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Abstract

Belief Propagation (BP) is one of the most
popular methods for inference in probabilis-
tic graphical models. BP is guaranteed to
return the correct answer for tree structures,
but can be incorrect or non-convergent for
loopy graphical models. Recently, several
new approximate inference algorithms based
on cavity distribution have been proposed.
These methods can account for the effect of
loops by incorporating the dependency be-
tween BP messages. Alternatively, region-
based approximations (that lead to methods
such as Generalized Belief Propagation) im-
prove upon BP by considering interactions
within small clusters of variables, thus tak-
ing small loops within these clusters into ac-
count. This paper introduces an approach,
Generalized Loop Correction (GLC), that
benefits from both of these types of loop cor-
rection. We show how GLC relates to these
two families of inference methods, then pro-
vide empirical evidence that GLC works ef-
fectively in general, and can be significantly
more accurate than both correction schemes.

1. Introduction

Many real-world applications require probabilistic in-
ference from some known probabilistic model (Koller
& Friedman, 2009). This paper will use probabilistic
graphical models, focusing on factor graphs (Kschis-
chang et al., 1998), that can represent both Markov
Networks and Bayesian Networks. The basic chal-
lenge of such inference is marginalization (or max-
marginalization) over a large number of variables. For
discrete variables, computing the exact solutions is
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NP-hard, typically involving a computation that is ex-
ponential in the number of variables.

When the conditional dependencies of the variables
form a tree structure (i.e., no loops), this exact infer-
ence is tractable, and can be done by a message pass-
ing procedure, Belief Propagation (BP) (Pearl, 1988).
The Loopy Belief Propagation (LBP) system applies
BP repeatedly to graph structures that are not trees
(called “loopy graphs”); however, this provides only an
approximately correct solution (when it converges).

LBP is related to the Bethe approximation to free
energy (Heskes, 2003), which is the basis for min-
imization of more sophisticated energy approxima-
tions and provably convergent methods (Yedidia et al.,
2005; Heskes, 2006; Yuille, 2002). A representative
class of energy approximations is the region-graph
methods (Yedidia et al., 2005), which deal with a
set of connected variables (called “regions”); these
methods subsume both the Cluster Variation Method
(CVM) (Pelizzola, 2005; Kikuchi, 1951) and the Junc-
tion Graph Method (Aji & McEliece, 2001). Such
region-based methods deal with the short loops of the
graph by incorporating them into overlapping regions
(see Figure 1(a)), and perform exact inference over
each region. Note a valid region-based methods is ex-
act if its region graph has no loops.

A different class of algorithms, loop correction meth-
ods, tackles the problem of inference in loopy graphical
models by considering the cavity distribution of vari-
ables. A cavity distribution is defined as the marginal
distribution on Markov blanket of a single (or a cluster
of) variable(s), after removing all factors that depend
on those initial variables. Figure 1(b) illustrates cav-
ity distribution, and also shows that the cavity vari-
ables can interact. The key observation in these meth-
ods is that, by removing a variable xi in a graphical
model, we break all the loops that involve the vari-
able xi, resulting in a simplified problem of finding
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Figure 1. Part of a factor graph, where circles are variables (circle labeled “i” corresponding to variable “xi”) and squares
(with CAPITAL letters) represent factors. Note variables {xi,xk,xs} form a loop, as do {xk,xu,xt}, etc.
(a) An example of absorbing short loops into overlapping regions. Here, a region includes factors around each hexagon
and all its variables. Factor I and the variables xi,xj ,xk appear in the three regions r1, r2, r3. (Figure just shows index
α for region rα.) Region-based methods provide a way to perform inference on overlapping regions. (In general, regions
do not have to involve exactly 3 variables and 3 factors.)
(b) Cavity variables for xs are {xw, xj , xk, xu, xv}, shown using dotted circles. We define the cavity distribution
for xs by removing all the factors around this variable, and marginalizing the remaining factor-graph on dotted circles.
Even after removing factors {T, Y,W}, the variables xv,xw, and xj ,xk,xu still have higher-order interactions caused by
remaining factors, due to loops in the factor graph.
(c) Cavity region r1 = {j, s, k} includes variables shown in pale circles. Variables in dotted circles are the perimeter 	r1.
Removing the “pale factors” and marginalizing the rest of network on 	r1, gives the cavity distribution for r1.

the cavity distribution. The marginals around xi can
then be recovered by considering the cavity distribu-
tion and its interaction with xi. This is the basis for
the loop correction schemes by Montanari & Rizzo’s
(2005) on pairwise dependencies over binary variables,
and also Mooij & Kappen’s (2007) extension to general
factor graphs – called Loop Corrected Belief Propaga-
tion (LCBP).

This paper defines a new algorithm for probabilistic
inference, called Generalized Loop Correction (GLC),
that uses a more general form of cavity distribution,
defined over regions, and also a novel message passing
scheme between these regions that uses cavity distri-
butions to correct the types of loops that result from
exact inference over each region. GLC’s combina-
tion of loop corrections is well motivated, as region-
based methods can deal effectively with short loops in
the graph, and the approximate cavity distribution is
known to produce superior results when dealing with
long influencial loops (Mooij & Kappen, 2007).

In its simplest form, GLC produces update equations
similar to LCBP’s; indeed, under a mild assumption,
GLC reduces to LCBP for pairwise factors. In its gen-
eral form, when not provided with information on cav-
ity variable interactions, GLC produces results similar
to region-based methods. We theoretically establish
the relation between GLC and region-based approxi-

mations, for a limited setting.

Section 2 explains the notation, factor graph represen-
tation and preliminaries for GLC. Section 3 introduces
a simple version of GLC that works with regions that
partition the set of variables; followed by its exten-
sion to the more general algorithm. Section 4 presents
empirical results, comparing our GLC against other
approaches.

2. Framework

2.1. Notation

Let X = {X1, X2, . . . , XN} be a set of N discrete-
valued random variables, where Xi ∈ Xi. Suppose
their joint probability distribution factorizes into a
product of non-negative functions:

P (X = x) :=
1

Z

∏
I∈F

ψI(xI)

where each I ⊆ {1, 2, . . . , N} is a subset of the vari-
able indices, and xI = {xi | i ∈ I} is the set of
values in x indexed by the subset I. Each factor
ψI :

∏
i∈I Xi → [0,∞) is a non-negative function, and

F is the collection of indexing subsets I for all the
factors ψI . Below we will use the term “factor” inter-
changeably with the function ψI and subset I, and the
term “variable” interchangeably for the value xi and
index i. Here Z is the partition function.
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This model can be conveniently represented as a bipar-
tite graph, called the factor graph (Kschischang et al.,
1998), which includes two sets of nodes: variable nodes
xi, and factor nodes ψI . A variable node xi is con-
nected to a factor node ψI if and only if i ∈ I. We
use the notation N(i) to denote the neighbors of vari-
able xi in the factor graph – i.e., the set of factors
defined by N(i) := {I ∈ F | i ∈ I}. To illustrate,
using Figure 1(a): N(j) = {I, T, S} and T = {j, s, w}.

We use the shorthand ψA(x) :=
∏

I∈A(xI) to de-
note the product of factors in a set of factors A. For
marginalizing all possible values of x except the ith
variable, we define the notation:∑

x\i

f(x) :=
∑

xj∈Xj ,j 6=i

f(x).

Similarly for a set of variables r, we use the notation∑
x\r to denote marginalization of all variables apart

from those in r.

2.2. Generalized Cavity Distribution

The notion of cavity distribution is borrowed from so-
called cavity methods from statistical physics (Mézard
& Montanari, 2009), and has been used in analysis
and optimization of important combinatorial prob-
lems (Mézard et al., 2002; Braunstein et al., 2002).
The basic idea is to make a cavity by removing a vari-
able xi along with all the factors around it, from the
factor graph (Figure 1(b)). We will use a more general
notion of regional cavity, around a region.

Definition A cavity region is a subset of variables r ⊆
{1, . . . , N} that are connected by a set of factors – i.e.,
the set of variable nodes r and the associated factors
N(r) := {N(i) | i ∈ r} forms a connected component
on the factor graph.

For example in Figure 1(a), the variables indexed
by r1 = {j, k, s} define a cavity region with factors
N(r1) = {I, T, Y, S,W,K}

Remark A “cavity region” is different from common
notion of region in region-graph methods, in that a
cavity region includes all factors in N(r) (and nothing
more), while common regions allow a factor I to be a
part of a region only if I ⊆ r.

The notation ⊕r := {i ∈ I | I ∈ N(r)} denotes
the cavity region r with its surrounding variables, and
	r := ⊕r \ r denotes just the perimeter of the cavity
region r. In Figure 1(c), the dotted circles show the
indices 	r1 = {o, i,m, t, u, v, w} and their union with
the pale circles defines ⊕r1.

Definition The Cavity Distribution, for cavity region

r, is defined over the variables indexed by 	r, as:

P \r(x	r) ∝
∑
x\	r

ψF\N(r)(x) =
∑
x\	r

∏
I /∈N(r)

ψI(xI)

Here the summation is over all variables but the ones
indexed by 	r.

In Figure 1(c), this is the distribution obtained by re-
moving factors N(r1) = {I, T, Y,K, S,W} from the
factor gaph and marginalizing the rest over dotted cir-
cles, 	r1.

The core idea to our approach is that each cavity re-
gion r can produce reliable probability distribution
over r, given an accurate cavity distribution estimate
over the surrounding variables 	r. Given the exact
cavity distribution P \r over 	r, we can recover the
exact joint distribution Pr over ⊕r by:

Pr(x⊕r) ∝ P \r(x	r)ψN(r)(x) = P \r(x	r)
∏

I∈N(r)

ψI(xI) .

In practice, we can only obtain estimates P̂ \r(x	r)
of the true cavity distribution P \r(x	r). However,
suppose we have multiple cavity regions r1, r2, . . . , rM
that collectively cover all the variables {x1, . . . , xN}.
If 	rp intersects with rq, we can improve the esti-

mate of P̂ \rp(x	rp) by enforcing marginal consistency

of P̂rp(x⊕rp) with P̂rq (x⊕rq ) over the variables in
their intersection. This suggests an iterative correc-
tion scheme that is very similar to message passing.

In Figure 1(a), let each hexagon (over variables
and factors) define a cavity region, here r1, . . . , r5.
Note r1 can provide good estimates over {j, s, k},
given good approximation to cavity distribution over
{o, i,m, t, u, v, w}. This in turn can be improved by
neighboring regions; e.g., r2 gives a good approxima-
tion over {i, o}, and r3 over {i,m}. Starting from an

initial cavity distribution P̂
\rα
0 , for each cavity region

α ∈ {1, . . . , 14}, We perform this improvement for all
cavity regions, in iterations until convergence.

When we start with a uniform cavity distribution P̂
\rp
0

for all regions, the results are very similar to those of
CVM. The accuracy of this approximation depends on

the accuracy of the initial P̂
\rp
0 .

Following Mooij (2008), we use variable clamping to
estimate higher-order interactions in 	r: Here, we es-
timate the partition function Zx	r after removing fac-
tors in N(r) and fixing x	r to each possible assign-
ment. Doing this calculation, we have P̂ \r(x	r) ∝
Zx	r . In our experiments, we use the approximation
to the partition function provided using LBP. However
there are some alternatives to clamping: conditioning
scheme Rizzo et al. (2007) makes it possible to use
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any method capable of marginalization for estimation
of cavity distribution (clamping requires estimation of
partition function). It is also possible to use techniques
in answering joint queries for this purpose (Koller &
Friedman (2009)).

Using clamping for this purpose also means that, if the
resulting network, after clamping, has no loops, then
P̂r(x⊕r) is exact – hence GLC produces exact results
if for every cluster r, removing ⊕r results in a tree.

3. Generalized Loop Correction
3.1. Simple Case: Partitioning Cavity Regions

To introduce our approach, first consider a sim-
pler case where the cavity regions r1, . . . , rM form
a (disjoint and exhaustive) partition of the variables
{1, . . . , N}.

Let 	rp,q := (	rp)∩ rq denote the intersection of the
perimeter 	rp of rp with another cavity region rq.
(Note 	rp,q 6= 	rq,p). As r1, . . . , rM is a partition,
each perimeter 	rp is a disjoint union of 	rp,q for
q = 1 . . .M (some of which might be empty if rp and rq
are not neighbors). Let Nb(p) denote the set of regions
q with 	rp,q 6= ∅. We now consider how to improve the
cavity distribution estimate over 	rp through update
messages sent to each of the 	rp,q.

In Figure 1(a), the regions r2, r4, r5, r7, r11, r14 form
a partitioning. Here, r2 with {m, k, s, w} ⊂ 	r2, re-
ceives updates over 	r2,7 = {m} from r7 and up-
dates over 	r2,4 = {k} from r4. This last update

ensures
∑
x\{k} P̂r2(x⊕r2) =

∑
x\{k} P̂r4(x⊕r4). To-

wards enforcing this equality, we introduce a message
m4→2(x	r2,4) into distribution over ⊕r2.

Here, the distribution over ⊕rp becomes: P̂rp(x⊕rp) ∝
P̂
\rp
0 (x	rp)ψN(rp)(x⊕rp)

∏
q∈Nb(p)

mq→p(x	rp,q ), (1)

where P̂rp denotes our estimate of the true distribu-
tion Prp .

The messages mq→p can be recovered by consider-
ing marginalization constraints. When rp and rq
are neighbors, their distributions P̂rp(x⊕rp) and

P̂rq (x⊕rq ) should satisfy∑
x\⊕rp∩⊕rq

P̂rp(x⊕rp) =
∑

x\⊕rp∩⊕rq

P̂rq (x⊕rq ).

We can divide both sides by the factor product
ψN(rp)∩N(rq)(x), as the domain of the factors in
N(rp) ∩ N(rq) is completely contained in ⊕rp ∩ ⊕rq
and independent of the summation. Hence we have∑
x\⊕rp∩⊕rq

P̂rp(x⊕rp)

ψN(rp)∩N(rq)(x)
=

∑
x\⊕rp∩⊕rq

P̂rq(x⊕rq)

ψN(rp)∩N(rq)(x)

As 	rp,q ⊂ ⊕rp ∩ ⊕rq , this implies the weaker con-

sistency condition:∑
x\	rp,q

P̂rp(x⊕rp)ψN(rp)∩N(rq)(x)−1=
∑

x\	rp,q

P̂rq(x⊕rq)ψN(rp)∩N(rq)(x)−1,

(2)

which we can use to derive update equations formq→p.

Starting from the LHS of Eqn (2),∑
x\	rp,q

P̂rp(x⊕rp)ψN(rp)∩N(rq)(x)−1

∝
∑

x\	rp,q

P̂
\rp
0 (x	rp)ψN(rp)\N(rq)(x)

∏
q′∈Nb(p)

mq′→p(x	rp,q′ )

∝ mq→p(x	rp,q)
∑

x\	rp,q

P̂
\rp
0 (x	rp)ψN(rp)\N(rq)(x)

∏
q′∈Nb(p)
q′ 6=q

mq′→p(x	rp,q′).

Setting this proportional to the RHS of Eqn (2), we
have the update equation

mnew
q→p(x	rp,q )

∝

∑
x\	rp,q

P̂rq (x⊕rq )ψN(rp)∩N(rq)(x)−1

∑
x\	rp,q

P̂
\rp
0 (x	rp)ψN(rp)\N(rq)(x)

∏
q′∈Nb(p)
q′ 6=q

mq→p(x	rp,q′ )

∝

∑
x\	rp,q

P̂rq (x⊕rq )ψN(rp)∩N(rq)(x)−1

∑
x\	rp,q

P̂rp(x⊕rp)ψN(rp)∩N(rq)(x)−1
mq→p(x	rp,q ) (3)

The last line follows from multiplying the numerator
and denominator by the current version of the message
mq→p. At convergence, when mq→p equals mnew

q→p, the
consistency constraints are satisfied. By repeating this
update in any order, after convergence, the P̂r(x⊕r)s
represent approximate marginals over each region.

The following theorem stablishes the relation between
GLC and CVM in a limited setting.

Theorem 1 If the cavity regions partition the vari-
ables and all the factors involve no more than 2 vari-
ables, then any GBP fixed point of a particular CVM
construction (details in Appendix A) is also a fixed
point for GLC, starting from uniform cavity distribu-

tions P̂
\r
0 = 1. (Proof in Appendix A.)

Corollary 1 If the factors have size two and there are
no loops of size 4 in the factor graph, for single variable
partitioning with uniform cavity distribution, any fixed
points of LBP can be mapped to fixed points of GLC.

Proof If there are no loops of size 4 then no two fac-
tors have identical domain. Thus the factors are all
maximal and GBP applied to CVM with maximal fac-
tor domains, is the same as LBP. On the other hand
(refering to CVM construction of Appendix A) under
the given condition, GLC with single variable parti-
tioning shares the fixed points of GBP applied to CVM
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with maximal factors. Therefore GLC shares the fixed
points of LBP.

Theorem 2 If all factors have size two and no two
factors have the same domain, GLC is identical to
LCBP under single variable partitioning.

Proof Follows from comparison of two update equa-
tions – i.e., Eqn (3) and Eqn (5) in (Mooij & Kappen,
2007)– under the assumptions of the theorem.

3.2. General Cavity Regions

When cavity regions do not partition the set of vari-
ables, the updates are more involved. As the perimeter
	rp is no longer partitioned, the 	rp,q’s are no longer
disjoint.

For example in Figure 1, for r1 we have 	r1,2 ={o, i},
	r1,3 = {i,m}, 	r1,4 = {t, u}, 	r1,5 = {v, w} and also
	r1,6 = {i}, 	r1,7 = {m}, 	r1,8 = {m, t}, 	r1,9 = {t},
etc. This means xi appears in messages m2→1, m3→1

and m6→1.

Directly adopting the correction formula for P̂r in
Eqn (1) as a product of messsages over 	rp,q could
double-count variables. To avoid this problem, we
adopt a strategy similar to CVM to discount extra
contributions from overlapping variables in 	rp. For
each cavity region rp, we form a 	rp-region graph
(Figure 2) with the incoming messages forming the
distributions over top regions. For computational rea-
sons, we only consider maximal 	rp,q domains.1 here,
this means dropping m6→1 as 	r1,6⊂	r1,2 and so on.

Our region-graph construction is similar to
CVM (Pelizzola, 2005) – i.e., we construct new
sub-regions as the intersection of 	rp,q’s, and we
repeat this recursively until no new region can be
added. We then connect each sub-region to its
immediate parent. Figure 2 shows the 	r1-region
graph for the example of Figure 1(a). If the cavity
regions are a partition, the 	rp-region graph includes
only the top regions. Below we use 	Rp to denote
the 	rp-region graph for rp; 	RO

p to denote its top
(outer) regions; and brp(xρ) to denote the belief over
region ρ in 	rp-region graph. For top-regions, the
initial belief is equal to the basic messages obtained
using Eqn (3).

Next we assign “counting numbers” to regions, in
a way similar to CVM: top regions are assigned
cn(	rp,q) = 1, and each sub-region ρ is assigned using

1This does not noticably affect the accuracy in our ex-
periments. When using uniform cavity distributions, the
results are identical.

{ i , m} { t, u}{ m, t} { v, w}{ o, i}

{o} {m} {t}

Figure 2. The 	r1-region-graph consisting of all the mes-
sages to r1. The variables in each region and its counting
number are shown. The upward and downward messages
are passed along the edges in this 	r1-region-graph.

the Möbius formula:
cn(ρ) := 1−

∑
ρ′∈A(ρ)

cn(ρ′)

where A(ρ) is the set of ancestors of ρ.

We can now define the belief over cavity regions rp as:

P̂rp(x⊕rp) ∝ P̂ \rp0 (x	rp)ψN(rp)(x⊕rp)
∏

ρ∈	Rp

brp(xρ)cn(ρ) (4)

This avoids any double-counting of variables, and re-
duces to Eqn (1) in the case of partitioning cavity re-
gions.

To apply Eqn (4) effectively, we need to enforce
marginal consistency of the intersection regions with
their parents, which can be accomplished via message
passing in a downward pass, Each region ρ′ sends
to each of its child ρ, its marginal over the child’s
variables:

µρ′→ρ(xρ) :=
∑

x\ρ
brp(xρ′)

Then set the belief over each child region to be the
geometric average of the incoming messages:

brp(xρ) :=
∏

ρ′∈pr(ρ)
µρ′→ρ(xρ)

1
|pr(ρ)|

The downward pass updates the child regions in 	Rp\
	RO

p . We update the beliefs at the top regions using
a modified version of Eqn (3): brp(x	rp,q ) ∝∑
x\	rp,q

P̂rq(x⊕rq)ψN(rq)∩N(rp)(x⊕rq)
−1

∑
x\	rp,q

P̂rp(x⊕rp)ψN(rp)∩N(rq)(x⊕rp)
−1
beffrp (x	rp,q)

cn(ρ), (5)

for all top regions 	rp,q ∈ 	RO
p .

Here beffrp (x	rp,q ) is the effective old message over
	rp,q:

beffrp (x	rp,q ) =
∑

x\	rp,q

∏
ρ∈	Rp

brp(xρ)

That is, in the update equation, we need the calcula-
tion of the new message to assume this value as the
old message from q to p. This marginalization is im-
portant because it allows the belief at the top region
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brp(x	rp,q ) to be influenced by the beliefs brp(xρ) of
the sub-regions after a downward pass. It enforces
marginal consistency between the top regions, and at
convergence we have beffrp (x	rp,q ) = brp(x	rp,q ). No-
tice also Eqn (5) is equivalent to the old update Eqn (3)
in the partitioning case.

To calculate this marginalization more efficiently,
GLC uses an upward pass in the 	rp-region-graph.
Starting from the parents of the lowest regions, we de-
fine beffrp (xρ) as:

beffrp (xρ′) := brp(xρ′)
∏

ρ∈ch(ρ′)

beffr (xρ)

µρ→ρ′(xρ)

Returning to the example, the previous text provides
a method to update P̂r1(x⊕r1). GLC performs this
for the remaining regions as well, and then iterates
the entire process until convergence – i.e., until the
change in all distributions is less than a threshold.

4. Experiments

This section compares different variations of our
method against LBP as well as CVM, LCBP and
TreeEP (Minka & Qi, 2003) methods, each of which
performs some kind of loop correction. For CVM, we
use the double-loop algorithm of (Heskes, 2006), which
is slower than GBP but has better convergence prop-
erties. All methods are applied without any damping.
We stop each method after a maximum of 1E4 itera-
tions or if the change in the probability distribution
(or messages) is less than 1E-9. We report the time
in seconds and the error for each method as the av-
erage of absolute error in single variable marginals –
i.e.,

∑
xi,v
|P̂ (xi =v)−P (xi =v)|. For each setting, we

report the average results over 10 random instances of
the problem. We experimented with grids, 3-regular
random graphs, and the ALARM network as typical
benchmark problems.2

Both LCBP and GLC can be used with a uniform
initial cavity or with an initial cavity distribution es-
timated via clamping cavity variables. In the exper-
iments, full and uniform refer to the kind of cavity
distribution used. We use GLC to denote the par-
titioning case, and GLC+ when overlapping clusters
of some form are used. For example, GLC+(Loop4,
full) refers to a setting with full cavity that contains
all overlapping loop clusters of length up to 4. If a
factor does not appear in any loops, it forms its own
cluster. The same form of clusters are used for CVM.

2The evaluations are based on implementation in libdai
inference toolbox (Mooij, 2010).

Figure 4. Time vs error for 3-regular Ising models with lo-
cal field and interactions sampled from a standard normal.
Each method in the graph has 10 points, each representing
an Ising model of different size (10 to 100 variables).

4.1. Grids

We experimented with periodic Ising grids in which
xi ∈ {−1,+1} is a binary variable and the prob-
ability distribution of a setting when xi and xj
are connected in the graph is given by P (x) ∝
exp(

∑
i θixi + 1

2

∑
i,j∈I Ji,jxixj ) where Ji,j controls

variable interactions and θi defines a single node po-
tential – a.k.a. a local field. In general, smaller local
fields and larger variable interactions result in more
difficult problems. We sampled local fields indepen-
dently from N (0, 1) and interactions from N (0, β2).
Figure 3(left) summarize the results for 6x6 grids for
different values of β.

We also experimented with periodic grids of different
sizes, generated by sampling all factor entries indepen-
dently from N (0, 1). Figure 3(middle) compares the
computation time and error of different methods for
grids of sizes that range from 4x4 to 10x10.

4.2. Regular Graphs

We generated two sets of experiments with random
3-regular graphs (all nodes have degree 3) over 40
variables. Here we used Ising model when both local
fields and couplings are independently sampled from
N (0, β2). Figure 3(right) show the time and error for
different values of β. Figure 4 shows time versus error
for graph size between 10 to 100 nodes for β = 1. For
larger βs, few instances did not converge within allo-
cated number of iterations. The results are for cases
in which all methods converged.
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Figure 3. Average Run-time and accuracy for: (Left) 6x6 spinglass grids for different values of β. Variable interactions
are sampled from N (0, β2), local fields are sampled from N (0, 1). (Middle) various grid-sizes: [5x5, . . . , 10x10]; Factors
are sampled from N (0, 1). (Right) 3-regular Ising models with local field and interactions sampled from N (0, β2).

Table 1. Performance of varoius methods on Alarm
Method Time(s) Avg. Error

LBP 3.00E-2 8.14E-3
TreeEP 1.00E-2 2.02E-1

CVM (Loop3) 5.80E-1 2.10E-3
CVM (Loop4) 7.47E+1 6.35E-3
CVM (Loop5) 1.22E+3 1.21E-2
CVM (Loop6) 5.30E+4 1.29E-2

LCBP (Full) 3.87E+1 1.07E-6
GLC+ (Factor, Uniform) 6.69E 0 3.26E-4
GLC+ (Loop3, Uniform) 6.71E 0 4.58E-4
GLC+ (Loop4, Uniform) 4.65E+1 3.35E-4

GLC+ (Factor, Full) 1.23E+3 1.00E-9
GLC+ (Loop3, Full) 1.36E+3 1.00E-9
GLC+ (Loop4, Full) 1.79E+3 1.00E-9

4.3. Alarm Network

Alarm is a Bayesian network with 37 variables and
37 factors. Variables are discrete, but not all are bi-
nary, and most factors have more than two variables.
Table(1) compares the accuracy versus run-time of dif-
ferent methods. GLC with factor domains as regions –
i.e., rp = I for I ∈ F – and all loopy clusters produces
exact results up to the convergence threshold.

4.4. Discussions

These results show that GLC consistently provides
more accurate results than both CVM and LCBP, al-
though often at the cost of more computation time.
They also suggest that one may not achieve this trade-
off between time and accuracy simply by including
larger loops in CVM regions. When used with uniform
cavity, the performance of GLC (specifically GLC+)
is similar to CVM, and GLC appears stable, which is

lacking in general single-loop GBP implementations.

GLC’s time complexity (when using full cavity, and
using LBP to estimate the cavity distribution) is
O(τMN |X |u + λM |X |v)), where λ is the number of
iterations of GLC, τ is the maximum number of it-
erations for LBP, M is the number of clusters, N
is the number of variables, u = maxp | 	 rp| and
v = maxp | ⊕ rp|. Here the first term is the cost of
estimating the cavity distributions and the second is
the cost of exact inference on clusters. This makes
GLC especially useful when regional Markov blankets
are not too large.

5. Conclusions

We introduced GLC, an inference method that pro-
vide accurate inference by utilizing the loop correc-
tion schemes of both region-based and recent cavity-
based methods. Experimental results on benchmarks
support the claim that, for difficult problems, these
schemes are complementary and our GLC can suc-
cessfully exploit both. We also believe that our scheme
motivates possible variations that can also deal with
graphical models with large Markov blankets.
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A. Appendix

We prove the equality of GLC to CVM, in the setting
where each factor involves no more than 2 variables and
the cavity distributions P̂ \r(x	r) is uniform.3

Consider the following CVM region-graph:

• internal region (Rint
p ): it contains all the variables in

rp, and factors that are internal to rp – i.e., {I ∈ F |
I ⊆ rp}.

• bridge region (Rbr
p,q): it contains all the variables and

factors that connect rp and rq — i.e., variables ⊕rp∩
⊕rq and factors N(rp) ∩N(rq).

• sub region (Rsub
p,q ): the intersection of internal Rint

p

and bridge Rbr
p,q. It contains only variables and no

factors. (Note Rsub
p,q = 	rq,p)

Note each internal and bridge region has a counting number

3 To differentiate from GLC’s cavity regions r, we use
the capital notation R to denote the corresponding region
in the CVM region graph construction.

of 1, while each subregion has a counting number of −1.
Since we assume the cavity regions rp form a partition and
each factor contains no more than 2 variables, this region
graph construction counts each variable and each factor
exactly once.

We focus on the parent-to-child algorithm for GBP.
For the specific region graph construction outlined, we
have 2 types of messages: internal region to subregion
message (µisq→p sent from Rint

q to Rsub
q,p ), and bridge region

to subregion message (µbsq→p sent from Rbr
q,p to Rsub

q,p ).

Note that Rsub
q,p and Rsub

p,q are the intersection of Rbr
p,q

with Rint
q and Rint

p respectively. We use the notation
µ to differentiate from messages m used in GLC. Below
we drop the arguments to make the equations more
readable. The parent-to-child algorithm uses the following
fixed-point equations:

µisq→p ∝
∑
x\Rsubq,p

ψRintq

∏
q′∈Nb(q),q′ 6=p µ

bs
q′→q

µbsq→p ∝
∑
x\Rsubq,p

ψRbrq,pµ
is
q→p

Suppose GBP converges to a fixed point with messages
µisq→p and µbsq→p satisfying the fixed point conditions above;

we show that messages defined by mq→p := µisq→p are fixed
points of update Eqn (3) – i.e., satisfy the consistency con-
dition of Eqn (2)

Assuming uniform initial cavity P̂
\r
0 = 1, for LHS of

Eqn (2), we have∑
x\	rp,q P̂rp(x⊕rp)ψN(rp)∩N(rq)(x)−1

∝ mq→p
∑
x\	rp,q ψN(rp)\N(rq)

∏
q′∈Nb(p),q′ 6=qmq′→p

∝ mq→p = µisq→p,
as the domain of the expression inside the summation sign
is disjoint from 	rp,q.

As for the RHS of Eqn (2) we have∑
x\	rp,q

P̂rq (x⊕rq )ψN(rp)∩N(rq)(x)−1

∝
∑

x\	rp,q

ψN(rq)ψN(rp)∩N(rq)(x)−1
∏

q′∈Nb(q)

mq′→q

∝
∑

x\Rsubq,p

(ψRintq

∏
q′∈Nb(q)

ψRbr
q′,q

)ψRbrp,q (x)−1
∏

q′∈Nb(q)

µisq′→q

∝
∑

x\Rsubq,p

ψRintq

∏
q′∈Nb(q),q′ 6=p

ψRbr
q′,q

µisq′→q (6)

∝
∑

x\Rsubq,p

ψRintq

∏
q′∈Nb(q),q′ 6=p

∑
x\Rsub

q′,q

ψRbr
q′,q

µisq′→q (7)

∝
∑

x\Rsubq,p

ψRintq

∏
q′∈Nb(q),q′ 6=p

µbsq′→q ∝ µisq→p

Removing µisp→q in line (6) is valid because, in the absence
of ψRbrp,q , its domain is disjoint from the rest of the terms.

Moving the summation inside the product in line (7) is
valid because partitioning guarantees that product terms’
domains have no overlap and they are also disjoint from
ψRintq

.

Thus the LHS and RHS of Eqn (2) agrees and mq→p :=
µisq→p is a fixed point of GLC.


