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Abstract

Recently, there has been much interest in
spectral approaches to learning manifolds—
so-called kernel eigenmap methods. These
methods have had some successes, but their
applicability is limited because they are not
robust to noise. To address this limita-
tion, we look at two-manifold problems, in
which we simultaneously reconstruct two re-
lated manifolds, each representing a differ-
ent view of the same data. By solving these
interconnected learning problems together,
two-manifold algorithms are able to succeed
where a non-integrated approach would fail:
each view allows us to suppress noise in the
other, reducing bias. We propose a class of
algorithms for two-manifold problems, based
on spectral decomposition of cross-covariance
operators in Hilbert space, and discuss when
two-manifold problems are useful. Finally,
we demonstrate that solving a two-manifold
problem can aid in learning a nonlinear dy-
namical system from limited data.

1. Introduction
Manifold learning algorithms are nonlinear meth-
ods for embedding a set of data points into a
low-dimensional space while preserving local geom-
etry. Recently, there has been a great deal of
interest in spectral approaches to learning man-
ifolds. These kernel eigenmap methods include
Isomap (Tenenbaum et al., 2000), Locally Linear Em-
bedding (LLE) (Roweis & Saul, 2000), Laplacian
Eigenmaps (LE) (Belkin & Niyogi, 2002), Maximum
Variance Unfolding (MVU) (Weinberger et al., 2004),
and Maximum Entropy Unfolding (MEU) (Lawrence,
2011). Despite the popularity of kernel eigenmap
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methods, they are limited in one important respect:
they generally only perform well when there is little
or no noise. Several authors have attacked the prob-
lem of learning manifolds in the presence of noise us-
ing methods like neighborhood smoothing (Chen et al.,
2008) and robust principal components analysis (Zhan
& Yin, 2009; 2011), with some success when noise is
limited. Unfortunately, the problem is fundamentally
ill posed without some sort of side information about
the true underlying signal: by design, manifold meth-
ods will recover extra latent dimensions which “ex-
plain” the noise.

We take a different approach to the problem of learning
manifolds from noisy observations. We assume access
to instrumental variables, which are correlated with
the true latent variables, but uncorrelated with the
noise in observations. Such instrumental variables can
be used to separate signal from noise, as described
in Section 3. Instrumental variables have been used
to allow consistent estimation of model parameters in
many statistical learning problems, including linear re-
gression (Pearl, 2000), principal component analysis
(PCA) (Jolliffe, 2002), and temporal difference learn-
ing (Bradtke & Barto, 1996). Here we extend the scope
of this technique to manifold learning. We will pay
particular attention to the two-manifold problem,
in which two sets of observations each serve as instru-
ments for the other. We propose algorithms for two-
manifold problems based on spectral decompositions
related to cross-covariance operators; and, we show
that the instrumental variable idea suppresses noise in
practice.

Finally we look at a detailed example of how two-
manifold methods can help solve difficult machine
learning problems. Subspace identification approaches
to learning nonlinear dynamical systems depend crit-
ically on instrumental variables and the spectral de-
composition of (potentially infinite-dimensional) co-
variance operators (Hsu et al., 2009; Boots et al.,
2010; Song et al., 2010). Two-manifold problems are
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a natural fit: by relating the spectral decomposition
to our two-manifold method, subspace identification
techniques can be forced to identify a manifold state
space, and consequently, to learn a dynamical system
that is both accurate and interpretable, outperforming
the current state of the art.

2. Preliminaries
2.1. Kernel PCA

Kernel PCA (Schölkopf et al., 1998) generalizes PCA
to high- or infinite-dimensional input data, represented
implicitly using a reproducing-kernel Hilbert space
(RKHS). If the kernel K(x,x′) is sufficiently expres-
sive, kernel PCA can find structure that regular PCA
misses. Conceptually, if we write the “feature func-
tion” φ(x) = K(x, ·), and define an infinitely-tall “ma-
trix” Φ with columns φ(xi), our goal is to recover the
eigenvalues and eigenvectors of the centered covariance
operator Σ̂XX = 1

nΦHΦT. Here H is the centering

matrix H = In − 1
n11T. For efficient computation, we

work with the Gram matrix G = 1
nΦTΦ instead of

the large or infinite Σ̂XX . The centered Gram ma-
trix C = HGH has the same nonzero eigenvalues as

Σ̂XX ; the eigenvectors of Σ̂XX are ΦHviλ
−1/2
i , where

(λi,vi) are the eigenpairs of C (Schölkopf et al., 1998).

2.2. Manifold Learning

Kernel eigenmap methods seek a nonlinear function
that maps a high-dimensional set of data points to
a lower-dimensional space while preserving the mani-
fold on which the data lies. The main insight behind
these methods is that large distances in input space are
often meaningless due to the large-scale curvature of
the manifold; so, ignoring these distances can lead to
a significant improvement in dimensionality reduction
by “unfolding” the manifold.

Interestingly, these algorithms can be viewed as spe-
cial cases of kernel PCA where the Gram matrix G is
constructed over the finite domain of the training data
in a particular way (Ham et al., 2003). For example, in
Laplacian Eigenmaps (LE), we first compute an adja-
cency matrix W by nearest neighbors: wi,j is nonzero
if point i is one of the nearest neighbors of point j, or
vice versa. We can either set non-zero weights to 1, or
compute them with a kernel such as a Gaussian RBF.
Next we let Si,i =

∑
j wi,j , and set L = (S−W). Fi-

nally, we eigendecompose L = VΛVT and set the LE
embedding to be E = V2:k+1, the k smallest eigen-
vectors of L excluding the vector corresponding to the
0 eigenvalue. (Optionally we can scale according to

eigenvalues, E = V2:k+1Λ
−1/2
2:k+1.) To relate LE to ker-

nel PCA, Ham et al. (2003) showed that one can build
a Gram matrix from L, G = L†; the LE embedding is

given by the top k eigenvectors (and optionally eigen-
values) of G.

In general, many manifold learning methods (including
all the kernel eigenmap methods mentioned above) can
be viewed as constructing a matrix E of embedding
coordinates. From any such method, we can extract
an equivalent Gram matrix G = EET. So, for the rest
of the paper, we view a manifold learner simply as a
black box which accepts data and produces a Gram
matrix that encodes the learned manifold structure.
This view greatly simplifies the description of our two-
manifold algorithms below.

3. Bias and Instrumental Variables

Kernel eigenmap methods are very good at dimension-
ality reduction when the original data points sample
a high-dimensional manifold relatively densely, and
when the noise in each sample is small compared to
the local curvature of the manifold. In practice, how-
ever, observations are frequently noisy, and manifold-
learning algorithms applied to these datasets usually
produce biased embeddings. See Figures 1–2, the
“noisy swiss rolls,” for an example.

Our goal is therefore to design a more noise-resistant
algorithm for the two-manifold problem. We begin
by examining PCA, a linear special case of manifold
learning, and studying why it produces biased embed-
dings in the presence of noise. We next show how to
overcome this problem in the linear case, and then use
these same ideas to generalize kernel PCA, a nonlinear
algorithm. Finally, in Sec. 4, we extend these ideas to
fully general kernel eigenmap methods.

3.1. Bias in Finite-Dimensional Linear Models

Suppose that xi is a noisy view of some underlying
low-dimensional latent variable zi: xi = Mzi + εi for
a linear transformation M and i.i.d. zero-mean noise
term εi.

1 Without loss of generality, we assume that xi

and zi are centered, and that Cov[zi] and M both have
full column rank. In this case, PCA on X will generally
fail to recover Z: the expectation of Σ̂XX = 1

nXXT is
M Cov[zi] M

T + Cov[εi], while we need M Cov[zi] M
T

to be able to recover a transformation of M or Z. The
unwanted term Cov[εi] will, in general, affect all eigen-
values and eigenvectors of Σ̂XX , causing us to recover
a biased answer even in the limit of infinite data.

3.1.1. Instrumental Variables

We can fix this problem for linear embeddings: in-
stead of plain PCA, we can use what might be called

1Note that each εi is a vector, and we make no assump-
tion that its coordinates are independent from one another
(i.e., we do not assume that Cov[εi] is spherical).
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two-subspace PCA. This method finds a statistically
consistent solution through the use of an instrumen-
tal variable (Pearl, 2000; Jolliffe, 2002), an observation
yi that is correlated with the true latent variables, but
uncorrelated with the noise in xi. Importantly, picking
an instrumental variable is not merely a statistical aid,
but rather a value judgement about the nature of the
latent variable and the noise in the observations. We
are defining the noise to be that part of the variability
which is uncorrelated with the instrumental variable,
and the signal to be that part which is correlated.

In our example above, a good instrumental variable
yi is a different (noisy) view of the same underlying
low-dimensional latent variable: yi = Nzi + ζi for
some full-column-rank linear transformation N and
i.i.d. zero-mean noise term ζi. The expectation of
the empirical cross covariance Σ̂XY = 1

nXYT is then
M Cov(zi) NT: the noise terms, being independent
and zero-mean, cancel out. (And the variance of each
element of Σ̂XY goes to 0 as n→∞.)

Now, we can identify the embedding by computing the
truncated singular value decomposition (SVD) of the
covariance: 〈U,D,V〉 = SVD(Σ̂XY , k). If we set k
to be the true dimension of z, then as n → ∞, U
will converge to an orthonormal basis for the range of
M, and V will converge to an orthonormal basis for
the range of N. The corresponding embeddings are
then given by UTX and VTY.2 Interestingly, we can
equally well view xi as an instrumental variable for yi:
we simultaneously find consistent embeddings of both
xi and yi, using each to unbias the other.

3.2. Bias in Nonlinear Models

We now extend the analysis of Section 3.1 to nonlinear
models. We assume noisy observations xi = f(zi)+εi,
where zi is the desired low-dimensional latent variable,
εi is an i.i.d. noise term, and f is a smooth function
with smooth inverse (so that f(zi) lies on a manifold).
Our goal is to recover f and zi up to identifiability.

Kernel PCA (Sec. 2.1) is a common approach to this
problem. In the (restrictive) realizable case, kernel
PCA gets the right answer: that is, suppose that zi
has dimension k, that εi has zero variance, and that
we have at least k independent samples. And, suppose
that φ(f(z)) is a linear function of z. Then, the Gram
matrix or the covariance “matrix” will have rank k,
and we can reconstruct a basis for the range of φ ◦

2Several spectral decompositions of cross-covariance
matrices can be viewed as special cases of two-subspace
PCA that involve transforming the variables xi and yi be-
fore applying a singular value decomposition. Two popu-
lar examples are reduced-rank regression (Reinsel & Velu,
1998) and canonical correlation analysis (Hotelling, 1935).

f from the top k eigenvectors of the Gram matrix.
(Similarly, if φ ◦ f is near linear and the variance of
εi is small, we can expect kernel PCA to work well, if
not perfectly.)

However, just as PCA recovers a biased answer when
the variance of εi is nonzero, kernel PCA will also re-
cover a biased answer under noise, even in the limit of
infinite data. The bias of kernel PCA follows immedi-
ately from the example at the beginning of Section 3:
if we use a linear kernel, kernel PCA will simply re-
produce the bias of ordinary PCA.

3.2.1.Instrumental Variables in Hilbert Space

By analogy to two-subspace PCA, a natural gener-
alization of kernel PCA is two-subspace kernel PCA,
which we can accomplish via a kernelized SVD of a
cross-covariance operator in Hilbert space. Given a
joint distribution P[X,Y ] over two variables X on X
and Y on Y, with feature maps φ and υ (corresponding
to kernels Kx and Ky), the cross-covariance operator
ΣXY is E[φ(x) ⊗ υ(y)]. The cross-covariance opera-
tor reduces to an ordinary cross-covariance matrix in
the finite-dimensional case; in the infinite-dimensional
case, it can be viewed as a kernel mean map de-
scriptor (Smola et al., 2007) for the joint distribution
P[X,Y ]. The concept of a cross-covariance operator
allows us to extend the methods of instrumental vari-
ables to infinite dimensional RKHSs. In our example
above, a good instrumental variable yi is a different
(noisy) view of the same underlying latent variable:
yi = g(zi) + ζi for some smoothly invertible function
g and i.i.d. zero-mean noise term ζi.

3.2.2. Two-subspace PCA in RKHSs

We proceed now to derive the kernel SVD for a cross-
covariance operator.3 Conceptually, our inputs are
“matrices” Φ and Υ whose columns are respectively
φ(xi) and υ(yi). The centered empirical covariance
operator is then Σ̂XY = 1

n (ΦH)(ΥH)T. The goal of

the kernel SVD is then to factor Σ̂XY so that we can
recover the desired bases for φ(xi) and υ(yi). Un-
fortunately, this conceptual algorithm is impractical,
since Σ̂XY can be high- or infinite-dimensional. So,
instead, we perform an SVD on the covariance oper-
ator in Hilbert space via a trick analogous to kernel
PCA.

To understand SVD in general Hilbert spaces, we start
by looking at a Gram matrix formulation of finite di-
mensional SVD. Recall that the singular values of
Σ̂XY = 1

n (XH)(YH)T are the square roots of the

3The kernel SVD algorithm previously appeared as an
intermediate step in (Song et al., 2010; Fukumizu et al.,
2005); here we give a more complete description.
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eigenvalues of Σ̂XY Σ̂Y X (where Σ̂Y X = Σ̂T
XY ), and

the left singular vectors are defined to be the corre-
sponding eigenvectors. We can find identical eigenvec-
tors and eigenvalues using only centered Gram matri-
ces CX = 1

n (XH)T(XH) and CY = 1
n (YH)T(YH).

Let vi be a right eigenvector of CY CX , so that
CY CXvi = λivi. Premultiplying by (XH) yields

1

n2
(XH)(YH)T(YH)(XH)T(XH)vi = λi(XH)vi

and regrouping terms gives us Σ̂XY Σ̂Y Xwi = λiwi

where wi = (XH)vi. So, λi is an eigenvalue of
Σ̂XY Σ̂Y X ,

√
λi is a singular value of Σ̂XY , and

(XH)viλ
−1/2
i is the corresponding unit length left sin-

gular vector. An analogous argument shows that, if
w′i is a unit-length right singular vector of Σ̂XY , then

w′i = (YH)v′iλ
−1/2
i , where v′i is a unit-length left

eigenvector of CY CX .

This machinery allows us to solve the two-subspace
kernel PCA problem by computing the singular val-
ues of the empirical covariance operator Σ̂XY . We
define GX and GY to be the Gram matrices whose
elements are Kx(xi,xj) and Ky(yi,yj) respectively,
and then compute the eigendecomposition of CY CX =
(HGY H)(HGXH). This method avoids any compu-
tations in infinite-dimensional spaces; and, it gives us
compact representations of the left and right singular
vectors.

Under appropriate assumptions, we can show that
the SVD of the empirical cross-covariance operator
Σ̂XY = 1

nΦHΥT converges to the desired value. Sup-
pose that E[φ(xi) | zi] is a linear function of zi,
and similarly, that E[υ(yi) | zi] is a linear function
of zi.

4 The noise terms φ(xi) − E[φ(xi) | zi] and
υ(yi) − E[υ(yi) | zi] are by definition zero-mean; and
they are independent of each other, since the first de-
pends only on εi and the second only on ζi. So, the
noise terms cancel out, and the expectation of Σ̂XY

is the true covariance ΣXY . If we additionally as-
sume that the noise terms have finite variance, the
product-RKHS norm of the error Σ̂XY − ΣXY van-
ishes as n→∞.

The remainder of the proof follows from the proof of
Theorem 1 in (Song et al., 2010) (the convergence of
the empirical estimator of the kernel covariance oper-

4The assumption of linearity is restrictive, but appears
necessary: in order to learn a representation of a man-
ifold using factorization-based methods, we need to pick
a kernel which flattens out the manifold into a subspace.
This is why kernel eigenmap methods are generally more
successful than plain kernel PCA: by learning an appropri-
ate kernel, they are able to adapt their nonlinearity to the
shape of the target manifold.
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Figure 1. The Noisy Swiss Rolls. We are given two sets of
3-d observations residing on two different manifolds MX

and MY . The latent signal MZ is 2-d, but MX and MY

are each corrupted by 3-d noise. (A) 5000 data points sam-
pled from MZ . (B) The functions f (MZ) and g (MZ)
“roll” the manifold in 3-dimensional space, two different
ways, generating two different manifolds in observation
space. (C) Each set of observations is then perturbed by 3-
d noise (showing 2 dimensions only), resulting in 3-d man-
ifolds MX and MY . The black lines indicate the location
of the submanifolds from (B).

ator). In particular, the top k left singular vectors of
Σ̂XY converge to a basis for the range of E[φ(xi) | zi]
(considered as a function of zi); similarly, the top right
singular vectors of Σ̂XY converge to a basis for the
range of E[υ(yi) | zi].

4. Two-Manifold Problems
Now that we have extended the instrumental variable
idea to RKHSs, we can also expand the scope of mani-
fold learning to two-manifold problems, where we want
to simultaneously learn two manifolds for two covary-
ing lists of observations, each corrupted by uncorre-
lated noise.5 The idea is simple: we view manifold
learners as constructing Gram matrices as in Sec. 2.2,
then apply the RKHS instrumental variable idea of
Sec. 3. As we will see, this procedure allows us to
regain good performance when observations are noisy.

Suppose we are given two set of observations residing
on (or near) two different manifolds: x1, . . . ,xn ∈ Rd1

on MX and y1, . . . ,yn ∈ Rd2 on MY . Further sup-
pose that both xi and yi are noisy functions of a latent

5The uncorrelated noise assumption is extremely mild:
if some latent variable causes correlated changes in our
measurements on the two manifolds, then we are making
the definition that it is part of the desired signal to be
recovered. No other definition seems reasonable: if there
is no difference in statistical behavior between signal and
noise, then it is impossible to use a statistical method to
separate signal from noise.
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Algorithm 1 Instrumental Eigenmaps

In: n i.i.d. pairs of observations {xi,yi}ni=1

Out: embeddings EX and EY

1: Compute Gram matrices: GX and GY from x1:n

and y1:n respectively, using for example LE.
2: Compute centered Gram matrices:

CX = HGXH and CY = HGY H
3: Perform a singular value decomposition and trun-

cate the top k singular values:
〈U,Λ,VT〉 = SVD(CXCY , k)

4: Find the embeddings from the singular values:

EX = U1:kΛ
1/2
1:k and

EY = V1:kΛ
1/2
1:k

variable zi, itself residing on a latent k-dimensional
manifoldMZ : xi = f(zi)+εi and yi = g(zi)+ζi. We
assume that the functions f and g are smooth, so that
f(zi) and g(zi) trace out submanifolds f(MZ) ⊆MX

and g(MZ) ⊆MY . We further assume that the noise
terms εi and ζi move xi and yi within their respective
manifolds MX and MY : this assumption is without
loss of generality, since we can can always increase the
dimension of the manifolds MX and MY to allow an
arbitrary noise term. See Figure 1 for an example.

If the variance of the noise terms εi and ζi is too high,
or if MX and MY are higher-dimensional than the
latent MZ manifold (i.e., if the noise terms move xi

and yi away from f(MZ) and g(MZ)), then it may be
difficult to reconstruct f(MZ) or g(MZ) separately
from xi or yi. Our goal, therefore, is to use xi and
yi together to reconstruct both manifolds simultane-
ously: the extra information from the correspondence
between xi and yi will make up for noise, allowing suc-
cess in the two-manifold problem where the individual
one-manifold problems are intractable.

Given samples of n i.i.d. pairs {xi,yi}ni=1 from two
manifolds, we propose a two-step spectral learning al-
gorithm for two-manifold problems: first, use either
a given kernel or an ordinary one-manifold algorithm
such as LE or LLE to compute centered Gram matri-
ces CX and CY from xi and yi separately. Second,
use kernel SVD to recover the embedding of points in
MZ . The procedure, called instrumental eigenmaps,
is summarized in Algorithm 1.

As shown in Figure 2, computing eigenvalues of CXCY

instead of CX or CY alone alters the eigensystem:
it promotes directions within each individual learned
manifold that are useful for predicting coordinates on
the other learned manifold, and demotes directions
that are not useful. This effect strengthens our ability
to recover relevant dimensions in the face of noise.
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Figure 2. Solving the Noisy Swiss Roll two-manifold prob-
lem (see Fig. 1 for setup). Top graphs show embed-
dings of xi, bottom graphs show embeddings of yi. (A)
2-dimensional embeddings found by normalized LE. The
best results were obtained by setting the number of near-
est neighbors to 5. Due to the large amounts of noise,
the separately learned embeddings do not accurately re-
flect the latent 2-dimensional manifold. (B) The embed-
dings learned from the left and right eigenvectors of CXCY

closely match the original data sampled from the true man-
ifold. By solving a two-manifold problem, noise disappears
in expectation and the latent manifold is recovered.

5. Two-Manifold Detailed Example:
Nonlinear System Identification

A fundamental problem in machine learning and
robotics is dynamical system identification. This task
requires two related subtasks: 1) learning a low di-
mensional state space, which is often known to lie on
a manifold ; and 2) learning the system dynamics.

We propose tackling this problem by combining two-
manifold methods (for task 1) with spectral learning
algorithms for nonlinear dynamical systems (for task
2) (Song et al., 2010; Siddiqi et al., 2010; Boots et al.,
2011; Boots & Gordon, 2010; Hsu et al., 2009; Boots
et al., 2010). Here, we focus on a specific example:
we show how to combine HSE-HMMs (Song et al.,
2010), a powerful nonparametric approach to system
identification, with manifold learning. We demon-
strate that the resulting manifold HSE-HMM can out-
perform standard HSE-HMMs (and many other well-
known methods for learning dynamical systems): the
manifold HSE-HMM accurately discovers a curved
low-dimensional manifold which contains the state
space, while other methods discover only a (poten-
tially much higher-dimensional) subspace which con-
tains this manifold.

5.1. Hilbert Space Embeddings of HMMs

The key idea behind spectral learning of dynamical
systems is that a good latent state is one that lets us
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predict the future. HSE-HMMs implement this idea
by finding a low-dimensional embedding of the condi-
tional probability distribution of sequences of future
observations, and using the embedding coordinates as
state. Song et al. (2010) suggest finding this low-
dimensional state space as a subspace of an infinite
dimensional RKHS.

Intuitively, we might think that we could find the best
state space by performing PCA or kernel PCA of se-
quences of future observations. That is, we would sam-
ple n sequences of future observations x1, . . . ,xn ∈ Rd1

from a dynamical system. We would then construct a
Gram matrix GX , whose (i, j) element is Kx(xi,xj).
Finally, we would find the eigendecomposition of the
centered Gram matrix CX = HGXH as in Section 2.1.
The resulting embedding coordinates would be tuned
to predict future observations well, and so could be
viewed as a good state space. However, the state space
found by kernel PCA is biased : it typically includes
noise, information that cannot be predicted from past
observations. We would like instead to find a low di-
mensional state space that is uncorrelated with the
noise in the future observations.

So, in addition to sampling sequences of future ob-
servations, we sample corresponding sequences of past
observations y1, . . . ,yn ∈ Rd2 : sequence yi ends at
time ti − 1. We view features of the past as instru-
mental variables to unbias the future. We therefore
construct a Gram matrix GY , whose (i, j) element
is Ky(yi,yj). From GY we construct the centered
Gram matrix CY = HGY H. Finally, we identify the
state space using a kernel SVD as in Section 3.2.2:
〈U,Λ,VT〉 = SVD(CXCY , k). The left singular “vec-
tors” (reconstructed from U as in Section 3.2.2) now
identify a subspace in which the system evolves. From
this subspace, we can proceed to identify the parame-
ters of the system as in Song et al. (2010).

5.2. Manifold HSE-HMMs

In contrast with ordinary HSE-HMMs, we are inter-
ested in modeling a dynamical system whose state
space lies on a low-dimensional manifold, even if this
manifold is curved to occupy a higher-dimensional sub-
space (an example is given in Section 5.3, below). We
want to use this additional knowledge to constrain
the learning algorithm and produce a more accurate
model for a given amount of training data. To do so,
we replace the kernel SVD by a two-manifold method.
That is, we learn centered Gram matrices CX and CY

for the future and past observations, using a manifold
method like LE or LLE (see Section 2.2). Then we
apply a SVD to CXCY in order to recover the latent
state space.

5.3. Slotcar: A Real-World Dynamical System

To evaluate two-manifold HSE-HMMs we look at the
problem of tracking and predicting the position of a
slotcar with attached inertial measurement unit (IMU)
racing around a track. Figure 3(A) shows setup.

We collected 3000 successive observations of 3D accel-
eration and angular velocity at 10 Hz while the slot
car circled the track controlled by a constant policy
(with varying speeds). The goal was to learn a dynam-
ical model of the noisy IMU data, and, after filtering,
to predict current and future 2-dimensional locations.
We used the first 2000 data points as training data,
and held out the last 500 data points for testing the
learned models. We trained four models, and evalu-
ated these models based on prediction accuracy, and,
where appropriate, the learned latent state.

First, we trained a 20-dimensional embedded HMM
with the spectral algorithm of Song et al. (2010), using
sequences of 150 consecutive observations and Gaus-
sian RBF kernels. Second, we trained a similar 20-
dimensional embedded HMM with normalized LE ker-
nels. (Normalized LE differs from LE by utilizing the
normalized graph Laplacian instead of the standard
graph Laplacian.) The number of nearest neighbors
was selected to be 50, and the other parameters were
set to be identical to the first model. (So, the only dif-
ference is that the first model performs a kernel SVD,
while the second model solves a two-manifold prob-
lem.) Third, we trained a 20-dimensional Kalman fil-
ter using the N4SID algorithm (Van Overschee & De
Moor, 1996) with Hankel matrices of 150 time steps;
and finally, we learned a 20-state HMM (with 400 lev-
els of discretization for observations) via the EM algo-
rithm.

We compared the learned state spaces of the first three
models. These models differ mainly in their kernel:
Gaussian RBF, learned manifold from normalized LE,
or linear. As a test, we tried to reconstruct the 2-
dimensional locations of the car (collected from an
overhead camera, and not used in learning the dynam-
ical systems) from each of the three latent state spaces:
the more accurate the learned state space, the better
we expect to be able to reconstruct the locations. Re-
sults are shown in Figure 3(B).

Finally we examined the prediction accuracy of each
model. We performed filtering for different extents
t1 = 100, . . . , 350, then predicted the car location for
a further t2 steps in the future, for t2 = 1, . . . , 100.
The root-mean-squared error of this prediction in the
2-dimensional location space is plotted in Figure 3(C).
The Manifold HMM learned by the method detailed
in Section 5.2 consistently yields lower prediction error
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Figure 3. The slot car platform. (A) The car and inertial measurement unit (IMU) (top) and racetrack (bottom). (B) A
comparison of training data embedded into the state space of three different learned models. Red line indicates true 2-d
position of the car over time, blue lines indicate the prediction from state space. The top graph shows the Kalman filter
state space (linear kernel), the middle graph shows the HSE-HMM state space (RBF kernel), and the bottom graph shows
the manifold HSE-HMM state space (LE kernel). The LE kernel finds the best representation of the true manifold. (C)
RMS error for prediction (averaged over 251 time steps) with different estimated models. The HSE-HMM significantly
outperforms the other learned models by taking advantage of the fact that the data we want to predict lies on a manifold.

for the duration of the prediction horizon.

6. Related Work
While preparing this manuscript, we learned of the
simultaneous and independent work of Mahadevan
et al. (2011). That paper defines one particular two-
manifold algorithm, maximum covariance unfolding
(MCU). We believe the current paper will help to elu-
cidate why two-manifold methods like MCU work well.

A similar problem to the two-manifold problem is
manifold alignment (Ham et al., 2005; Wang & Ma-
hadevan, 2009), which builds connections between two
or more data sets by aligning their underlying mani-
folds. Our aim is different: we assume paired data,
where manifold alignments do not; and, we focus on
learning algorithms that simultaneously discover man-
ifold structure and connections between manifolds (as
provided by, e.g., a top-level learning problem defined
between two manifolds).

Interconnected dimensionality reduction has been
explored before in sufficient dimension reduction
(SDR) (Li, 1991; Cook & Yin, 2001; Fukumizu et al.,
2004). In SDR, the goal is to find a linear subspace
of covariates xi that makes response vectors yi condi-
tionally independent of the xis. The formulation is in
terms of conditional independence. Unfortunately, the
solution to SDR problems usually requires a difficult
nonlinear non-convex optimization. A related method
is manifold kernel dimension reduction (Nilsson et al.,
2007), which finds an embedding of covariates xi using
a kernel eigenmap method, and then attempts to find
a linear transformation of some of the dimensions of
the embedded points to predict response variables yi.
The response variables are constrained to be linear in

the manifold, so the problem is quite different from a
two-manifold problem.

7. Conclusion
In this paper we study two-manifold problems, where
two sets of corresponding data points, generated from
a single latent manifold and corrupted by noise, lie on
or near two different higher dimensional manifolds. We
design algorithms by relating two-manifold problems
to cross-covariance operators in RKHSs, and show
that these algorithms result in a significant improve-
ment over standard manifold learning approaches in
the presence of noise. This is an appealing result:
manifold learning algorithms typically assume that ob-
servations are (close to) noiseless, an assumption that
is rarely satisfied in practice.

Furthermore, we demonstrate the utility of two-
manifold problems by extending a recent dynamical
system identification algorithm to learn a system with
a state space that lies on a manifold. The resulting al-
gorithm learns a model that outperforms the current
state of the art in predictive accuracy. To our knowl-
edge this is the first combination of system identifica-
tion and manifold learning that accurately identifies
a latent time series manifold and is competitive with
the best system identification algorithms at learning
accurate predictive models.
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