporated into dif-
ferent methods (e.g., SVM and SVR) to effectively
utilize the patterns from two domains, making
them applicable to the HDA task.

• We simplify the nontrivial optimization problem
by defining a transformation metric H and de-
velop an effective alternating optimization algo-
rithm. With the introduction of H, we do not
explicitly solve for P and Q, which makes the
common subspace invisible to us.

• Promising results on two benchmark datasets
clearly demonstrate the effectiveness of HFA for
object recognition and text categorization.

2. Kernel Learning for Heterogeneous
Domain Adaptation

In the remainder of this paper, we use the superscript
′ to denote the transpose of a vector or a matrix. We
define In as the n× n identity matrix and On×m as a
n×m matrix of all zeros. We also define 0n,1n ∈ Rn

as the n × 1 column vectors of all zeros and all ones,
respectively. The inequality a ≤ b means that ai ≤ bi
for i = 1, . . . , n. Moreover, a ◦ b denotes the element-
wise product between vectors a and b, i.e., a ◦ b =
[a1b1, . . . , anbn]

′. And H ≽ 0 means that the matrix
H is positive semidefinite.

In this work, we assume there are only one source
domain and one target domain. For some given class,
we are provided with a set of labeled training samples
{ (xs

i , y
s
i )|

ns

i=1} from the source domain as well as a
limited number of labeled samples { (xt

i, y
t
i)|

nt

i=1} from
the target domain, where ysi and yti are the labels
of the samples xs

i and xt
i, respectively, and ysi , y

t
i ∈

{1,−1}. The dimensions of xs
i and xt

i are ds and dt,
respectively. Note that in the HDA problem, ds ̸= dt.

2.1. Heterogeneous Feature Augmentation

Daume III (2007) proposed Feature Replication (FR)
to augment the original feature space Rd into a larger
space R3d by replicating the source and target data for
homogeneous domain adaptation. Specifically, for any
data point x ∈ Rd, the feature mapping functions φs

and φt for the source and target domains are defined
as φs(x) = [x′,x′,0d]

′ and φt(x) = [x′,0d,x
′]′. Note

that it is not meaningful to directly use the method
in (Daumé III, 2007) for the HDA task by simply
padding zeros to make the dimensions of the data from
two domains become the same, because there would
be no correspondences between the heterogeneous fea-
tures in this case.

To effectively utilize the heterogeneous features from
two domains, we first introduce a common subspace
for the source and target data for our HDA task, in
which the heterogeneous features from two domains
can be compared. We define the common subspace as
Rdc , where any source sample xs and target sample
xt can be projected onto it by using two projection
matrices P ∈ Rdc×ds and Q ∈ Rdc×dt , respective-
ly. Note that promising results have been shown by
incorporating original features into feature augmenta-
tion (Daumé III, 2007; Pan et al., 2010) to enhance
the similarities between data from the same domain.
Motivated by (Daumé III, 2007; Pan et al., 2010), we
also incorporate original features in this work and
then augment any source and target domain samples
xs ∈ Rds and xt ∈ Rdt by using our newly proposed
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feature mapping functions φs and φt as follows:

φs(x
s) =

Pxs

xs

0dt

 and φt(x
t) =

Qxt

0ds

xt

 . (1)

After introducingP andQ, the data from two domains
can be readily compared in the common subspace. It is
worth mentioning that our newly proposed augmented
features for the source and target samples in (1) can
be readily incorporated into different methods (e.g.,
SVM and SVR), making these methods applicable for
the HDA problem.

In the next subsection, we take SVM with the hinge
loss as a showcase of our Heterogeneous Feature
Augmentation method (HFA for short). As it is
nontrivial to solve for the projection matrices P and Q
in our learning problem, we simplify the optimization
problem by introducing an intermediate variable H =
[P,Q]′[P,Q] such that we only need to solve for H
rather than P and Q. In this way, the common
subspace becomes invisible to us, which is therefore
referred to as latent common subspace in this work.

2.2. Proposed Method

We define feature weight vector w = [w′
c,w

′
s,w

′
t]
′

for the augmented feature space, where wc,ws and
wt are also weight vectors that are defined for the
common subspace, the source domain and the target
domain, respectively. We then propose to learn the
projection matrices P and Q as well as the weight
vector w by minimizing the structural risk functional
of SVM. Formally, we present the formulation of our
HFA method for the HDA problem as follows:

min
P,Q

min
w,b,ξsi ,ξ

t
i

1

2
∥w∥2 + C

(
ns∑
i=1

ξsi +

nt∑
i=1

ξti

)
, (2)

s.t. ysi (w
′φs(x

s
i ) + b) ≥ 1− ξsi , ξ

s
i ≥ 0; (3)

yti(w
′φt(x

t
i) + b) ≥ 1− ξti , ξ

t
i ≥ 0; (4)

∥P∥2F ≤ λp, ∥Q∥2F ≤ λq,

where C > 0 is a regularization parameter that regu-
lates the loss on the training samples, and λp, λq > 0
are predefined to control the complexities of P and Q,
respectively.

To solve (2), we first derive the dual form of the inner
optimization problem in (2) with respect to w, b, ξsi
and ξti . Specifically, we introduce dual variables
{αs

i |
ns
i=1} and {αt

i|
nt
i=1} for the constraints in (3) and

(4), respectively. By setting the derivatives of the
Lagrangian of (2) with respect to w, b, ξsi and ξti to
zeros, we obtain the Karush-Kuhn-Tucker (KKT) con-
ditions as: w =

∑ns

i=1 α
s
i y

s
iφs(x

s
i ) +

∑nt

i=1 α
t
iy

t
iφt(x

t
i),∑ns

i=1 α
s
i y

s
i +

∑nt

i=1 α
t
iy

t
i = 0 and 0 ≤ αs

i , α
t
i ≤ C.

With the KKT conditions, we arrive at the alternative
optimization problem as follows:

min
P,Q

max
α

1′
ns+nt

α− 1

2
(α ◦ y)′KP,Q(α ◦ y), (5)

s.t. y′α = 0, 0ns+nt ≤ α ≤ C1ns+nt ,

∥P∥2F ≤ λp, ∥Q∥2F ≤ λq,

where α = [αs
1, . . . , α

s
ns
, αt

1, . . . , α
t
nt
]′ is

a vector of the dual variables, y =
[ys1, . . . , y

s
ns
, yt1, . . . , y

t
nt
]′ is a label vector,

KP,Q =

[
X′

s(Ins +P′P)Xs X′
sP

′QXt

X′
tQ

′PXs X′
t(Int +Q′Q)Xt

]
is the derived kernel matrix.

A straightforward solution to the optimization prob-
lem in (5) would be to iteratively update one of the
variables α,P and Q by fixing the others. However,
the dimension of the common subspace (i.e., dc) must
be given beforehand in this case, and it is nontrivial
to determine the optimal dc. Observing that in the
kernel matrix KP,Q in (5), the projection matrices P
and Q always appear in the forms of P′P,P′Q,Q′P
and Q′Q, we then replace these multiplications by
defining an intermediate variable H = [P,Q]′[P,Q] ∈
R(ds+dt)×(ds+dt). Obviously, H is positive semidefi-
nite, i.e., H ≽ 0. With the introduction of H, we can
throw away the parameter dc. Moreover, the common
subspace becomes latent, because we do not need to
explicitly solve for P and Q any more.

With the definition of H, we convert the optimization
problem in (5) to the final formulation of our proposed
HFA method as follows:

min
H≽0

max
α

1′
ns+nt

α− 1

2
(α ◦ y)′KH(α ◦ y), (6)

s.t. y′α = 0, 0ns+nt
≤ α ≤ C1ns+nt , trace(H) ≤ λ,

where KH =

[
X′

sXs + L′
sHLs L′

sHLt

L′
tHLs X′

tXt + L′
tHLt

]
,

Ls =

[
Ids

Odt×ds

]
Xs, Lt =

[
Ods×dt

Idt

]
Xt and λ =

λp + λq. Note that given α, the optimization problem
in (6) becomes the following Semidefinite Program-
ming (SDP) problem (Vandenberghe & Boyd, 1996)
by defining β = α ◦ y:

min
H≽0

−1

2
β′KHβ, s.t. trace(H) ≤ λ. (7)

Thus far, we have successfully converted our original
HDA problem, which learns two projection matri-
ces P and Q, into a new problem of learning a
transformation metric H. We emphasize that this
new problem has two main advantages: i) it avoids
determining the optimal dimension of the common
subspace beforehand; and ii) as the common subspace
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becomes latent after the introduction of H, we only
have to optimize α and H for our proposed method.

Discussion: There are two major limitations to the
current formulation of HFA in (6): i) The transforma-
tion metric H is linear, which may not be effective
for some tasks. ii) The size of H grows with the
dimensions of the source and target data (i.e., ds and
dt). Therefore, it is computationally infeasible to learn
the linear metric H in the SDP problem (7) for some
real-world applications (e.g., text categorization) with
very high dimensional data. In order to effectively deal
with high dimensional data, inspired by (Kulis et al.,
2011), in the next subsection we will apply kerneliza-
tion to the data from the source and target domains
and show that (7) can be solved in a kernel space by
learning a nonlinear transformation metric with its size
independent of the feature dimension.

2.3. Nonlinear Feature Transformation

Note that the size of the linear transformation metric
H is proportional to the feature dimension, and thus
it is computationally infeasible for data with a very
high dimension. In this section, we will show that
by applying kernelization, the transformation metric is
independent of the feature dimension and grows only
with the number of training data.

As any arbitrary feature mapping function ϕ can
be used to derive a corresponding kernel space for
the source and target data, we can replace their
linear inner products with some kernel function k.
Let us denote Φs = [ϕ(xs

1), . . . , ϕ(x
s
ns
)] and Φt =

[ϕ(xt
1), . . . , ϕ(x

t
nt
)] as the matrices of the source and

target training data after mapping them into a non-
linear feature space by using ϕ, respectively. We also
define Ks = Φ′

sΦs and Kt = Φ′
tΦt as the kernel

matrices of the training data from the source and
target domains, respectively. Moreover, we denote the
corresponding projection matrices for the source and
target data respectively as Pϕ and Qϕ.

Theorem 1. Assume Ks and Kt be positive definite.
There exist two matrices P̃ ∈ Rdc×ns and Q̃ ∈ Rdc×nt

such that any feasible solution Pϕ and Qϕ to the
kernelized version of (2) can be written in the form of

Pϕ = P̃K
−1/2
s Φ′

s and Qϕ = Q̃K
−1/2
t Φ′

t, respectively.

Proof. The proof can be analogously derived as for
Lemma 3.1 in (Kulis et al., 2011).

With Theorem 1, it is easy to verify that ∥P̃∥2F =
∥Pϕ∥2F ≤ λp and ∥Q̃∥2F = ∥Qϕ∥2F ≤ λq. Here,
we apply the same trick as in Section 2.2 to avoid
determining dc for the latent common subspace. That
is, we define the nonlinear transformation metric H̃ =
[P̃, Q̃]′[P̃, Q̃] ∈ R(ns+nt)×(ns+nt), and thus the size of

Algorithm 1 Heterogeneous Feature Augmentation

Input: Labeled source samples { (xs
i , y

s
i )|

ns

i=1} and
labeled target samples { (xt

i, y
t
i)|

nt

i=1}
Initialization: τ ← 1, H̃[τ ] ← λ

ns+nt
Ins+nt

With H̃[τ ], solve for α[τ ] in the inner optimization
problem of (8) by using SVM;
while τ < Tmax do

Update H̃[τ+1] by using the projected gradient
descent method with (10);
With H̃[τ+1], solve for α[τ+1] in the inner optimiza-
tion problem of (8) by using SVM;
if the objective value of (8) converges then

break;
end
τ ← τ + 1;

end

Output: H̃[τ ] and α[τ ]

H̃ is independent of the feature dimension. We also
have H̃ ≽ 0 and trace(H̃) ≤ λp + λq = λ.

Therefore, the formulation of our proposed HFA
method after applying kernelization becomes:

min
H̃≽0

max
α

1′
ns+nt

α− 1

2
(α ◦ y)′KH̃(α ◦ y), (8)

s.t. y′α = 0, 0ns+nt ≤ α ≤ C1ns+nt , trace(H̃) ≤ λ,

where KH̃ =

[
Ks + L̃′

sH̃L̃s L̃′
sH̃L̃t

L̃′
tH̃L̃s Kt + L̃′

tH̃L̃t

]
, L̃s =[

Ins

Ont×ns

]
K

1/2
s and L̃t =

[
Ons×nt

Int

]
K

1/2
t . For a given

α, we also arrive at an SDP problem as follows by
defining β = α ◦ y:

min
H̃≽0

−1

2
β′KH̃β, s.t. trace(H̃) ≤ λ. (9)

2.4. Detailed Solution

For our proposed HFA method, we develop an alter-
nating optimization algorithm by iteratively updating
α and H̃ to effectively solve the problem in (8).
Specifically, when updating α at the τ -th iteration,
we fix H̃[τ ] and solve for α[τ ] in (8) by using the
standard SVM with the kernel matrix KH̃[τ]

. While

updating H̃, we fix α[τ ] and solve for H̃[τ+1] via SDP
optimization in (9). The optimization procedure will
be terminated when the value of the objective function
in (8) converges.

In order to efficiently solve the SDP problem in (9),
we also develop a simple projected gradient descent
method to update H̃. Let us define βs = [β1, . . . , βns ]

′

and βt = [βns+1, . . . , βns+nt ]
′. Denoting G(H̃) as the
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objective function of (9), we first obtain the derivative
of G(H̃) with respect to H̃ as follows:

∂G

∂H̃
= −1

2
(L̃sβs + L̃tβt)(L̃sβs + L̃tβt)

′.

Then at the τ -th iteration, H̃ will be updated by using
the following equation:

H̃[τ+1] = H̃[τ ] − η[τ ]
∂G

∂H̃

∣∣∣
H̃=H̃[τ]

, (10)

where η[τ ] is the step size at the τ -th iteration,
which can be found by using the standard line search
method (Boyd & Vandenberghe, 2004).

We summarize the proposed alternating optimization
algorithm for HFA in Algorithm 1. After obtaining
the optimal solution α and H̃ to (8), we can predict
any test data point x from the target domain by using
the following target decision function:

f(x) = w′ϕ(x) + b

=

((
β′
sL̃

′
s+β′

tL̃
′
t

)
H̃

[
Ons×nt

Int

]
+β′

t

)
kt+b,(11)

where kt = [k(xt
1,x), . . . , k(x

t
nt
,x)]′ and k(xi,xj) =

ϕ(xi)
′ϕ(xj) is a predefined kernel function for two data

samples xi and xj with the same feature dimension.

3. Related Work

The pioneer works (Dai et al., 2009;
Prettenhofer & Stein, 2010; Wei & Pal, 2010;
Yang et al., 2009; Zhu et al., 2011) are limited to some
specific HDA tasks, because they required additional
information to transfer the source knowledge to the
target domain.

To handle more general HDA tasks, other methods
have been proposed to explicitly discover a com-
mon subspace (Shi et al., 2010; Wang & Mahadevan,
2011). Shi et al. (2010) proposed to learn feature
mapping matrices without using the valuable data
label information. While Wang et al. (2011) used the
class labels of data, they assumed the data should have
a manifold structure. Such manifold assumption may
not exist in real-world applications.

Recently, Kulis et al. (2011) proposed a nonlinear
metric learning method to learn an asymmetric feature
transformation for the source and target data with
high dimensions. And the learned transformation
metric is universal for all classes. However, when there
exist many classes, a universal metric may not be suf-
ficiently good for feature transformation between data
from all classes. In contrast, our method incorporates
the proposed augmented features into SVM to learn
an individual model for each class.

Table 1. Summarization of the object dataset with 31
categories.

Domain # dim # total imgs
# training imgs
per category

Source
amazon 800 2,813 20
webcam 800 795 8

Target dslr 600 498 3

4. Experiments

In this section, we evaluate our proposed HFA method
for object recognition and multilingual text catego-
rization. We focus on the heterogeneous domain
adaptation problem where there exist only one source
domain and one target domain in which only a limited
number of labeled target training samples are avail-
able. Moreover, we assume that the test data from the
target domain are unseen during the training phase.

4.1. Setup

Object recognition: We employ a recently released
dataset1 used in (Saenko et al., 2010; Kulis et al.,
2011) for this task. This dataset contains a total of
4106 images with 31 categories from three sources:
amazon (web images downloaded from an online mer-
chant), dslr (high-resolution images taken from a
digital DLR camera) and webcam (low-resolution im-
ages taken from a web camera). We follow the same
protocols in the previous work (Kulis et al., 2011).
Specifically, SURF features (Bay et al., 2006) are ex-
tracted for all the images. The images from amazon

and webcam are clustered into 800 visual words by
using k-means. After vector quantization, each image
is represented as a 800 dimensional histogram feature.
Similarly, we represented each image from dslr as a
600-dimensional histogram feature.

In the experiments, dslr is used as the target do-
main, while amazon and webcam are considered as
two individual source domains. We strictly follow
the setting in (Saenko et al., 2010; Kulis et al., 2011)
and randomly select 20 (resp., 8) training images
per category for the source domain amazon (resp.,
webcam). For the target domain dslr, 3 training
images are randomly selected from each category, and
the remaining dslr images are used for testing. See
Table 1 for a summarization of this dataset.

Text categorization: We use the Reuters multilin-
gual dataset2 (Amini et al., 2009), which is collected
by sampling parts of the Reuters RCV1 and RCV2
collections. It contains about 11K newswire articles

1http://www.icsi.berkeley.edu/~saenko/projects.
html

2http://multilingreuters.iit.nrc.ca/
ReutersMultiLingualMultiView.htm
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Table 2. Summarization of the Reuters multilingual
dataset with 6 classes.

Domain
# dim

# total docs
# training docs

after PCA per class

Source

English 1,131 18,758 100
French 1,230 26,648 100
German 1,417 29,953 100
Italian 1,041 24,039 100

Target Spanish 807 11,547 5/7/10/15/20

from 6 classes in 5 languages (i.e., English, French,
German, Italian and Spanish). While each document
was also translated into the other four languages in
this dataset, we do not use the translated documents
in this work. All documents are represented as a bag
of words and the TF-IDF are extracted.

We take Spanish as the target domain in the experi-
ments and other four languages as individual source
domains. For each class, we randomly sample 100
training documents from the source domain and m
training documents from the target domain, where
m = 5, 7, 10, 15 and 20. And the remaining doc-
uments in the target domain are used as the test
data. Note that the method (Wang & Mahadevan,
2011) cannot handle the original high dimensional
TF-IDF features. In order to compare our HFA
method with theirs (Wang & Mahadevan, 2011), for
documents written in each language, we perform PCA
with 60% energy preserved on the TF-IDF features.
We summarize this dataset in Table 2.

Baselines: As the source and target data have differ-
ent dimensions, they cannot be directly combined to
train any classifiers for the target domain. Considering
the number of training samples is much lower than
the feature dimension, we compare our HFA method
by applying kernelization with a number of baseline
algorithms listed below:

• SVM T: It utilizes the labeled samples only
from the target domain to train a standard SVM
classifier for each category/class. Note it is not
reported in (Kulis et al., 2011).

• KCCA (Shawe-Taylor & Cristianini, 2004):
It learns a common feature subspace by maximiz-
ing the correlation between the source and target
training data without using any label informa-
tion. The data from both domains are projected
into the common subspace. Note that KCCA
was originally proposed for multi-view learning.
Following (Kulis et al., 2011), we also report its
results in this work.

• HeMap (Shi et al., 2010): It finds the projec-
tion matrices for a common feature subspace as

well as learns the optimal projected data from
both domains. But the label information of
training data from both domains is not used.

• DAMA (Wang & Mahadevan, 2011): It
learns a common feature subspace by utilizing the
class labels of the source and target training data
for manifold alignment.

• ARC-t (Kulis et al., 2011): It uses the labeled
training data from both domains to learn an
asymmetric transformation metric between the
different feature spaces.

For KCCA, HeMap and DAMA, after learning the
projection matrices, we apply SVM to train their final
classifiers by using the projected training data from
both domains for a given category/class. For ARC-t,
we construct the kernel matrix based on the learned
asymmetric transformation metric, and then SVM is
also applied to train its final classifier. For all methods,
we set the regularization parameter C = 1 in SVM
and use the RBF kernel for fair comparison. As we
only have a very limited number of labeled training
samples in the target domain, the cross-validation
technique cannot be effectively employed to determine
the optimal parameters. Instead, for our HFA method,
we empirically fix the parameter λ as 100 for the object
dataset and 1 for the Reuters multilingual dataset. For
other methods, we validate all their parameters chosen
from {0.01, 0.1, 1, 10, 100} based on the test data and
report their best results.

Evaluation metric: Following (Kulis et al., 2011),
for each method we measure the classification accuracy
over all categories/classes on both datasets. We
randomly sample the training data for ten times and
report the mean classification accuracies of all methods
over the ten rounds of experiments.

4.2. Classification Results

Object recognition: We report the mean and s-
tandard deviations of classification accuracies for all
methods on the object dataset (Saenko et al., 2010)
in Table 3. From the results, SVM T outperforms
KCCA and HeMap by using only 3 labeled training
samples from the target domain. The explanation
is that KCCA and HeMap do not utilize the label
information of the target training data to learn the
feature mapping matrices. As a result, the learned
common subspace is not sufficient to preserve a similar
data structure as in the original feature spaces of
the source and target data, which results in poor
classification performances. DAMA performs only
slightly better that SVM T, possibly due to the lack of
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Table 3. Means and standard deviations of classification accuracies (%) of all methods on the object dataset by using
3 labeled training samples per class from the target domain dslr. Results in boldface are significantly better than the
others, judged by the t-test with a significance level at 0.05. For KCCA and ARC-t, the numbers in the parentheses are
the results reported in (Kulis et al., 2011).

Source Domain SVM T KCCA HeMap DAMA ARC-t HFA
amazon

52.9± 3.1
46.3± 2.7 (51.0) 42.8± 2.4 53.3± 2.3 53.1± 2.4 (53.2) 55.4± 2.8

webcam 46.7± 2.8 42.2± 2.6 53.2± 3.2 53.0± 3.2 54.3± 3.7

Table 4. Means and standard deviations of classification accuracies (%) of all methods on the Reuters multilingual dataset
by using 10 labeled training samples per class from the target domain Spanish. Results in boldface are significantly better
than the others, judged by the t-test with a significance level at 0.05.

Source Domain SVM T KCCA HeMap DAMA ARC-t HFA
English

72.6± 2.3

71.4± 3.2 65.7± 3.1 72.4± 2.4 72.9± 2.0 75.3± 1.7
French 72.8± 2.8 64.2± 4.2 72.8± 2.0 73.5± 1.8 75.7± 1.6
German 73.8± 2.2 64.6± 3.6 72.9± 2.3 74.7± 1.6 76.1± 1.5
Italian 73.8± 2.1 65.8± 2.3 73.3± 2.1 74.0± 2.0 75.8± 1.8
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Figure 1. Illustrations of the convergence of Algorithm 1
for our HFA method on the two datasets.

the strong manifold structure on this dataset. Both re-
sults of ARC-t implemented by ourselves and reported
in (Kulis et al., 2011) are only comparable with those
of SVM T, which shows that ARC-t is less effective for
HDA on this dataset. Our HFA method outperforms
the other methods under both settings, which clearly
demonstrate the effectiveness of our proposed method
for HDA by learning with augmented features.

Text categorization: Table 4 shows the mean
and standard deviations of classification accura-
cies for all methods on the Reuters multilingual
dataset (Amini et al., 2009) by using m = 20 labeled
training samples per class from the target domain. We
have a similar observation as on the object dataset
that SVM T still outperforms HeMap in terms of
classification accuracy. It is interesting to observe that
KCCA is generally better than SVM T, which shows
that it can learn a good common feature subspace on
this dataset. Moreover, by using the label information,
both DAMA and ARC-t perform better than SVM T
under almost all the settings. Our proposed HFA
method still achieves significantly better performances
than others on this dataset, when judged by the t-test

with a significance level at 0.05.

We also plot the classification results of SVM T, KC-
CA, DAMA, ARC-t and our HFA method with respect
to the number of target training samples per class (i.e.,
m = 5, 7, 10, 15 and 20) for each source domain in
Figure 2. We do not report the results of HeMap,
as they are much worse than the other methods.
From the results, the performances of all methods
increase when using a larger m. And the two HDA
methods DAMA and ARC-t generally achieve better
mean classification accuracies than SVM T except for
the setting using English as the source domain. Our
HFA method generally outperforms all other methods
according to mean classification accuracy.

4.3. Convergence Analysis

To analyze the convergence of the proposed Algorith-
m 1 for our HFA method, we take one setting from
each of the datasets as the showcase. For the object
dataset, we use the category “back pack” and the
source domain amazon; for the Reuters multilingual
dataset, the class “C15” is used together with the
source domain English. From the results, Algorithm 1
generally takes less than 80 (resp., 40) iterations
before its convergence on the object dataset (resp.,
the Reuters multilingual dataset). We have similar
observations for other categories/classes on the two
datasets as well.

5. Conclusions and Future Work

We have proposed a new method called Heterogeneous
Feature Augmentation (HFA) for heterogeneous do-
main adaptation. In HFA, we augment the heteroge-
neous features from the source and target domains by
using two newly proposed feature mapping functions,
respectively. With the augmented features, we propose
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(a) English

5 7 10 15 20

50

55

60

65

70

75

 m

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

SVM_T
KCCA
DAMA
ARC−t
HFA

(b) French
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(c) German
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(d) Italian

Figure 2. Classification accuracies of all methods with respect to different number of target training samples per class
(i.e., m = 5, 7, 10, 15 and 20) on the Reuters multilingual dataset. Spanish is considered as the target domain, and in
each subfigure the results are obtained by using one language as the source domain.

to find the two projection matrices for the source and
target data by using the standard SVM with the hinge
loss in both linear and nonlinear cases. Moreover, a so-
called transformation metric is introduced to simply
our formulated optimization problem of HFA such
that it can be effectively solved by our developed
alternating optimization algorithm. Promising results
of HFA have been achieved on two benchmark datasets
for object recognition and text classification.
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