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Abstract

Random projections have been applied in
many machine learning algorithms. However,
whether margin is preserved after random
projection is non-trivial and not well stud-
ied. In this paper we analyse margin distor-
tion after random projection, and give the
conditions of margin preservation for binary
classification problems. We also extend our
analysis to margin for multiclass problems,
and provide theoretical bounds on multiclass
margin on the projected data.

1. Introduction

The margin separating classes of data is a key con-
cept in many existing classification algorithms includ-
ing support vector machines (SVMs) (Cortes & Vap-
nik, 1995; Crammer & Singer, 2001) and Boosting
(Schapire & Freund, 1998). These classifiers are fun-
damentally involved in identifying and characterising
such margins, and are described in terms of the accu-
racy and generality with which they do so.

Random projections have attracted much attention
within a range of fields including signal processing
(Donoho, 2006; Baraniuk et al., 2007), and cluster-
ing (Schulman, 2000), largely due to the fact that
distances are preserved under such transformations
in certain circumstances (Dasgupta & Gupta, 2002).
Random projections have also been applied to classi-
fication for a variety of purposes (Balcan et al., 2006;
Duarte et al., 2007; Shi et al., 2009a;b; 2010). How-
ever, whether margin is preserved has not been well
studied.

Our primary contributions here are to establish the
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Figure 1. A counter-example illustrating the problem with
unnormalised margin preservation. As the data spread
further along the horizontal axis it becomes increasingly
unlikely (towards probability zero) that a randomly se-
lected projection direction (example shown in blue) will
result in a linearly separable projection onto the required
subspace (example shown in green). However, during the
data spreading, the unnormalised margin of the data be-
fore projection is not changed. This means that there are
datasets with fixed large positive unnormalised margin,
within which the chance of it being linearly separable is
zero (corresponding to a negative unnormalised margin).

conditions under which margins are preserved after
random projection, and to show that error free margins
are preserved for both binary and multiclass problems
if these conditions are met. We also demonstrate that
our results hold for one-parameter multiclass classifi-
cation, which explains the approach used in Shi et al.
(2009a;b).

In this vein we build upon the work of Balcan et al.
(2006) which provided a lower bound on the number
of dimensions required if a random projection was to
have a given probability of maintaining half of the orig-
inal margin in the data. Although an important step,
Balcan et al. (2006) do not solve the problem because
the resulting formulation demands infinite many pro-
jections in order to guarantee the preservation of an
error free margin.
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2. Motivation and Definitions

A typical definition of margin for a binary classification
problem is as follows.

Definition 1 (Margin) The dataset S = {(xi ∈
Rd, yi ∈ {−1,+1})}mi=1 is said linearly separable by
margin γ if there exists a unit length u ∈ Rd such that
for all (x, y) ∈ S,

y〈u,x〉 ≥ γ.

The maximum (among all γ) smallest (among all data)
margin is

γ∗ = min
(x,y)∈S

y〈u,x〉. (1)

Unfortunately this margin is not preserved af-
ter random projection, which we demonstrate
by showing a counter-example, depicted in Fig-
ure 1. We construct a dataset of 4 data points
(x1, y1), (x2, y2), (x3, y3), (x4, y4), where y1 = y2 = +1
and y3 = y4 = −1, and x1 = (−1, 1),x2 = (1, 1),x3 =
(−1,−1),x3 = (1,−1). Let R ∈ R1,2 be a random ma-
trix that maps x onto a 1 dimensional subspace. If the
projected data R x are to be linearly separable then
the subspace onto which they are projected (a line)
must lie within the grey area between the two dashed
lines in Figure 1(a). If R is chosen randomly from
a uniform distribution then probability that the pro-
jected data is linearly separable (by a positive margin)
is the angle separating the dashed lines divide by π. If
we expand x along horizontal line (pushing x1 and x3

to the left, x2 and x4 to the right while keeping their
vertical coordinates unchanged), the grey area angle
shrinks as shown in Figure 1(b). In fact, if we push
x to infinitely far away, the angle reduces to 0 while
keeping the original margin γ unchanged. This means
that there exist data with positive margin, such that
the chance of the projected data being linearly sepa-
rable is close to zero.

2.1. Error-allowed margin

Balcan et al. (2006) studied the problem of margin
preservation under random projection for binary clas-
sification. In doing so they derived a formula for the
probability that a margin would be decreased by less
than half under a particular projection. They pro-
vided two margin definitions below, using dataset S
as in Definition 1 and data distribution D.

Definition 2 (Normalised Margin) A dataset S is
linearly separable by margin γ if there exists u ∈ Rd,
such that for all (x, y) ∈ S,

y
〈u,x〉
‖u ‖‖x ‖

≥ γ.

Definition 3 (Error-allowed Margin) A data dis-
tribution D is linearly separable by margin γ with error
ρ, if there exists u ∈ Rd, such that

Pr
(x,y)∼D

(
y
〈u,x〉
‖u ‖‖x ‖

< γ
)
≤ ρ.

Definition 2 describes a normalised version of the more
traditional margin, and it is this normalised version
which we refer to as the margin henceforth.

Definition 3 describes a margin over a distribution
rather than a dataset. Balcan et al. (2006) showed
that if the original data has normalised margin γ then
as long as the number of projections

n ≥ c

γ2
ln

1

ρδ
, (2)

for an appropriate constant c, the projected data (now
n dimensional) has margin γ/2 with error ρ, with prob-
ability at least 1 − δ. Definition 3 shows that a pos-
itive margin implies ρ = 0, which by (2) implies that
n = +∞. Thus in order to preserve a positive mar-
gin in the projected data one needs infinitely many
random projections.

3. Margin Distortion and Preservation

In this section, we will establish the conditions for er-
ror free margin preservation. Extension to error al-
lowed margin will be briefly discussed at the end of
this section.

In order to give an indication that angles and margins
might be preserved we first tackle the simpler question
of whether the mean is preserved.

Lemma 4 (Mean preservation) For any w,x ∈
Rd, any random Gaussian matrix R ∈ Rn,d whose en-
tries R(i, j) = 1√

n
rij where the rijs are i.i.d. random

variables from N(0, 1), we have

E(〈R w,R x〉) = 〈w,x〉 . (3)

Proof of Lemma 4.

E(〈R w,R x〉)

=
1

n
E
[ n∑
`=1

( d∑
j=1

r`jwj

d∑
i=1

r`ixi

)]

=
1

n

n∑
`=1

( d∑
j=1

E(r2`j)wjxj

+

d∑
j=1

E(r`j)wj

d∑
i 6=j:i=1

E(r`i)xi

)
.

= 〈w,x〉 .
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The above is based solely on the fact that the {rij}
are independent with zero mean and unit variance.

The fact that the mean is preserved is a necessary
condition for margin preservation, although the fol-
lowing proves that angle and margin are preserved do
not depend on it. Due to the 2-stability of the Gaus-
sian distribution, we know that

∑d
j=1 r`jwj = ‖w ‖z`

and
∑d
j=1 r`jxj = ‖x ‖z′`, where z` and z′` ∼ N(0, 1).

We thus see that 〈R w,R x〉 = 1
n‖w ‖‖x ‖

∑n
`=1 z`z

′
`.

There are two possible cases:

• If w = x, then
∑n
`=1 z

2
` has a chi-square distribu-

tion with n-degrees freedom. Applying chi-square
distribution tail bound (Achlioptas, 2003) implies

tight bounds on Pr
(
‖R x‖2 ≤ (1 − ε)‖x‖2

)
and

Pr
(
‖R x‖2 ≤ (1 + ε)‖x‖2

)
.

• If w 6= x,
∑n
`=1 z`z

′
` is a sum of product normal

distributed variables. One approach might be to
compute the variance using Chebyshev’s inequal-
ity, but the resulting bound would be very loose.
Our first main result will show that if the angle
between w and x is small, the inner product is
well preserved.

Theorem 5 (Angle preservation) For any w,x ∈
Rd, any random Gaussian matrix R ∈ Rn,d as defined
above, for any ε ∈ (0, 1), if 〈w,x〉 > 0, then with
probability at least

1− 6 exp (−n
2

(
ε2

2
− ε3

3
)),

the following holds

(1 + ε)

(1− ε)
〈w,x〉
‖w ‖‖x ‖

− 2ε

(1− ε)
≤ 〈R w,R x〉
‖R w‖‖R x‖

≤ 1−
√

(1− ε2)

(1 + ε)
+

ε

(1 + ε)
+

(1− ε)
(1 + ε)

〈w,x〉
‖w ‖‖x ‖

. (4)

With angle preservation, one can easily show inner
product preservation by multiplying ‖R w‖‖R x‖ in
(4) which, however, results in a looser bound.

This theorem is one of our main results, and underpins
the analysis to follow. The proof is deferred to Sec-
tion 4. This theorem shares similar insight as Magen
(2007), in which Magen showed that random projec-
tions preserve volumes and distances to affine spaces.
A similar result on inner product is obtained in Ar-
riaga & Vempala (2006, Corollary 2).

Since acute angles are provably preserved, we are
now ready to see whether the margin is also pre-
served. Proving margin preservation requires proving

that there exists a parameter vector v ∈ Rn such that
the dataset S after random projection can still be sep-
arated by a certain margin. The proof is achieved
essentially by showing that R u is one such parameter
vector v. Using angle preservation from Theorem 5
and the union bound yields the following theorem.

Theorem 6 (Binary preservation) Given any
random Gaussian matrix R ∈ Rn,d as defined above,
if the dataset S = {(xi ∈ Rd, yi ∈ {−1,+1})}mi=1 is
linearly separable by margin (the normalised margin
in Definition 2) γ ∈ (0, 1], then for any δ, ε ∈ (0, 1)
and any

n >
12

(3ε2 − 2ε3)
ln

6m

δ
,

with probability at least 1−δ, the dataset S′ = {(R xi ∈
Rn, yi ∈ {−1,+1})}mi=1 is linearly separable by margin
γ − 2ε

(1−ε) .

Proof of Theorem 6. By definition, for all (x, y) ∈
S, there exists u, such that 〈u,y x〉

‖u‖‖x‖ ≥ γ. Applying

Theorem 5 and the union bound, we have

Pr
(
∃(x, y) ∈S, 〈R u, yR x〉

‖R u ‖‖R x ‖
≤ γ − 2ε

(1− ε)

)
≤6m exp (−n

2
(
ε2

2
− ε3

3
)).

Let δ = 6m exp (−n2 ( ε
2

2 −
ε3

3 )), then solving for n gives
the required bound on n.

Note that in Theorem 6, the lower bound of the mar-
gin after random projection can become negative for
certain values of ε. A negative margin implies that
the projected data are not linearly separable. Since
it is a lower bound (not a upper bound), the impli-
cation in this case is only that the separability of the
projected data can no longer be guaranteed with high
probability.

When the lower bound is positive, Theorem 6 indi-
cates that margin separability for binary classifica-
tion is preserved with high probability under random
projection. This may seem at odds with our initial
counter-example, but the difference lies in the distinc-
tion between Definition 1 and Definition 2. In the
counter-example, pushing xs apart reduces the proba-
bility of achieving a separable projection (as indicated
by the margin defined in Definition 1) to zero. How-
ever, during this process the margin as defined in Def-
inition 2 is also shrinking to zero, and thus that it is
only this diminished margin which need be preserved.

We now consider the multiclass case, and specifically
the widely accepted definition of the multiclass margin
from Crammer & Singer (2001). The straightforward
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multiclass extension of the counter-example shown in
Figure 1 shows that the multiclass margin is not always
preserved under random projection. As in the binary
classification case, we thus introduce the normalised
multiclass margin.

Definition 7 (Normalised Multiclass Margin)
The multiclass dataset S = {(xi ∈ Rd, yi ∈ Y =
{1, . . . , L})}mi=1 is linearly separable by margin
γ ∈ (0, 1], if there exists {uy ∈ Rd}y∈Y, such that for
all (x, y) ∈ S

〈uy,x〉
‖uy ‖‖x ‖

−max
y′ 6=y

〈uy′ ,x〉
‖uy′ ‖‖x ‖

≥ γ.

For the purposes of the discussion to follow we will as-
sume the multiclass dataset S to be as in Definition 7.

The smallest maximum γ can be found via

γ∗ = min
(x,y)∈S

( 〈uy,x〉
‖uy ‖‖x ‖

−max
y′ 6=y

〈uy′ ,x〉
‖uy′ ‖‖x ‖

)
. (5)

As we will see a special case of the above is used in the
one-parameter method in Shi et al. (2009a;b) whereby
uy = uy′ for all y, y′ ∈ Y. Thus the set {uy ∈ Rd}y∈Y
reduces to a single vector.

Theorem 8 (Multiclass margin preservation)
For any multiclass dataset S and any Gaussian
random matrix R, if S is linearly separable by margin
γ ∈ (0, 1], then for any δ, ε ∈ (0, 1) and any

n >
12

(3ε2 − 2ε3)
ln

6Lm

δ
,

with probability at least 1 − δ, the dataset S′ =
{(R xi ∈ Rn, yi ∈ Y}mi=1 is linearly separable by margin

− (1+3ε)
(1−ε2) +

√
(1−ε2)
(1+ε) + (1+ε)

(1−ε)γ.

Proof of Theorem 8. By the margin definition, for
all (x, y) ∈ S

〈uy,x〉
‖uy ‖‖x ‖

−max
y′ 6=y

〈uy′ ,x〉
‖uy′ ‖‖x ‖

≥ γ.

Take any single (x, y) ∈ S, we have by Theorem 5 and
union bound that

Pr
( 〈R uy,R x〉
‖R uy‖‖R x‖

≥ 1− (1 + ε)

(1− ε)
(1− 〈uy,x〉

‖uy‖‖x‖
)
)

≥ 1− 6 exp (−n
2

(
ε2

2
− ε3

3
))

Pr
(
∀y′ 6= y,

〈R uy′ ,R x〉
‖R uy′‖‖R x‖

≤ 1−
√

(1− ε2)

(1 + ε)

+
ε

(1 + ε)
+

(1− ε)
(1 + ε)

〈uy′ ,x〉
‖uy′‖‖x‖

)
≥ 1− 6(L− 1) exp (−n

2
(
ε2

2
− ε3

3
)).

By the union bound, with probability at least 1 −
6Lm exp (−n2 ( ε

2

2 −
ε3

3 )), for all (x, y) ∈ S, we have

〈R uy,R x〉
‖R uy‖‖R x‖

−max
y′ 6=y

〈R uy′ ,R x〉
‖R uy′‖‖R x‖

≥
√

(1− ε2)

(1 + ε)
− (1 + 3ε)

(1− ε2)
+

(1 + ε)

(1− ε)
γ.

If we let δ = 6Lm exp (−n2 ( ε
2

2 −
ε3

3 )), we get the re-
quired lower bound on n.

Note the above result can be easily extended to
the widely accepted definition of the multiclass un-
normalised margin from Crammer & Singer (2001)
by bounding the distortion on ‖R uy‖‖R x‖ and
‖R uy′‖‖R x‖. However, larger multiclass unnor-
malised margin does not mean smaller angle (i.e.
larger normalised margin), thus may not provide
tighter preservation.

The definition of the multiclass margin in Definition 7
assumes the existence of a set {uy ∈ Rd}y∈Y. We now
consider whether the margin is preserved in the case
where there exists only a single parameter vector u.

Theorem 9 (One-parameter method) For any
multiclass dataset S, and any random Gaussian
matrix R, denote by Ry ∈ Rn,d the y-th sub-matrix
of R, that is R = [R1, · · · ,Ry, · · · ,RL]. If S is
linearly separable by margin γ ∈ (0, 1], then for any
δ, ε ∈ (0, 1] and any

n >
12

(3ε2 − 2ε3)
ln

6m(L− 1)

δ
,

there exists a parameter vector v ∈ Rn, such that

Pr
(
∀(x, y) ∈ S, ∀y′ 6= y,

〈v,Ry x〉 − 〈v,Ry′ x〉
‖v ‖

√
‖Ry x ‖2 + ‖Ry′ x ‖2

≥

−2ε

1− ε
+

1 + ε√
2L(1− ε)

γ
)
≥ 1− δ. (6)

Proof of Theorem 9. By the margin definition there
exists {wy ∈ Rd}y∈Y, such that for all (x, y) ∈ S,

〈wy,x〉
‖wy‖‖x‖

− 〈wy′ ,x〉
‖wy′‖‖x‖

≥ γ,∀y′ 6= y.

Without loss of generality we assume that wy has unit
length1 for all y. So now

〈wy,x〉 − 〈wy′ ,x〉 ≥ γ‖x‖,∀y′ 6= y.

1This can be achieved by normalisation.
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This can be rewritten as

〈u,x⊗ ey〉 − 〈u,x⊗ey′〉 = 〈x⊗ ey −x⊗ ey′ ,u〉 ≥ γ‖x‖,

where u is a concatenation of all wy i.e. u =
[wT

1 , · · · ,wT
y , · · ·wT

L]T, ey is a vector ∈ RL with 1 at
the y-th location and zeros in all others, and ⊗ is the
tensor product. Define zx,y′ = x⊗ ey −x⊗ ey′ .

Applying Theorem 5 to u and zx,y′ , we have for a
given (x, y) and a fixed y′ 6= y, with probability at

least 1−6 exp (−n2 ( ε
2

2 −
ε3

3 )), that the following holds,

〈R u,R zx,y′〉
‖R u ‖‖R zx,y′ ‖

≥ 1− 1 + ε

1− ε
(1− 〈x⊗ ey −x⊗ ey′ ,u〉√

2‖u ‖‖x ‖
)

= 1− 1 + ε

1− ε
+

1 + ε√
2(1− ε)

(
〈wy,x〉
‖u ‖‖x ‖

− 〈wy′ ,x〉
‖u ‖‖x ‖

)

≥ 1− 1 + ε

1− ε
+

1 + ε√
2L(1− ε)

γ

=
−2ε

1− ε
+

1 + ε√
2L(1− ε)

γ

By the union bound over m samples and the L− 1 y′s

Pr
(
∃(x, y) ∈ S, ∃y′ 6= y,

〈R u,R zx,y′〉
‖R u ‖‖R zx,y′ ‖

<
−2ε

1− ε
+

1 + ε√
2L(1− ε)

γ
)

≤ 6m(L− 1) exp (−n
2

(
ε2

2
− ε3

3
)).

Letting v = R u, we have

〈R u,R zx,y′〉 = 〈v,Ry x−Ry′ x〉 .

Setting δ = 6m(L− 1) exp (−n2 ( ε
2

2 −
ε3

3 )) gives the re-
quired bound on n.

Theorem 9 shows the existence of a parameter vec-
tor under which the margin is preserved up to an or-
der O(γ/

√
2L) term where n increases logarithmically

with L. The gain is thus that the memory requirement
is independent of the number of classes.

Error allowed margin The error free margin
preservation results presented above apply only to lin-
early separable data. Real data are often not linearly
separable, but the result applies none the less to any
linearly separable subset of the data. Given that what
has been developed is a theoretical result intended to
guide the selection of an appropriate projection dimen-
sion the fact that it applies to every linearly separable
subset of the data is likely to suffice in most cases. Our

results can be easily extended to error allowed margin,
however, in both binary and multiclass cases, by the
addition of a controllable tolerance ε. The probability
of preserving the error allowed margin can be bounded
below by bounding above the chance of the subset of
data being not linearly separable (thus error allowed)
and the chance of the complement subset being lin-
early separable under projection.

4. Angle Preservation

To prove angle preservation as in Theorem 5, we will
use the following tail bound, which also appears in a
different form in the simplified proof of the Johnson-
Lindestrauss Lemma in Dasgupta & Gupta (2002).

Lemma 10 (Tail bound) For any x ∈ Rd, any ran-
dom Gaussian matrix R ∈ Rn,d as defined above, for
any ε ∈ (0, 1),

Pr
(

(1− ε) ≤ ‖R x‖2

‖x ‖2
≤ (1 + ε)

)
≥ 1− 2 exp (−n

2
(
ε2

2
− ε3

3
)).

Proof of Theorem 5. From Lemma 10 and the
union bound, we know that

(1− ε) ≤ ‖R x‖2

‖x ‖2
≤ (1 + ε), (1− ε) ≤ ‖R w‖2

‖w ‖2
≤ (1 + ε)

(7)

holds with probability at least 1−4 exp (−n2 ( ε
2

2 −
ε3

3 )).
When (7) holds, due to the fact that increasing the
length of two unit length vectors (i.e. from Rx

‖Rx ‖
and Rw

‖Rw ‖ to Rx√
(1−ε)‖x ‖

and Rw√
(1−ε)‖w ‖

) increases

the norm of their difference2, we have

‖ R x

‖R x ‖
− R w

‖R w ‖
‖2

≤‖ R x√
(1− ε)‖x ‖

− R w√
(1− ε)‖w ‖

‖2. (8)

We thus see that

‖ R x

‖x ‖
− R w

‖w ‖
‖2

≤‖
√

(1− ε) R x

‖R x ‖
−
√

(1 + ε)
R w

‖R w ‖
‖2

≤‖
√

(1 + ε)(
R x

‖R x ‖
− R w

‖R w ‖
)‖2

+ (
√

(1 + ε)−
√

(1− ε))2. (9)

2Note that the opposite does not hold in general.
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The first inequality is due to (7), the second inequality
is a property of any acute angle. Applying Lemma 10
to the vector ( x

‖x ‖ −
w
‖w ‖ ), we see that

(1− ε)‖ x

‖x ‖
− w

‖w ‖
‖2 ≤ ‖ R x

‖x ‖
− R w

‖w ‖
‖2

≤ (1 + ε)‖ x

‖x ‖
− w

‖w ‖
‖2 (10)

holds with a given probability.

Letting β denote the angle between w and x we have

γ =
〈w,x〉
‖w‖‖x‖

= cos(β) = 1− 2 sin2(
β

2
)

= 1− 1

2
‖ x

‖x ‖
− w

‖w ‖
‖2. (11)

Similarly

〈R w,R x〉
‖R w‖‖R x‖

= 1− 1

2
‖ R x

‖R x ‖
− R w

‖R w ‖
‖2. (12)

Using (10), (8) and (9) we see that ‖ Rx
‖Rx ‖ −

Rw
‖Rw ‖‖

2

is bounded below and above by two terms involving
‖ x
‖x ‖ −

w
‖w ‖‖

2. Plugging (11) and (12) into the two

side bounds, we get (4). Here we have applied Lemma
10 to 3 vectors, namely x, w, and ( x

‖x ‖ −
w
‖w ‖ ), thus

by the union bound, the probability that the above

holds is at least 1− 6 exp (−n2 ( ε
2

2 −
ε3

3 )).

For completeness, we show the proof of Lemma 10 be-
low.

Proof of Lemma 10. By Lemma 4 and letting
w = x, we have E(‖R x ‖2) = ‖x ‖2. Due to
the 2-stability of the Gaussian distribution, we know∑d
j=1 r`jxj = ‖x ‖z`, where z` ∼ N(0, 1). We thus

have ‖R x ‖2 = 1
n‖x ‖2

∑n
`=1 z

2
` . Here

∑n
`=1 z

2
` is chi-

square distributed with n-degrees of freedom. Apply-
ing the standard tail bound of the chi-square distribu-
tion, we have

Pr
(
‖R x ‖2 ≤ (1− ε)‖x ‖2

)
≤ exp

(n
2

(1− (1− ε) + ln(1− ε))
)
≤ exp (−n

4
ε2).

Here we used the inequality ln(1 − ε) ≤ −ε − ε2/2.
Similarly, we have

Pr
(
‖R x ‖2 ≤ (1 + ε)‖x ‖2

)
≤ exp

(n
2

(1− (1 + ε) + ln(1 + ε))
)
≤ exp (−n

2
(
ε2

2
− ε3

3
)).

Here we used the inequality ln(1+ε) ≤ ε−ε2/2+ε3/3.

5. Experiments

The experiments detailed below offer an empirical val-
idation in support of the theoretical analysis above,
and a demonstration of its application to SVMs.

5.1. Angle and inner product preservation
condition

Figure 2 shows the results of simulations whereby we
randomly generate two vectors w and x ∈ Rd, d = 300.
We then generate 2, 000 random Gaussian matrices of
the form specified in Theorem 5. Each such matrix
is used to project the data into n dimensions where
n = {30, 60, 90, . . . , 300}. We vary ε ∈ {0.1, 0.3} and
compute the empirical rejection probability for angle
preservation

P1 = 1−Pr
(

(1−ε) ≤ 〈R w,R x〉 ‖w ‖‖x ‖
‖R w‖‖R x‖〈w,x〉

< (1+ε)
)
,

and the empirical rejection probability for the inner
product preservation

P2 = 1− Pr
(

(1− ε) ≤ 〈R w,R x〉
〈w,x〉

≤ (1 + ε)
)
.

The simulations cover two cases, first where the vectors
x and w are separated by an acute angle (i.e. γ =
〈w,x〉
‖w ‖‖x ‖ > 0), and second where the angle is obtuse

(i.e. γ < 0).

In the acute angle (γ > 0) case we generate two pairs
of vectors with 〈w1,x1〉 = 0.827 and 〈w2,x2〉 = 0.527
and plot the empirical rejection probability in Figure 2.
In Figure 2(a), we can clearly see that the rejection
probability more rapidly approaches zero for {w1,x1}
than {w2,x2}. This aligns with the theoretical anal-
ysis above in that we we would expect a more acute
angle to imply a better angle preservation under ran-
dom projection, and thus that fewer projections would
be required to achieve a reasonable separation. It is
also expected that the rejection probability decreases
as ε and n increase.

Likewise, the inner product is preserved under ran-
dom projection if the angle is acute as is visible in
Figure 2(b). It is interesting to see that for the same
γ, ε and n, the empirical rejection probability for the
angle preservation is significantly smaller than that for
inner product preservation.

In the obtuse angle (i.e. γ < 0) case, we gener-
ate two pairs of vectors with 〈w3,x3〉) = −0.062 and
〈w4,x4〉) = −0.0165 and plot the empirical rejection
probability in Figure 2 (c) and (d). Clearly the em-
pirical rejection probability does not shrink towards
zero, thus both the angle and the inner product are
not preserved.
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(a) Acute angle (b) Inner product (acute) (c) Obtuse angle (d) Inner product (obtuse)

Figure 2. The empirical rejection probability plot for (a) acute angles, (b) inner product with an acute angle, (c) obtuse
angles and (d) inner product with an obtuse angle. It demonstrates that angle is preserved better than the inner product
under random projection when the angle is acute (i.e. γ > 0). The empirical rejection probability for angles is much
smaller than that for the inner product under the same conditions. Neither angle (c) nor inner product (d) is preserved
when the angle is obtuse (i.e. γ < 0).

(a) Nor. binary margin (b) Un. binary margin (c) Nor. multiclass margin (d) Un. multiclass margin

Figure 3. The empirical rejection probability plots for (a) normalised binary margin, (b) unnormalised binary margin, (c)
normalised multiclass margin, (d) unnormalised multiclass margin.

5.2. Margin preservation

Margins We generated L parallel hyperplanes,
where the L is the number of classes. Each class con-
sists of 5 data points x ∈ R100 from a hyperplane. We
then generated 100 random Gaussian matrices. We
used the random matrices to project the data, and
then computed both the normalised margin and un-
normalised margin. The empirical rejection probabil-
ity

P = 1− Pr
(

(1− ε) ≤ γ′

γ
< (1 + ε)

)
,

where γ′ is the new margin and γ is the original mar-
gin, was also computed. We show the plots for both
binary and multiclass (L = 3) cases. As we can see in
Figure 3, that the empirical rejection probability de-
creases ( i.e. margins are preserved with higher prob-
ability) as the number of projection n increases.

Implications for SVMs As has been shown, the
results above can be applied even in the case where
the data are linearly inseparable, as is often the case
in real classification problems. Testing of this method
shows that it exhibits a smaller testing error on in
the TiCC handwritten digit dataset (van der Maaten,
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Figure 4. Higher test accuracy with one-parameter method
in TiCC dataset.

2009), for example, than the multiclass SVM (Cram-
mer & Singer, 2001) algorithm in liblinear (Fan et al.,
2008). We conjecture that this is due to the signifi-
cantly reduced dimensionality specifically as a result
of the application of the one-parameter method. Pro-
jecting features to a lower dimensional space can signif-
icantly reduce the model capacity such as VC dimen-
sion (Vapnik, 1995). Thus the consequent generalisa-
tion bounds can be reduced if the margin preservation
is good.
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6. Conclusion

We have provided an analysis of margin distortion un-
der random projections, described the conditions un-
der which margins are preserved, and given bounds
on the margin distortion. We have shown particularly
that margin preservation is closely related to acute an-
gle (cosine) preservation and inner product preserva-
tion. In doing so we saw that the smaller acute angle,
the better the preservation of the angle and the in-
ner product. When the angle is well preserved, the
margin is well preserved too. Because of this, the nor-
malised margin is more informative than the unnor-
malised margin. We have also provided a theoretical
underpinning for classification methods which use ran-
dom projection to achieve multiclass classification with
a single model parameter vector.

In contrast to previous work in the area (Balcan et al.,
2006) we have shown that it is possible to provide
bounds on error free margin preservation without re-
quiring an infinite number of projections, and have
done so for arbitrary tolerances, rather than only for
half of the original margin. In addition, all of the above
has been achieved for multiclass rather than solely bi-
nary classifiers. It is worth pointing out that our er-
ror free margin is defined on a dataset as traditional
margin concepts whereas Balcan et al. (2006)’s error
allowed margin is defined on a data distribution.

Though we only showed results for random Gaus-
sian matrix, similar bounds can be achieved for sub-
Gaussian distribution as long as a tail bound similar
to Lemma 10 holds (see Achlioptas, 2003).

The bounds derived above are conservative, however,
as they are based on the union bound over all of the
data. The margin is primarily determined by the data
on the boundary, however. Even a small distortion of
data near the boundary may change the margin sig-
nificantly, whereas distortion of the data far from the
boundary is far less likely to do so. It thus seems
likely that the margin bound can be further tightened
by taking into account the data distribution.
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