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Abstract

We present a comprehensive framework for
structured sparse coding and modeling ex-
tending the recent ideas of using learnable
fast regressors to approximate exact sparse
codes. For this purpose, we propose an effi-
cient feed forward architecture derived from
the iteration of the block-coordinate algo-
rithm. This architecture approximates the
exact structured sparse codes with a frac-
tion of the complexity of the standard op-
timization methods. We also show that by
using different training objective functions,
the proposed learnable sparse encoders are
not only restricted to be approximants of the
exact sparse code for a pre-given dictionary,
but can be rather used as full-featured sparse
encoders or even modelers. A simple imple-
mentation shows several orders of magnitude
speedup compared to the state-of-the-art ex-
act optimization algorithms at minimal per-
formance degradation, making the proposed
framework suitable for real time and large-
scale applications.

1. Introduction

Sparse coding is the problem of representing signals
as a sparse linear combination of elementary atoms
of a given dictionary. Sparse modeling aims at learn-
ing such (non-)parametric dictionaries from the data
themselves. In addition to being very attractive at
the theoretical level, a large class of signals is well de-
scribed by this model, as demonstrated by numerous
state-of-the-art results in diverse applications.
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The main challenge of all optimization-based sparse
coding and modeling approaches is their relatively high
computational complexity. Consequently, a significant
amount of effort has been devoted to developing ef-
ficient optimization schemes (Beck & Teboulle, 2009;
Li & Osher, 2009; Nesterov, 2007; Xiang et al., 2011).
Despite the permanent progress reported in the liter-
ature, the state-of-the-art algorithms require tens or
hundreds of iterations to converge, making them in-
feasible for real-time or very large (modern size) ap-
plications.

Recent works have proposed to trade off precision
in the sparse representation for computational speed-
up (Jarrett et al., 2009; Kavukcuoglu et al., 2010),
by learning non-linear regressors capable of produc-
ing good approximations of sparse codes in a fixed
amount of time. The insightful work by (Gregor &
LeCun, 2010) introduced a novel approach in which
the regressors are multi-layer artificial neural networks
(NN) with a particular architecture inspired by suc-
cessful optimization algorithms for solving sparse cod-
ing problems. These regressors are trained to minimize
the MSE between the predicted and exact codes over
a given training set. Unlike previous predictive ap-
proaches, the system introduced in (Gregor & LeCun,
2010) has an architecture capable of producing more
accurate approximations of the true sparse codes, since
it allows an approximate “explaining away” to take
place during inference (see (Gregor & LeCun, 2010) for
details). In this paper we propose several extensions of
(Gregor & LeCun, 2010), including the consideration
of more general sparse coding paradigms (hierarchical
and non-overlapping grouped), adding online adapta-
tion of the underlying dictionary/model, thereby ex-
tending the applicability of this fast encoding frame-
work. The proposed approach can be used with a pre-
defined dictionary or learn it in an online manner on
the very same data vectors fed to it.

While differently motivated, in the case in which the
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dictionary is learned, the framework is related to re-
cent efforts in producing NN based sparse represen-
tations, see (Goodfellow et al., 2009; Ranzato et al.,
2007) and references therein. It can be interpreted as
an online trainable sparse auto-encoder (Goodfellow
et al., 2009) with a sophisticated encoder and sim-
ple linear decoder. The higher complexity of the pro-
posed architecture in the encoder allows the system to
produce accurate estimates of true structured sparse
codes.

In Section 2 we briefly present the general problem of
hierarchical structured sparse coding and in Section 3
discuss the optimization algorithm used to inspire the
architecture of the encoders. In Section 4 we present
the new sparse encoders and the new objective func-
tions used for their training. Experimental results in
real audio and image analysis tasks are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2. Structured Sparse Models

The underlying assumption of sparse models is that
the input vectors can be reconstructed accurately as a
linear combination of some (usually learned) basis vec-
tors (factors or dictionary atoms) with a small number
of non-zero coefficients. Structured sparse models fur-
ther assume that the pattern of non-zero coefficients
exhibits a specific structure known a priori.

Let D ∈ Rm×p be a dictionary with p m-dimensional
atoms. We define groups of atoms through their in-
dexes, G ⊆ {1, . . . , p}. Then, we define a group
structure, G, as collection of groups of atoms, G =
{G1, . . . , G|G|}. For an input vector x ∈ Rm, the cor-
responding structured sparse code, z ∈ Rp, associated
to the group structure G, can be obtained by solving
the convex program,

min
z∈Rp

1

2
‖x−Dz‖22 + ψ(z), (1)

ψ(z) =
∑
r∈G

λr ‖zr‖2 , (2)

where the vector zr ∈ R|Gr| contains the coefficients
of z belonging to group r, and λr are scalar weights
controlling the sparsity level.

The regularizer function ψ in (1) can be seen as a gen-
eralization of the `1 regularizer used in standard sparse
coding, as the latter arises from the special case of
singleton groups G = {{1}, {2}, . . . , {p}} and setting
λr = 1. As such, its effect on the groups of z is a nat-
ural generalization of the one obtained with standard
sparse coding: it “turns on” and “off” atoms in groups
according to the structure imposed by G.

Algorithm 1 Forward-backward splitting method.

input : Data x, dictionary D, regularizer ψ.
output: Sparse code z.
Define S = I− 1

αDTD, W = 1
αDT, t = 1

α .
Initialize z = 0 and b = Wx.
repeat

z = proxtψ(b)
b = b + Sz

until until convergence;

Several important structured sparsity settings can be
cast as particular cases of (1): sparse coding, as men-
tioned above, which is often referred to as Lasso (Tib-
shirani, 1996) or basis pursuit (Chen et al., 1999;
Donoho, 2006); group sparse coding, a generalization
of the standard sparse coding to the cases in which the
dictionary is sub-divided into groups that are known
to be active or inactive simultaneously (Yuan & Lin,
2006), in this case G is a partition of {1, . . . , p}; hierar-
chical sparse coding, assuming a hierarchical structure
of the non-zero coefficients (Zhao et al., 2009; Jenatton
et al., 2011; Sprechmann et al., 2011). The groups in
G form a hierarchy with respect to the inclusion rela-
tion (a tree structure), that is, if two groups overlap,
then one is completely included in the other one; and
collaborative sparse coding generalizing the concept of
structured sparse coding to collections of input vectors
by promoting given patterns of non-zero elements in
the coefficient matrix (Eldar & Rauhut, 2010; Sprech-
mann et al., 2011).

3. Optimization Algorithms

State-of-the-art approaches for solving (1) rely on the
family of proximal splitting methods (see (Bach et al.,
2011) and references therein). Next, we briefly intro-
duce proximal methods and an algorithm for solving
hierarchical sparse coding problems (Tseng, 2001) that
will be used to construct trainable sparse encoders.

3.1. Forward-Backward Splitting

The forward-backward splitting method is designed for
solving unconstrained optimization problems in which
the cost function can be split as

min
z∈Rm

f1(z) + f2(z), (3)

where f1 is convex and differentiable with a 1
α -

Lipschitz continuous gradient, and f2 is convex ex-
tended real valued and possibly non-smooth. Clearly,
problem (1) falls in this category by considering

f1(z) = 1
2 ‖x−Dz‖22 and f2(z) = ψ(z).
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The forward-backward splitting method with fixed
constant step defines a series of iterates,

zk+1 = proxαf2(zk − 1

α
∇f1(zk)), (4)

where proxf2(z) = argmin
u∈Rm

||u − z||22 + f2(u) denotes

the proximal operator of f2. The procedure is given in
Algorithm 1.

The forward-backward method becomes particularly
interesting when the proximal operator of ψ can be
computed exactly and efficiently, e.g., in standard or
group-structured sparse coding. When the groups of
G overlap arbitrarily, there is no efficient way of doing
so directly. However, there exist important exceptions
such as the hierarchical setting with tree-structured
groups which is discussed in the sequel. Accelerated
versions of proximal methods have been largely stud-
ied in the literature to improve their convergence rate
(Beck & Teboulle, 2009; Nesterov, 2007). While these
variants are the fastest exact solvers available (both
in theory and practice), they still require tens or hun-
dreds of iterations to achieve convergence. In the fol-
lowing sections we will elaborate in the standard ver-
sions of the algorithm since we are only interested in
constructing an architecture for the proposed sparse
encoders.

3.2. Proximal Operators

To simplify the notation, we will henceforth formu-
late all the derivations for the case of two-level hier-
archical sparse coding, referred as HiLasso (Friedman
et al., 2010; Sprechmann et al., 2011). This captures
the essence of hierarchical sparse models and the gen-
eralization to more layers (Jenatton et al., 2011) or
to a collaborative scheme (Sprechmann et al., 2011) is
straightforward.

The HiLasso model was introduced for simultaneously
promoting sparsity at both, group and coefficient level.
Given a partition P = {G1, . . . , G|P|}, the group struc-
ture G can be expressed as the union of two partitions:
P and the set of singletons. Thus, the regularizer ψ
becomes

ψ(z) =

p∑
j=1

λj ‖zj‖1 +

|P|∑
r=1

µr ‖zr‖2 . (5)

The proximal operator of ψ can then be computed in
closed form. Given a partition of the group of indexes,
P, and a vector of thresholding parameters λ ∈ R|P|,
we define the group separable operator πλ : Rp → Rp

Algorithm 2 BCoFB algorithm.

input : Data x, structured dictionary D, λ, µ.
output: Structured sparse code z.
Bound Lipschitz constant α ≤ maxr ‖Dr‖22
Define S = I − 1

αDTD, W = 1
αDT, s = 1

αµ, and
t = 1

αλ.
Initialize z = 0 and b = Wx.
repeat

y = πs,t(b)
e = y − z
g = arg maxr ‖er‖2
b = b + Sgeg
zg = yg

until until convergence;
Output z = πs,t(b)

for r = 1, . . . , |P| as

πλ(z)r =
max{0, ‖zr‖2 − λr}

‖zr‖2
zr (6)

if ‖zr‖2 > 0, and 0 otherwise. Note that πλ applies
a vector soft-thresholding to each group in P. The
proximal operator of (5) can be expressed as (Jenatton
et al., 2011; Sprechmann et al., 2011),

πλ,µ(z) = πµ(πλ(z)), (7)

a composition of the proximal operators associated to
each of the partitions in G: P and the set of singletons.

The Lasso problem is a particular case of HiLasso with
µ = 0 and λ = λ1, in which the proximal operator in
(7) reduces to the scalar soft-thresholding operator and
Algorithm 1 corresponds then to the popular iterative
shrinkage and thresholding algorithm (ISTA) (Beck &
Teboulle, 2009).

3.3. Block-Coordinate Forward-Backward
Algorithm

In Algorithm 1, every iteration requires the update of
all the groups of coefficients in the partition P, ac-
cording to (7). One can choose a block coordinate
strategy where only one block is updated at a time
(Tseng, 2001). In this paper we will refer to this al-
gorithm as Block-Coordinate Forward-Backward algo-
rithm (BCoFB) (see (Bach et al., 2011) for a review
on similar algorithms). The iterates of BCoFB are,

p = πλ,µ(zk),
zk+1 = zk,
zk+1
g = pg − 1

αDT
g (Dgp

k
g − xg),

(8)

where again here 1/α is the Lipshitz constant of the
fitting term and g is the index of the group in P to
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be updated at the k-th iteration, according to some
selection rule. Inspired by the coordinate descent al-
gorithm (CoD) introduced for standard sparse coding
in (Li & Osher, 2009), we propose an heuristic variant
of BCoFB algorithm, that updates the group

g = argmax
j
||zk+1

j − zkj ||22.

It can be shown that this quantity provides a lower
bound in the decrease of the cost function for each
possible group update. The procedure is summarized
in Algorithm 2.

In the case of standard sparsity, Algorithm 2 with
α = 1 is identical to CoD (Li & Osher, 2009). This al-
gorithm was used in (Gregor & LeCun, 2010) to build
trainable sparse encoders.

4. Fast Structured Sparse Encoders

In order to make sparse coding feasible in real time set-
tings, it has been recently proposed to learn non-linear
regressors capable of producing good approximations
of sparse codes in a fixed amount of time (Jarrett et al.,
2009; Kavukcuoglu et al., 2010). The main idea is to
construct a parametric regressor h(x,Θ), with some
set of parameters, collectively denoted as Θ, that min-
imizes the loss function

L(Θ) =
1

N

∑
n

L(Θ,xn) (9)

on a training set {x1, . . . ,xN}. Here, L(Θ,xn) =
1
2‖z
∗
n−zn‖22, z∗n is the exact sparse code of xn obtained

by solving the Lasso problem, and zn = h(xn,Θ) is
its approximation. While this setting is very generic,
the application of off-the-shelf regressors has been later
shown to produce relatively low-quality approxima-
tions (Gregor & LeCun, 2010).

(Gregor & LeCun, 2010) proposed then two particular
regressors implemented as a truncated form of ISTA
and CoD algorithms. Essentially, these regressors are
multi-layer artificial NN’s where each layer implements
a single iteration of ISTA or CoD. For example, in
the CoD architecture, the learned parameters of the
network are the matrices S and W, and the set of
element-wise thresholds t.

Naturally, as an alternative to learning, one could sim-
ply set the parameters S, W, and t as prescribed by
the CoD algorithm (a particular case of Algorithm 2),
terminating it after a small number of iterations. How-
ever, it is by no means guaranteed that such a trun-
cated CoD algorithm will produce the best sparse code
approximation with the same (small) number of lay-
ers; in practice, without the learning, such truncated

approximations are typically useless. Still, even when
learning the parameters, it is hopeless to expect the
NN regressor to produce good sparse codes for any in-
put data. Yet, (Gregor & LeCun, 2010) showed that
the network does approximate well sparse codes for in-
put vectors coming from the same distribution as the
one used in training.

Another remarkable property of the ISTA and CoD
sparse encoder architectures is that they are continu-
ous and almost everywhere C1 with respect to the pa-
rameters and the inputs. Differentiability with respect
to the parameters allows the use of (sub)gradient de-
scent methods for training, while differentiability with
respect to the inputs allows backpropagation of the
gradients and the use of the sparse encoders as mod-
ules in bigger globally-trained systems.

The minimization of a loss function L(Θ) with respect
to Θ requires the computation of the (sub)gradients
dL(Θ,xn)/dΘ, which is achieved by the backpropa-
gation procedure. Backpropagation starts with differ-
entiating L(Θ,xn) with respect to the output of the
last network layer, and propagating the (sub)gradients
down to the input layer, multiplying them by the Ja-
cobian matrices of the traversed layers.

4.1. Hierarchical Sparse Encoders

We now extend Gregor&LeCun’s idea to hierarchical
(structured) sparse code regressors. We consider a
feed-forward architecture based on the BCoFB, where
each layer implements a single iteration of the BCoFB
proximal method (Algorithm 2). The encoder archi-
tecture is depicted in Figure 1. Each layer essentially
consists of the nonlinear proximal operator πs,t fol-
lowed by a group selector and a linear operation Sg
corresponding to that group. The network parameters
are initialized as in Algorithm 2. In the particular case
of α = 1 and s = 0, the CoD architecture is obtained.

4.2. Alternative Training Objective Functions

So far, we have followed Gregor&LeCun in considering
NN encoders as regressors whose only role is to repro-
duce as faithfully as possible the ideal sparse codes
z∗n produced by an iterative sparse coding algorithm
(e.g., Lasso or HiLasso). This is achieved by training
the networks to minimize the `2 discrepancy between
the outputs of the network and the corresponding
z∗n. We propose to consider the neural network sparse
coders (both structured and unstructured) not as re-
gressors approximating an iterative algorithm, but as
full-featured sparse encoders (even modelers) in their
own right. To achieve this paradigm shift, we aban-
don the ideal sparse codes and introduce alternative
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training objectives as detailed in the sequel.

A general sparse coding problem can be viewed as
a mapping between a data vector x and the corre-
sponding sparse code z minimizing an aggregate of a
fitting term and a (possibly, structured) regularizer,

f(x, z) = 1
2 ‖x−Dz‖22 + ψ(z). Since the latter objec-

tive is trusted as an indication of the code quality, we
can train the network to minimize the ensemble av-
erage of f on a training set with z = arg min f(x, z)
replaced by z = h(x,Θ), obtaining the objective

L(Θ) =
1

N

∑
n

f(xn,h(xn,Θ)). (10)

Given an application, one therefore has to select an ob-
jective with an appropriate regularizer ψ correspond-
ing to the problem structure, and a sparse encoder
architecture consistent with that structure, and train
the latter to minimize the objective on a representative
set of data vectors. We found that selecting the sparse
encoder with the structure consistent with the training
objective and the inherent structure of the problem is
crucial for the production of high-quality sparse codes.

While sparse encoders based on NN’s are trained by
minimizing a non-convex function on a training set,
and are therefore prone to local convergence and over-
fitting, we can argue that in most practical problems,
the dictionary D is also found by solving a non-convex
dictionary learning problem based on a representative
data distribution. Consequently, unless the dictionary
is constructed using some domain knowledge, the use
of NN sparse encoders is not conceptually different
from using iterative sparse modeling algorithms.

Furthermore, one can consider the dictionary as an-
other optimization variable in the training, and min-
imize L with respect to both D and the network pa-
rameters Θ, alternating between network training and
dictionary update iterations. This essentially extends
the proposed efficient sparse coding framework into
full-featured sparse modeling, as detailed next.

4.3. Online Learning

Interpreting the NN’s as standalone sparse encoders
and removing the reference exact sparse codes makes
the training problem completely unsupervised. Con-
sequently, one may train the network (and possibly
adapt the dictionary as well) on the very same data
vectors fed to it for sparse coding. This allows us-
ing the proposed framework in online learning applica-
tions. A full online sparse modeling scenario consists
of (a) initializing the dictionary (e.g., by a random
sample of the initially observed training data vectors);
(b) fixing the dictionary in the training objective and

adapting the network parameters to the newly arriving
data using an online learning algorithm (we use an on-
line version of stochastic gradient in small batches as
detailed in Section 5); and (c) fixing the sparse codes
and adapting the dictionary using an online dictionary
learning algorithm (e.g., (Mairal et al., 2009)). Note
that all the above stages are completely free of itera-
tive sparse coding, which translates into low latency
computational complexity allowing real time applica-
tions.

4.4. Supervised and Discriminative Learning

The proposed sparse modeling framework allows to
naturally incorporate side information about training
data vectors, making the learning supervised. Space
limitations prevent us from elaborating on this setting;
in what follows, we outline several examples leaving
the details to the extended version of this paper.

In the group or hierarchical Lasso case, one may know
for each data vector the desired active groups. Incor-
porating this information into the training objective is
possible by using ψ as in (5) with µr set separately for
each training vector xn to low values to promote the
activation of a knowingly active group r, or to high
values to discourage the activation of a knowingly in-
active group.

In other applications, data vectors can come in pairs
of knowingly similar or dissimilar vectors, and one
may want to minimize some natural distance between
sparse codes of the similar vectors, while maximizing
the distance on the dissimilar ones. This scenario is
of particular interest in retrieval applications, where
sparse data representations are desirable due to their
amenability to efficient indexing. Incorporating such a
similarity preservation term into the training objective
is common practice in metric learning (see, e.g., (Wein-
berger & Saul, 2009)), but is challenging in sparse cod-
ing due to the fact that when the sparse codes are pro-
duced by an iterative algorithm, one faces the problem
of minimizing a training objective L depending on the
minimizers of another objective f . When using the
NN sparse modelers instead, the training is handled
using standard methods.

Finally, in many applications the data do not have
Euclidean structure and supervised learning can be
used to construct an optimal discriminative metric.
This can be achieved, for example, by replacing the
Euclidean fitting term with the Mahalanobis counter-
part, ‖x − Dx‖2

QTQ
= ‖Q(x − Dx)‖22, where Q is a

discriminative projection matrix. In such scenarios,
it is desirable to combine sparse modeling with metric
learning. This problem has not been considered before
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W

x

S s, t

bin

zin
0

bout

zout

bin

zin

bout z
πs,t

y = πs,t(bin)
e = y − zin
g = argmax ‖eg‖2
bout = bin + Sgeg

zout = zin
(zout)g = yg

y = πs,t(bin)
e = y − zin
g = argmax ‖eg‖2
bout = bin + Sgeg

· · ·

· · ·

Figure 1. BCoFB structured sparse encoder architecture
with two levels of hierarchy (a “HiLasso” network).

Table 1. Misclassification rates on MNIST digits.

Code
Dictionary size

100 289
NN G-L 3.76% 5.98%
NN Lasso 2.65% 2.51%
Exact Lasso 1.99% 1.47%

as it is impractical when the sparse codes are obtained
by minimization of f . It does become practical, how-
ever, when NN encoders are used instead.

5. Experimental Results

All NN’s were implemented in Matlab with built-in
GPU acceleration and executed on state-of-the-art In-
tel Xeon E5620 CPU and NVIDIA Tesla C2070 GPU.
Even with this by no means optimized code, the prop-
agation of 105 100-dimensional vector through a 10-
layer structured network with the proposed BCoFB
architecture takes only 3.6 seconds, which is equivalent
to 3.6µsec spent per vector per layer. This is several
orders of magnitude faster than the exceptionally opti-
mized multithreaded SPAMS HiLasso code (Jenatton
et al., 2011) executed on the CPU. Such benefits of
parallelization are possible due to the fixed datapath
and complexity of the NN encoder compared to the
iterative solver.

In all experiments, training was performed using gra-
dient descent safeguarded by Armijo rule. We refer as
NN G-L to the NN sparse encoders obtained by mini-
mizing Gregor&LeCun’s objective function, this is, the
`2 error with the output of the exact encoder. It will be
explicitly stated when NN sparse encoders are trained
using a specific objective function (e.g., NN Lasso).

5.1. Classification

In this experiment, we evaluate the performance of
unstructured NN sparse encoders in the MNIST digit
classification task. The MNIST images were resampled
to 17 × 17 (289-dimensional) patches. A set of ten
dictionaries was trained for each class. Classification
was performed by encoding a test vector in each of the
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Figure 2. Performance of different sparse encoders mea-
sured using the Lasso objective as the function of sample
number in the online learning experiment. Shown are the
three groups of patches corresponding to different texture
images from the Brodatz dataset.

dictionaries and assigning the label corresponding to
the smallest value of the full Lasso objective.

The following sparse coders were compared: exact
sparse codes (Exact Lasso), unstructured NN G-L, and
unstructured NN Lasso (a CoD network trained using
the Lasso objective). Ten networks were trained, one
per each class; all contained T = 5 CoD layers. λ = 0.1
was used in the Lasso objective. Dictionaries with 100
(under-complete) and 289 (complete) atoms were used.
Further increase in the dictionary size did not exhibit
significant performance improvement.

Table 1 summarizes the misclassification rates of each
of the sparse encoders. Performance of the NN G-
L sparse encoder decreases with the increase of the
dictionary size, while the discrepancy with the exact
codes drops. On the other hand, better performance
in terms of the Lasso objective consistently correlates
with better classification rates, which makes NN Lasso
a more favorable choice. Dictionary adaptation in
the training of the NN Lasso encoder brings only a
small improvement in performance, diminishing with
the dictionary size. We attribute this to the relative
low complexity of the data.

5.2. Online Learning

In this experiment, we evaluate the online learning ca-
pabilities of unstructured NN sparse encoders. As the
input data we used 30 × 104 randomly located 8 × 8
patches from three images from the Brodatz texture
dataset (Randen & Husoy, 1999). The patches were or-
dered in three consecutive blocks of 104 patches from
each image. Dictionary size was fixed to 64 atoms.
λ = 1 was used in the Lasso objective.

Online learning was performed in overlapping windows
of 1, 000 vectors with a step of 100 vectors. We com-
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Table 2. Misclassification rates on the audio dataset.

Code Error rate
NN G-L unstructured 6.08%
NN G-L structured 3.53%
NN discriminative structured 3.44%
Exact 2.35%

pared standard online dictionary learning (Exact Lasso
online) with unstructured NN Lasso with dictionary
adaptation in a given window (NN Lasso online), ini-
tialized by the network parameters from the previous
windows. In the latter case, the dictionary was initial-
ized by a random subset of 64 out of the first 1, 000
data vectors (therefore, no iterative sparse coding). As
the reference, we also compared the following three
offline algorithms trained on a distinct set of 6, 000
patches extracted from the same images: standard dic-
tionary learning (Exact Lasso offline); unstructured
NN G-L (NN G-L offline), and unstructured NN Lasso
(NN Lasso offline). All NN’s used T = 4 CoD layers.

Performance measured in terms of the Lasso objective
is reported in Figure 2. Exact offline sparse encoder
achieved the best results among all offline encoders. It
is, however, outperformed by the exact online encoder
due to its ability to adapt the dictionary to a specific
class of data. The performance of the NN Lasso online
encoder is slightly inferior to the Exact Lasso offline;
the online version performs better after the network
parameters and the dictionary adapt to the current
class of data. Finally, the NN G-L offline encoder has
the lowest, significantly inferior performance.

This experiment shows that, while the drop in perfor-
mance compared to the exact encoder is relatively low,
the computational complexity of the NN Lasso online
encoder is tremendously lower and fixed.

5.3. Structured Coding

We first evaluate the performance of the structured
sparse encoders in a speaker identification task repro-
duced from (Sprechmann et al., 2011). In this appli-
cation the authors use HiLasso to automatically de-
tect the present speakers in a given mixed signal. We
repeat this experiments using the proposed efficient
structured sparse encoders instead.

The dataset consists of recordings of five different ra-
dio speakers, two females and three males. 25% of the
samples was used for training, and the rest for testing.
Within the testing data, two sets of waveforms were
created: one containing isolated speakers, and another
containing all possible combinations of mixtures of two

speakers. Signals are decomposed into a set of overlap-
ping local time frames of 512 samples with 75% over-
lap, such that the properties of the signal remain stable
within each frame. An 80-dimensional feature vector is
obtained for each audio frame as its short-time power
spectrum envelope (refer to (Sprechmann et al., 2011)
for details). Five undercomplete dictionaries with 50
atoms were trained on the single speaker set minimiz-
ing the Lasso objective with λ = 0.2 (one dictionary
per speaker), and then combined into a single struc-
tured dictionary containing 250 atoms. Increasing the
dictionary size exhibited negligible performance bene-
fits. Speaker identification was performed by first en-
coding a test vector in the structured dictionary and
measuring the `2 energy of each of the five groups. En-
ergies were sum-pooled over 500 time samples selecting
the labels of the highest two.

The following structured sparse encoders were com-
pared: exact HiLasso codes with µ = 0.05 (Exact), un-
structured NN G-L trained on the exact HiLasso codes
(NN G-L unstructured), structured NN G-L trained on
the same codes (NN G-L structured), and a structured
network with a discriminative cost function with regu-
larization term in which the weights µr were set inde-
pendently for each data vector to −1 or 1 to promote
or discourage the activation of groups corresponding to
knowingly active or silent speakers respectively, (NN
discriminative structured). All NN’s used the same
single structured dictionary and contained T = 2 lay-
ers with the BCoFB architecture.

Table 2 summarizes the obtained misclassification
rates. It is remarkable that using a structured archi-
tecture instead of its unstructured counterpart with
the same number of layers and the same dictionary in-
creases performance by nearly a factor of two. The use
of the discriminative objective further improves perfor-
mance. Surprisingly, using NN’s with only two layers
cedes just about 1% of correct classification rate.

The structured architecture showed a crucial roll in
producing accurate structured sparse codes. We now
show that this observation is also valid in a more gen-
eral setting. We repeated the same experiment as be-
fore but with randomly generated synthetic data that
truly has a structure sparse representation under a
given dictionary (unknown for the NN’s). Results are
summarized in Figure 3.

6. Conclusion

Marrying ideas from convex optimization with multi-
layer neural networks, we have developed in this work
a comprehensive framework for modern sparse mod-
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Figure 3. Performance (`2 error) of structured and unstruc-
tured NN on structured sparse synthetic data.

eling for real time and large scale applications. The
framework includes different objective functions, from
reconstruction to classification, allows different sparse
coding structures from hierarchical to group similarity,
and addresses online learning scenarios. A simple im-
plementation already achieves several order of magni-
tude speedups when compared to the state-of-the-art,
at minimal cost in performance, opening the door for
practical algorithms following the demonstrated suc-
cess of sparse modeling in various applications.

An extension of the proposed approach to other
structured sparse modeling problems such as ro-
bust PCA and non-negative matrix factorization
is available at http://www.eng.tau.ac.il/~bron/

publications_conference.html and will be pub-
lished elsewhere due to lack of space.
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